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1. Introduction

Herstein [6] shown that if R is a ring satisfying (ab)n = anbn, where n > 1 then R has a nil commentator ideal. Also Abu-

Khuzam [1] proved that if R is an identity element 1 satisfying (ab)n = anbn ∀ a, b ∈ R and n > 1, then R is commutative

. and then Gupta [5] proved that if R is a semi prime ring with centre Z(R) satisfying (ab)2 − a2b2 ∈ Z(R) ∀ a, b ∈ R, then

R is commutative. In [2] it is proved that R is commutative if R is a semi prime ring satisfying (ab)n − anbn ∈ Z(R) and

(a2bn) − a2nbn ∈ Z(R) ∀ a, b ∈ R. In this direction we prove that, if R is an (n + 1)n-torsion free periodic ring such that

(ab)n− ba ∈ Z(R) and (ab)n+1− ba ∈ Z(R) or (ab)n+1− ab ∈ Z(R) and if the set of nilpotent elements of R is commutative

Then R is commutative. We prove that an n-torsion free periodic ring (not necessarily with unity) for which (ab)n − (ba)n

is in the center is commutative which provided that the set A of nilpotent’s of R form a commutative set. If a ∈ aR ∩ Ra,

∀ a ∈ R, then the ring R is called s-unital. In [8] it is proved that if R is an S-unital ring satisfying the following identities. (1)

[an, bn] = 0, (2) n[a.b] = 0⇒ [a, b] = 0 (3) [a, an(ab)n− (ba)nan] = 0 ∀ a, b ∈ R, then R is commutative. Using this we prove

that if R is an n(n+ 1)-torsion free periodic ring (not necessarily with unity) satisfying the identity an(ab)− (ba)an ∈ Z(R)

∀ a, b ∈ R and if A is commutative, then R is commutative .We also prove that (ab)n − bnan ∈ Z(R) ∀ a ∈ R/A, b ∈ R/A

and A is commutative then R is commutative.

2. Preliminaries

Throughout in this paper R represents a periodic ring not necessarily with unity and A denotes the set of nilpotent elements

of R. Z(R) is the center of R. We start the results with following lemmas :

Lemma 2.1. If [a, [a, b]] = 0, then [at, b] = tat−1[a, b] ∀ integers t ≥ 1.
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Proof. For t = 1, identity [at, b] = t.at−1[a, b] is true. If we assume that

[at, b] = tat−1[a, b] (1)

then

[at+1, b] = [ata, b]

= at[a, b] + [at, b]a

= at[a, b] + tat−1[a, b]a, by (1)

= at[a, b] + tat[a, b], since [a, [a, b]] = 0

= (t+ 1)at[a, b] ∀ t > 1

[at+1, b] = (t+ 1)at[a, b]

Hence, by induction [at, b] = tat−1[a, b] for all integers t ≥ 1.

Lemma 2.2. A periodic ring R has following axioms.

(1). For every a in R, some powers of a is idempotent.

(2). For every a in R, ∃ an integer n > 1 such that a− an(x) is nilpotent.

(3). If p : R→ R′ is an epimorphism, then p(A) is equals to the set of nilpotent elements of R′.

(4). If A is central, then R is commutative.

Proof.

(1). If an = am with n > m, then aj+t(n−m) = aj for all positive integer t and every j ≥ m. So we assume that n−m+1 ≥ m.

Then it follows that an−m+1 = (an−m+1)n−m+1. Thus (an−m+1)n−m is idempotent.

(2). Consider an = am, n > m > 1. Then am−1(a− an−m+1) = 0 = am−2a(a− an−m+1) = am−2an−m+1(a− an−m+1). So

am−2(a− an−m+1)2 = 0. By induction the result follows :

(3). By Lemma 1 [3], we know that (a + Z) is a non zero nilpotent element if R′, where Z is an ideal of R, then R has a

nilpotent element V such that a = V (mod Z). Hence if p : R→ R′ is an epimorphison, then P (N) is equals to the set

of nilpotent elements of R1.

(4). If A is the set of nilpotent elements of R, then it is easily seen that A is an ideal. Also if a ∈ R and e is an idempotent

R, then both ea = eae and ae− eae exist in R. So commute with e. Therefore idempotent in R are central.

We know that homomorphic images inherit the hypothesis on R. Thus we consider only the case of sub directly irreducible R.

As per this assumption, part (1) of the Lemma 2.2 prove that R is either nil and hence commutative or R has a multiplicative

identity element 1 which is unique non-zero central idempotent. From (2) of Lemma 2.2 that every element of R is either

nilpotent or invertible. Therefore the set D of zero divisors is equal to A is a central ideal. Moreover by (2) of Lemma 2.2

R = R/D has a property of Jacobson is xn = x, so that R is commutative and R has torsion group which is additive group.

Thus if x, y ∈ R/D is a finite field which is generated by x = x+D, and y = y +D. R/D has cyclic multiplicative group.

Hence there exist g ∈ R and d1, d2 ∈ D such that

x = gi + d1
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y = gj + d2,

i, j are positive integers. It follows that x, y must commute.

Lemma 2.3. If commutator ideal C(R) ∈ R is nil, then the nilpotent A ∈ R form an ideal.

Proof. Let x, y ∈ A and R = R/C(R). Then x = x + C(R) and y = y + C(R) are also nilpotent. Therefore x − y is

nilpotent. [∴ R is commutative]. Assuming (x− y)t = 0. (x− y)t of C(R) ⊆ A. By hypothesis, (x− y) ∈ A. Let a ∈ R be

an arbitrary element ⇒ xa is also nilpotent. Let (xa)m = 0⇒ (xa)m ∈ C(R) ⊆ A. Thus xa ∈ A. Similarly ax ∈ A ∀x ∈ A,

a ∈ A. Hence A is an ideal of R.

Lemma 2.4. Let R be a periodic ring and A is commutative, thus the commutator ideal of R is nil, and A forms an ideal

of R.

Proof. Let A be the set of nilpotent elements. We have to prove that (i) V1 − V2 ∈ A, V1, V2 ∈ A by using the standard

argument for the commutative and also we prove by induction on t that if vt = 0 and r ∈ R, it is true that (vr)t = (rv)t = 0.

First consider t = 2. Let V ∈ R such that V 2 = 0 and k be a positive integer for which (vr)k = e is idempotent. Then

(re− ere) is nilpotent and commutative with V. i.e.

(vr)(vr)k − v(vr)kr(vr)k = r(vr)kv − (vr)kr(vr)kv (2)

multiplying above by V on right, we get, vr(vr)kv = 0. Hence (vr)k+2 = (rv)k+2 = 0, which implies that v commutes with

both rv and vr. Hence (rv)2 = (vr)2 = 0. Suppose the above result is true for all b with bm = 0, m < t, and vt = 0, t ≥ 3

multiplying (2) by r on left and v on right side by defining k as above, we obtain

(rv)k+2 = rv2α+ βv2 (3)

α, β are elements of subring generated by r and v. Since (v2)t+1 = 0⇒ rv2α and βv2 are nilpotent. Hence (3) represents rv

and vr are nilpotent. Again the element v must commute with vr and rv. Therefore (rv)t = (vr)t = 0 and A is an ideal.

Lemma 2.5. If R be a periodic ring such that A is commutative and for every a ∈ R and x ∈ A, ∃ an integer n = n(a, x) ≥ 1

such that [an, [an, x]] = 0 and [an+1, [an+1, x]] = 0. Then R is commutative.

Proof. By Lemma 2.2 (3), it is enough to prove that if R is sub directly irreducible, then R equals to A or R is a

commutative local ring with radical A, so that we can consider that R is subdirectly irreducible and R 6= A. Let a ∈ R/A

be an arbitrary element. Then ∃ a positive integer t such that e = at( 6= 0) is an idempotent. By hypothesis, there exists a

positive integer n = n(a) such that

(an, [an, x]] = 0 and [an+1, [an+1, x]] = 0

According to [e, [e, x]] = 0 ∀ x ∈ A, e is central and equal to 1, which proves that a is invertible and R is a local ring with radical

A. We can easily seen, R is not pj-torsion free, where p is a prime and a = a+A generates a sub field of R = R/A. Let x ∈ A,

since ((a)n)dp
ite = ((a)n) and A is commutative. By (1), we can prove that [an, x] = [(an)p

it

, x] = pit(an)p
it

[an, x] 6= 0.

Also we can also prove that an[a, x] = an[a, x] + [an, x]a = (an+1, x) = 0. Since ‘a’ is invertible, [a, x] = 0, which proves that

A is central. Hence by Lemma 2.2 (4) R is commutative.

Lemma 2.6. Let p : R→ R′ be an epiomolphism, R be a m-torsion free ring and n be a positive integer. If R is n-torsion

free, then R′ is n-torsion free.
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Proof. Let D be the greatest common divisor of m and n ⇒ m = t1D and n = t2D where t1, t2 are positive integers. If

D 6= 1, then R is not m( 6= t1)-torsion free and also exist element b ∈ R such that t1b 6= 0, now n(t1b) = (t2D)t1b = t2mb = 0

it contradicts our assumption that R is m-torsion free. So D = 1 and (m,n) = 1. Since P : R→ R′ is an epimorphism then

for all a′ ∈ R′, there exists an element a ∈ R such that a′ = p(x). Now,

mx′ = mp(x)

= p(mx)

= p(0)

= 0 ∀ a′ ∈ R′

Hence char R′ = m′, where m′ divides m. So, (m′, n) = 1, since (m,n) = 1 ⇒ rm′ + sn = 1, where r, s are integers. If

nb′ = 0 for some b′ ∈ R′. Then b′ = (rm′ + sn)b′ = r(m′b′) + s(nb′) = 0. Hence R′ is n-torsion free.

3. Main Results

Theorem 3.1. Let n be a positive integer and R be an (n + 1)n-tortion free periodic such that (ab)n − ba ∈ Z(R) and

(ab)n+1 − ba ∈ Z(R). If A is commutative, then R is commutative.

Proof. By Lemma 2.4, the set A of nilpotent elements of R is an ideal of R and since A is commutative. We know that

A2 ⊆ Z(R). (4)

Let e be an idempotent element of R and ‘a’ be any element of R. From the hypothesis,

[e(e+ ea− eae)]n − (e+ ea− eae)e ∈ Z(R).

[e(e+ ea− exe)]− (e+ ex− exe)e ∈ Z(R).

Hence (ea− eae)e ∈ Z(R)⇒ e(ea− eae) = (ea− eae)e⇒ ea = eae. Similarly

ae = eae (5)

Thus ea = ae and the idempotent of R are central. Let a, b ∈ R be the two elements. Then by the hypothesis,

(ab)n − ba = W1 ∈ Z(R) and (ba)n − ab = W2 ∈ Z(R) (6)

Now, (ab)na = a(ba)n and using (4)we get,

(W1 + ba)a = a(ab+W2)

W1a+ ba2 = a2b+ aW2

a2b− ba2 = (W1 −W2)a

⇒ [a2, [a2, b]] = 0 ∀ a, b ∈ R (7)
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Let x ∈ A, b = x+ 1 in (7) and use the fact that to A2 ⊆ Z(R) in (4), to get that

[x2, [x2, a]] = 0 ∀ a ∈ R, x ∈ A (8)

Repeating the above process from (6) using the hypothesis, (ab)n+1 − ba ∈ Z(R), we get

[a3, [a3, x]] = 0 ∀ a ∈ R, x ∈ A. (9)

Using (8), (9) and Lemma (5) we see that R must be commutative. Hence the theorem proved.

Theorem 3.2. If R is an n-torsion free periodic ring satisfying (ab)n − (ba)n ∈ Z(R) and A is commutative, then R is

commutative.

Proof. First we consider that R has unity by Lemma 2.4, since A is an ideal of R and commutative, A2 ⊆ Z(R). Consider

x ∈ A, y ∈ R, put a = (1 + x)y, b = (1 + x)−1, then hypothesis (ab)n − (ba)n ∈ Z(R) becomes

(1 + x)yn(1 + x)−1 − yn ∈ Z(R) (10)

Hence

[(1 + x)yn(1 + x)−1 − yn](1 + x) = (1 + x)[(1 + x)yn(1 + x)−1 − bn]

(1 + x)yn − yn(1 + x) = (1 + x)[(1 + x)yn(1 + x)−1 − yn]

xyn − yxn = (1 + x)[(1 + x)yn(1 + x)−1 − yn] (11)

Since A is a commutative ideal, (1 + x)(xyn − ynx) = (1 + x)[(1 + x)yn(1 + x)−1 − yn], since x ∈ A, (1 + x) is a unit in R.

Thus xyn − ynx = (1 + x)yn(1 + x)−1 ∈ Z(R) by (10),

[x, yn] ∈ Z(R), (x ∈ N, y ∈ R) (12)

Now, if a1, a2, . . . , ak ∈ R, since R/Z(R) is commutative. (a1, a2, . . . , ak)n = (an1a
n
2 . . . a

n
k ) ∈ Z(R) ⊆ A by Lemma 2.3. But

A is commutative, and therefore

[x, (a1, a2, . . . , ak)n] = [x,(a
n
1 , a

n
2 , . . . , a

n
k )] (x ∈ A) (13)

Adding (12) and (13), we get

[x, (an1 , a
n
2 , . . . , a

n
k )] ∈ Z(R), (x ∈ A, a1, a2, . . . , ak ∈ R and K ≥ 1) (14)

Let s’ be the subring of R generated by the nth powers of elements of R. Then by (14),

[x, a] ∈ Z(s′) ∀ x ∈ A(s), a ∈ s′. (15)

(Hence Z(s′) and A(s′) denote the centre of s′ and the set of nilpotent’s of s′, respectively). Therefore A(s′) is commutative

and (15), a Theorem of 2.2 shows that s’ is commutative and hence

[an, bn] = 0 ∀ a, b ∈ R (16)

Observe that R is an n-torsion free ring with unity satisfying (16) and (ab)n − (ba)n is always central. Therefore R is

commutative.

593



Commutativity of Periodic Rings with Some Identities in the Center

Lemma 3.3. Let R is s-unital ring satisfying the identities.

(1). [an, bn] = 0 ∀ a, b ∈ R

(2). n[a, b] = 0 implies [a, b] = 0, for all a, b ∈ R

(3). [a, an(ab)− (ba)an] = 0 ∀ a, b ∈ R then R is commutative.

Theorem 3.4. If R is an (n+ 1)n-torsion free periodic ring satisfying identity. an(ab)− (ba)an ∈ Z(R) ∀ a, b ∈ R and if

A is commutative, then R is commutative.

Proof. we prove the theorem, when R has unity 1. By Lemma 2.3, A is an ideal of R and commutative A2 ⊆ Z(R). Let

x ∈ A gives that x is quasi regularly and it has quasi inverse, hence (1 + x) has inverse in R. Now for x, y ∈ A, we consider

a = 1 + x, b = y(1 + x)−1 in the above identity, we get,

(1 + x)n[(1 + x)y(1 + x)−1]− [y(1 + x)−1(1 + x)](1 + x)n ∈ Z(R)

(1 + x)n+1y(1 + x)−1 − y(1 + x)n ∈ Z(R) (17)

In particular

{(1 + x)n+1y(1 + x)−1 − y(1 + x)n{(1 + x) = (1 + x){(1 + x)n+1y(1 + x)−1 − y(1 + xn)}

(1 + x)n+1y − y(1 + x)n+1 = (1 + x){(1 + x)n+1y(1 + x)−1 − y(1 + x)n}

Using binomial expansion and the N(R)2 ⊆ Z(R), we get,

{1+(n+1)x+ · · ·+(n+1)xn +xn+1}y−y{1+(n+1)x+ · · ·+(n+1)xn +xn+1} = (1+x){(1+x)n+1y(1+x)−1−y(1+x)n}

Hence

(n+ 1)(xy − yx) = (1 + x){(1 + x)n+1y(1 + x)−1 − y(1 + x)n} (18)

since A is commutative ideal, (x+1)(xy−yx) = xy−yx and hence (18) gives, (n+1)(x+1)(xy−yx) = (1+x){(1+x)n+1y(1+

x)−1−y(1+x)n}, since x ∈ A, (1+x) is unit in R and by (9), we get, (n+1)(xy−yx) = {(1+x)n+1y(1+x)−1y(1+x)n} ∈ Z(R).

(n+ 1)(xy − yx) ∈ Z(R), since R is (n+ 1)n-torsion free, we get,

[x, y] ∈ Z(R) ∀ x ∈ A, y ∈ R (19)

Now consider a1, a2, . . . , ak ∈ R. Since R/Z(R) is commutative, (a1, a2, . . . , ak)n − (an1 , a
n
2 , . . . , a

n
k ) ∈ Z(R) ⊆ A(R) by

Lemma 2.3, therefore N(R) is commutative yields that

[x, (a1, a2, . . . , an)n] = [x, (an1 , a
n
2 , . . . , a

n
k )] ∀ x ∈ A(R) (20)

By combining (19) and (20), we get

[x, (an1 , a
n
2 , . . . , a

n
k )] ∈ Z(R) ∀ x ∈ A, (a1, a2, . . . , ak) ∈ R,K = 1 (21)

let S∗ be the subring generated by the nth power of the elements of R then by (21), we have,

[x, a] ∈ Z(S∗) ∀ x ∈ A(S∗), a ∈ S∗ (22)
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Here z(S∗) and A(S∗) denote the center of S* and set of nilpotent element of S∗. Combining the fact that A(S∗) is

commutative, S∗ is periodic and (22), Lemma 2.4 shows that S∗ is commutative. Hence [an, bn] = 0 ∀ a, b ∈ R, since every

commutator in R is (n+ 1)n-torsion free and R satisfies the axiom

an(ab)− (ba)an ∈ Z(R) ∀ a, b ∈ R (23)

Equation (23) and Lemma 3.3 give that R is commutative by Lemma 3.3, we get required result. It shows that for each non

zero idempotent e, eR is commutative. Hence e[a, b] = 0 ∀ a, b ∈ R. Thus if x ∈ R is potent with xn = x, n > 1, then

xn−1[x, y] = 0 = [x, y] ∀ y ∈ R since every element of periodic ring equals to the sum of a potent element and nilpotent

element, this implies A ∈ Z(R) and R is commutative.

Theorem 3.5. If n ≥ 1 is a fixed integer, R is (n + 1)n-torsion free periodic ring A is commutative and (ab)n − bnan ∈

Z(R) ∀ a ∈ R/A, b ∈ R/A. Then R is commutative.

Proof. Since A is commutative and R is periodic, by Lemma 2.4, the commutator ideal of R is nil and A forms an ideal

of R. Also, since A2 ⊆ Z(R) and the ideal commutative. Let1 ∈ R, a ∈ A, b ∈ R/A, put a = x + 1 in identity, then

[(x+ 1)y]n − yn(x+ 1)n ∈ Z(R) and [y(x+ 1)]n − (x+ 1)nyn ∈ Z(R). By subtractions above results and using A2 ⊆ Z(R),

we get, (n+ 1)(x, yn) ∈ Z(R) and since R is (n+ 1)n-torsion free

[x, yn] ∈ Z(R) ∀ x ∈ A, y ∈ R/A (24)

since a is commutative, (24) implies

[x, yn] ∈ Z(R) ∀ x ∈ A, y ∈ R (25)

Now consider a1, a2, . . . , ak ∈ R, since R/Z(R) is commutative, (a1, a2, . . . , ak)n − (an,
1 a

n
2 , . . . , a

n
k ) ∈ Z(R) ⊆ A. But A is

commutative and therefore

[x, (a1, a2, . . . , ak)n] = [x,(a
n
1a

n
2 . . . a

n
k )] (x ∈ A) (26)

By combining (25) and (26), we get,

[x, (an,
1 a

n
2 , . . . , a

n
k )] ∈ Z(R) (x ∈ A, a1, a2, . . . , ak ∈ R ∀ K ≥ 1) (27)

Let S′ be the subring of R generated by nth power of elements of R, using (27),

[x, a] ∈ Z ∗ (R) ∀ x ∈ A∗, a ∈ S′ (28)

where Z∗(R) and A∗ denote the center of S′ and the set of nilpotent of S′ respectively. Combining the facts that S’ is

periodic, A* is commutative and (28), Lemma 2.5 gives that S′ is commutative. Hence

[an, bn] = 0 ∀ a, b ∈ R (29)

Further we assume that x ∈ A, y ∈ R/A. Then, by hypothesis and facts that R/Z(R) is commutative and Z(R) ∈ A. We

have

[(1 + x)y]n − yn(1 + z)n = w ∈ Z(R) ∩A (30)
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[y(1 + x)]n − [(1 + x)nyn] = w′ ∈ Z(R) ∩A (31)

Equation (30) and (31) gives

y[(1 + x)y]n(1 + x)− yn+1(1 + x)n+1 = yw(1 + x) (32)

(1 + x)[y(1 + x)]ny − (1 + x)n+1yn+1 = (1 + x)w′y (33)

Observe that w ∈ A by (30) and A2 ∈ Z(R). Hence ywx ∈ Z(R). Similarly, xw′y ∈ Z(R) ⇒ w ∈ Z(R) and w′ ∈ Z(R) we

see that [yw(1 + x), y] = 0 and [(1 + x)w1y, y] = 0. Hence by (32) and (33), we get

{y(1 + x)]n+1 − yn+1(1 + x)n+1} commutes with y (34)

and {(1 + x)y]n+1 − (1 + x)n+1yn+1} commutes with y (35)

According that A2 ∈ Z(R) and subtracting (34) from (35), we get

n[yn+1, x] commutes with y, ∀ x ∈ A, y ∈ R/A (36)

Since A is commutative, R is (n+ 1)n-torsion free and by (36) implies,

[x, yn+1] commutes with y, for all x ∈ A, y ∈ R (37)

by (29), [an, bn] = 0 ∀ a, b ∈ R, 1 ∈ R (case (i)) and R is n-torsion free. Hence

[x, yn] = 0 ∀ x ∈ A, y ∈ R (38)

Now, (37) implies that xyn+2−yn+1xy = yxyn+1−yn+2x and by (38), we obtain ynxy2−yn+1xy = yn+1xy−yn+2x. Hence

yn{[x, y]y} = yn[y[x, y]]. Thus

yn[(x1y)y] = 0 ∀ x ∈ A, y ∈ R (39)

write y by 1 + y in (39), we get

(1 + y)n[[x, y], y] = 0 ∀ x ∈ N, y ∈ R (40)

by (7), (39) and (40) gives that

[[x, y], y] = 0 ∀ x ∈ A, y ∈ R (41)

Since A is commutative, R is periodic and by Lemma 2.5 and (41), R is commutative.

References

[1] H.Abu-Khuzam, A commutativity theorem for rings, Math. Japonica., 25(1980), 593-595.

[2] H.Abu-Khuzam and A.Yaqub, Commutativity of certain semiprime rings, Stidia. Sci. Math. Hungar.

[3] H.E.Bell, A commutativity study for periodic rings, Pacific. J. Math., 70(1977), 29-36.

[4] M.Chacron, On a theorem of Herstein, Canad J Math., 21(1969), 1348-1353.

[5] V.Gupta, Some remarks on the commutativity of rings, Acta Math. Acad. Sci. Hung., 36(1980), 232-236.

[6] I.N.Herstein, Poweraps in rings, Machigan. J., 8(1960), 29-32.

[7] W.K.Nicholson and A.Yaqub, A commutative theorem, Algebra universals, 10(1980), 260-263.

[8] R.D.Giri and S.Tiwari, Some commutativity theorems for s-unital ring, Far Fast. Jour. Math. Sci., 1(2)(1993), 169-178.

[9] H.Abu-Khuzam, H.E.Bell and A.Yaqub, Commutativity theorems for S-unital rings satisfying polynomial identities, Math.

J. Okayama University, 22(1980), 111-114.

596


	Introduction
	Preliminaries
	Main Results
	References

