International Journal of Mathematics And its Applications

Double Crown Related E Cordial Graphs

Mukund V. Bapat ${ }^{1, *}$
1 Hindale, Devgad, Sindhudurg, Maharashtra, India.

Abstract

WE obtain different families of graphs by attaching two pendent edges at each vertex of G. We call these graphs as double crown graphs and denote them by G^{++}. We show that C_{n}^{++}and S_{4}^{++}and W_{n+1}^{++}are E-cordial families.

MSC: 05C78.

Keywords: Double crown, E-cordial, double, pendent edge, wheel, shel labeling.
(C) JS Publication.

1. Introduction

In 1997 Yilmaz and Cahit [4] introduced a weaker version of edge graceful labeling called E-cordial. The word cordial was used first time in this paper. Let G be a graph with vertex set V and edge set E. Let f be a function that maps E into $\{0,1\}$. Define f on V by $f(v)=\sum\{f(u v) /(u v) \in E\}(\bmod 2)$. The function f is called as E cordial labeling if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$. Where $e_{f}(i)$ is the number of edges labeled with $i=0,1$ and $v_{f}(i)$ is the number of vertices labeled with $i=0,1$. We also use $v_{f}(0,1)=(a, b)$ to denote the number of vertices labeled with 0 are a and that with 1 are b . Similarly $e_{f}(0,1)=(x, y)$ to denote number of edges labeled with 0 are x and that labeled with 1 are y respectively. A lot of work has been done in this type of labeling and the above mentioned paper gave rise to number of cordial labelings. A graph that admits E-cordial labeling is called as E-cordial graph. Yilmaz and Cahit has shown that Trees T_{n} with n vertices and Complete graphs K_{n} on n vertices are E-cordial if and only if n is not congruent to 2 (modulo 4). Friendship graph $C_{3}^{(n)}$ for all n and fans Fn for n not congruent to $1(\bmod 4)$. One may refer A Dynamic survey of graph labeling for more details on completed work. In this paper we show that C_{n}^{++}and S_{4}^{++}and W_{n+1}^{++}are E-cordial families. For definitions and terminology we refer $[2,3,5]$.

2. Definitions

Definition 2.1 (Crown Graph). Initially this was defined for Cycle graph and denoted by C_{n}^{+}. It was obtained by attaching an pendent edge each to every vertex of C_{n}. We develop the concept for any graph G and denote it by G^{+}. It is obtained from a graph G by attaching a pendent edge at each vertex of G. Note that $\left|V\left(G^{+}\right)\right|=2 .|V(G)|$ and for edges $\left|E\left(G^{+}\right)\right|=$ $|E(G)|+|V(G)|$.

[^0]Definition 2.2 (Double crown Of $G=(p, q)$ graph). We obtain it by attaching two pendent edges at each vertex of G. We denote it by G^{++}. Note that $\left|E\left(G^{++}\right)\right|=2 p+q,\left|V\left(G^{++}\right)\right|=3 p$.

Definition 2.3 (Shel graph S_{n}). It is obtained by taking chords from a fixed point of C_{n} to every other vertex of C_{n} other than neighbouring two vertices. It has $2 n-3$ edges and n vertices.

3. Main Results

Theorem 3.1. $G=C_{n}^{++}$is E-cordial.
Proof. Define C_{n}^{++}in terms of vertex set and Edge set as follows: $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\} \cup\left\{v_{i, j}, i=1,2, \ldots, n\right.$ and $j=$ $1,2\} ; E(G)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) / i=1,2, \ldots, n ; i+1\right.$ taken modulo $\left.n\right\} \cup\left\{e_{i, j}=\left(v_{i} v_{i, j}\right) / i=1,2, \ldots, n\right.$ and $\left.j=1,2\right\}$. Note that $|V(G)|=3 n$ and $|E(G)|=3 n$. Define a function $f: E(G) \rightarrow\{0,1\}$ given by
Case 1: n is divisible by 4 . Take $t=\frac{n}{4} ; n=2 x$.

$$
\begin{aligned}
f\left(e_{i}\right) & =0 \text { for } i \equiv 2,3(\bmod 3) \text { and } i \leq 3 t ; \\
f\left(e_{i}\right) & =1 \text { for all other } \mathrm{i} \\
f\left(e_{i, j}\right) & =0 \text { for all } i=1, \ldots, x \\
f\left(e_{i, j}\right) & =1 \text { for all } x+1 \leq i \leq n
\end{aligned}
$$

Note that $v_{f}(0,1)=\left(\frac{3 n}{2}, \frac{3 n}{2}\right), e f(0,1)=\left(\frac{3 n}{2}, \frac{3 n}{2}\right)$.
Case 2: $n \equiv 1(\bmod 4)$

$$
\begin{aligned}
& f\left(e_{i}\right)=0 \text { for } i \equiv 2,3(\bmod 3) \text { and } i \leq 3 t \text { where } t=\left[\frac{n}{4}\right] \\
& f\left(e_{i}\right)=1 \text { for all other } \mathrm{i} \\
& f\left(e_{11}\right)=0 \\
& f\left(e_{12}\right)=1 \\
& f\left(e_{i, j}\right)=0 \text { for all } i=2, \ldots, q+1\left(\text { where } q=\frac{n-1}{2}\right) \\
& f\left(e_{i, j}\right)=1 \text { for all other i }
\end{aligned}
$$

Note that $v_{f}(0,1)=(q+1, q), e_{f}(0,1)=\left(\frac{3 n-1}{2}, \frac{3 n-1}{2}+1\right)$.
Case 3: $n \equiv 3(\bmod 4)$.

$$
\begin{aligned}
f\left(e_{i}\right) & =0 \text { for } i \equiv 2,3(\bmod 4) \text { and } 1 \leq i \leq 3 t \text { where } t=\left[\frac{n}{4}\right]+1 \\
f\left(e_{i}\right) & =1 \text { for rest of } \mathrm{i} \\
f\left(e_{i, j}\right) & =0 \text { for } 1 \leq i \leq \frac{n+3}{2} \text { for } j=1,2 \text { and } i \neq 2 \\
f\left(e_{i, j}\right) & =1 \text { for rest of } i, j=1,2, i \neq 2 \text { for } i=2, \\
f\left(e_{i, 1}\right) & =0 \text { and } \\
f\left(e_{i, 2}\right) & =1
\end{aligned}
$$

Note that number distribution is $e_{f}(0,1)=\left(\frac{3 n+1}{2}, \frac{3 n-1}{2}\right)=v_{f}(0,1)$.
Case 4: $n \equiv 2(\bmod 4)$ the desired labeling does not exist.

Figure 1. C_{9}^{++}is E-cordial actual edge labels are shown

Theorem 3.2. S_{n}^{++}which is double crown of shel S_{n} is E-cordial graph.

Proof. We define $G=S_{4}^{++}$in terms of vertex set and Edge set as follows: $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\} \cup\left\{v_{i, j}, i=\right.$ $1,2, \ldots, n \quad$ and $\quad j=1,2\} ; E(G)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) / i=1,2, \ldots, n, i+1\right.$ taken modulo $\left.n\right\} \cup\left\{e_{i, j}=\left(v_{i} v_{i, j}\right) / i=\right.$ $1,2, \ldots, n$ and $j=1,2\} \cup\left\{c_{i}=\left(v_{1} v_{i}\right) / i=3,4, \ldots, n-1\right\}$. Define a function $f: E(G) \rightarrow\{0,1\}$ given by

Case 1: $n \equiv 3(\bmod 4)$. Let $t=\frac{n-1}{2}$,

$$
\begin{aligned}
f\left(e_{i}\right) & =0 \text { for } i=1,2, \ldots, t \\
f\left(e_{i}\right) & =1 \text { otherwise } \\
f\left(c_{i}\right) & =0 \text { for } i=1,2, \ldots, t^{\prime}, \text { where } t^{\prime}=\frac{n-3}{2} \\
f\left(c_{i}\right) & =1 \text { otherwise } \\
f\left(e_{i, j}\right) & =0 \text { for } i=1 \text { to } \frac{n+1}{2} \\
f\left(e_{i, j}\right) & =1 \text { for } i=\frac{n+3}{2}, \ldots, n
\end{aligned}
$$

Note that $v_{f}(0,1)=\left(\frac{3 n+1}{2}, \frac{3 n-1}{2}\right), e_{f}(0,1)=(2 n-1,2 n-2)$.
Case 2: $n \equiv 1(\bmod 4)$. Let $t=\frac{n-1}{2}$.

$$
\begin{aligned}
f\left(e_{i}\right) & =0 \text { for } i=1,2, \ldots, t \\
f\left(e_{i}\right) & =1 \text { otherwise } \\
f\left(c_{i}\right) & =0 \text { for } i=1,2, \ldots, t^{\prime} \\
f\left(c_{i}\right) & =1 \text { otherwise } t^{\prime}=\frac{n-3}{2} \\
f\left(e_{i, j}\right) & =0 \text { for } i=2 \text { to } \frac{n+1}{2}, j=1,2 \\
f\left(e_{1,1}\right) & =0 \\
f\left(e_{1,2}\right) & =1 \\
f\left(e_{i, j}\right) & =1 \text { for } i=\frac{n+3}{2}, \ldots, n, j=1,2 .
\end{aligned}
$$

Note that the label numbers are $v_{f}(0,1)=\left(\frac{3 n+1}{2}, \frac{3 n-1}{2}\right), e_{f}(0,1)=(2 n-2,2 n-1)$ for $n \equiv 2(\bmod 4)$ the desired labeling dose't exists.

Figure 2. E-cordial labeling copy of S_{9}^{++}

Case 3: $n \equiv 0(\bmod 4)$. On n we take three subcases as $n \equiv 4(\bmod 12), n \equiv 8(\bmod 4)$ and $n \equiv 12(\bmod 4)$. We define $G=S_{4}^{++}$in terms of vertex set and Edge set as follows: $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\} \cup\left\{v_{i, j}, i=1,2, \ldots, n\right.$ and $\left.j=1,2\right\}$; $E(G)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) / i=1,2, \ldots, n\right.$, where $i+1$ taken modulo n$\} \cup\left\{e_{i, j}=\left(v_{i} v_{i, j}\right) / i=1,2, \ldots, n\right.$ and $\left.j=1,2\right\} \cup\left\{c_{i}=\right.$ $\left.\left(v_{1} v_{i}\right) / i=3,4, \ldots, n-1\right\}$. Define a function $f: E(G) \rightarrow\{0,1\}$ given by Case $1: n \equiv 0(\bmod 4)$.
Subcase 1: $n \equiv 4(\bmod 12)$. This gives $n=12 x+4$ for suitable $x=0,1,2, \ldots$ In this case we have $|V|=3 n=36 x+12$. For E-cordial labeling we must have $v_{f}(0,1)=(18 x+6,18 x+6)$ and on edges we have $|E|=4 n-3=48 x+13$ and $e_{f}(0,1)=(2 n-1,2 n-2)=(24 x+7,24 x+6)$ or $e_{f}(0,1)=(2 n-2,2 n-1)=(24 x+6,24 x+7)$. We choose $e_{f}(0,1)=$ $(2 n-1,2 n-2)=(24 x+7,24 x+6)$. Define a function $f: E(G) \rightarrow\{0,1\}$ as follows: $f\left(e_{i, j}\right)=1$ for $j=1,2$ and $i=1,2,3, \ldots, 9 x+3 . f\left(e_{i, j}\right)=0$ for $j=1,2$ and $i=9 x+4,9 x+5, \ldots, n$. Choose $2 x$ triangles on S_{n} not having common edge but having apex vertex of S_{n} as a common vertex, Take label on all these triangle edges as 1 . Label all rest of edges on S_{n}^{++}as 0 . The label distribution is $v_{f}(0,1)=\left(\frac{3 n}{2}, \frac{3 n}{2}\right), e_{f}(0,1)=(2 n-1,2 n-2)$.
Subcase 2: $n \equiv 8(\bmod 12)$. $n=12 x+8$ for suitable $x=0,1,2, \ldots$ In this case we have $|V|=3 n=36 x+24$. For E-cordial labeling we must have $v_{f}(0,1)=(18 x+12,18 x+12)$ and on edges we have $|E|=4 n-3=48 x+29$ and $e_{f}(0,1)=(2 n-1,2 n-2)=(24 x+15,24 x+14)$ or $e_{f}(0,1)=(2 n-2,2 n-1)=(24 x+14,24 x+15)$. We choose $e_{f}(0,1)=(2 n-1,2 n-2)=(24 x+14,24 x+15)$. Let $t=3 x$. Define a function $f: E(G) \rightarrow\{0,1\}$ as follows: $f\left(e_{i, j}\right)=1$ for $j=1,2$ and $i=1,2,3, \ldots, 9 x+6 . f\left(e_{i, j}\right)=0$ for $j=1,2$ and $i=9 x+7,9 x+8, \ldots, n$. Choose $2 x+1$ triangles on S_{n} not having common edge but having apex vertex of S_{n} as a common vertex. Take label on all these triangle edges as 1. Label all rest of edges on S_{n}^{++}as 0 . The label distribution is $v_{f}(0,1)=\left(\frac{3 n}{2}, \frac{3 n}{2}\right), e_{f}(0,1)=(2 n-2,2 n-1)$.

Subcase 3: $n \equiv 12(\bmod 12) ; n=12 x+12$; for suitable $x=0,1,2,3, \ldots$. In this case we have $|V|=3 n=36 x+36$. For E-cordial labeling we must have $v_{f}(0,1)=(18 x+18,18 x+18)$ and on edges we have $|E|=4 n-3=48 x+48$ and $e_{f}(0,1)=(2 n-1,2 n-2)=(24 x+23,24 x+22)$ or $e_{f}(0,1)=(2 n-2,2 n-1)=(24 x+22,24 x+23)$. We choose $e_{f}(0,1)=(2 n-1,2 n-2)=(24 x+7,24 x+6)$. Define a function $f: E(G) \rightarrow\{0,1\}$ as follows: $f\left(e_{i, j}\right)=1$ for $j=1,2$ and $i=1,2,3, \ldots, 9 x+9 . f\left(e_{i, j}\right)=0$ for $j=1,2$ and $i=9 x+10,9 x+11, \ldots, n$. Choose one square and $2 x$ triangles on S_{n} not having common edge but having apex vertex of S_{n} as a common vertex, take label on all these triangle edges as 1 . Label all rest of edges on S_{n}^{++}as 0 . The label distribution is $v_{f}(0,1)=\left(\frac{3 n}{2}, \frac{3 n}{2}\right), e_{f}(0,1)=(2 n-1,2 n-2)$.

Theorem 3.3. $G=W_{n+1}^{++}$is E-cordial.
Proof. It can be defined as: take a cycle on length $\mathrm{n}\left(C_{n}\right)$. Take a new vertex w and join it to each vertex of C_{n} by an edge each. To each vertex v_{i} of cycle two pendent edges are attached $(i=1,2, \ldots, n)$. We define G in the following way in terms of $V(G)$ and $E(G) . V(G)=\left\{v_{1}, v_{2}, \ldots, V_{n}\right\} \cup\left\{u_{i, j} /\right.$ for $i=1,2, \ldots, n$ and $\left.j=1,2\right\} \cup\{w\} U\left\{w^{\prime}, w^{\prime \prime}\right\}$. $E(G)=\left\{e i=\left(v_{i} v_{i+1}\right) / i=1,2, \ldots, n\right.$ where $i+1$ is taken modulo n$\} \cup\{e i, j=(v i u j) / i=1,2, \ldots, n$ and $j=1,2.\} \cup\{w i=$ $\left.\left(w v_{i}\right) / i=1,2, \ldots, n\right\} \cup\left\{\left(w w^{\prime}\right),\left(w w^{\prime \prime}\right)\right\}$. Define a function $f: E(G) \rightarrow\{1,0\}$ as follows.

Case 1: $(n+1) \equiv 0(\bmod 4)$.

$$
\begin{aligned}
f\left(v_{i}\right) & =0 \text { for } i=1,2, \ldots, 2 x-1 \text { and } \\
f\left(v_{i}\right) & =1 \text { otherwise } \\
f\left(w_{i}\right) & =0 \text { for } i=2,3, \ldots, 2 x+2 \\
f\left(w_{i}\right) & =1 \text { otherwise } \\
f\left(e_{i, j}\right) & =0 \text { for all } j=1,2 \text { and } i=1,2, \ldots, 2 x \\
f\left(e_{i j}\right) & =1 \text { for all } i=2 x+1, \ldots, n \text { and } j=1,2 \\
f\left(w w^{\prime}\right) & =1 \\
f\left(w w^{\prime \prime}\right) & =1
\end{aligned}
$$

We observe that label numbers are $v_{f}(0,1)=(6 x, 6 x)$ and $e_{f}(0,1)=(2 n+1,2 n+1)$.
Case 2: $n+1 \equiv 1(\bmod 4)$. Define a function $f: E(G) \rightarrow\{1,0\}$ as follows.

$$
\begin{aligned}
f\left(e_{i}\right) & =0 \text { for } i=1,2, \ldots, \frac{n}{2} \\
f\left(e_{i}\right) & =1 \text { for } \frac{n}{2}+1, \ldots, n \\
f\left(w_{i}\right) & =0 \text { for } i=1,2, \ldots, \frac{n}{2} \\
f\left(w_{i}\right) & =1 \text { for } i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n \\
f\left(e_{i j}\right) & =1 \text { for all } j=1,2 \text { and } i=1,2, \ldots, \frac{n}{2} \\
f\left(e_{i j}\right) & =0 \text { for all } j=1,2 \text { and } i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n \\
f\left(w w^{\prime}\right) & =0 \\
f\left(w w^{\prime \prime}\right) & =1
\end{aligned}
$$

We observe that label numbers are $v_{f}(0,1)=\left(\frac{3 n-1}{2}, \frac{3 n+1}{2}\right)$ and $e_{f}(0,1)=(2 n+1,2 n+1)$.
Case 3: $n+1 \equiv 3(\bmod 4)$

$$
\begin{aligned}
f\left(e_{i}\right) & =0 \text { for } i=1,2, \ldots, \frac{n}{2} \\
f\left(e_{i}\right) & =1 \text { for } \frac{n}{2}+1, \ldots, n \\
f\left(w_{i}\right) & =0 \text { for } i=1,2, \ldots, \frac{n}{2} \\
f\left(w_{i}\right) & =1 \text { for } i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n \\
f\left(e_{i j}\right) & =1 \text { for all } j=1,2 \text { and } i=1,2, \ldots, \frac{n}{2} \\
f\left(e_{i j}\right) & =0 \text { for al } j=1,2 \text { and } i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n \\
f\left(w w^{\prime}\right) & =0 \\
f\left(w w^{\prime \prime}\right) & =1
\end{aligned}
$$

We observe that label numbers are $v_{f}(0,1)=\left(\frac{3 n+1}{2}, \frac{3 n-1}{2}\right)$ and $e_{f}(0,1)=(2 n+1,2 n+1)$. When $n+1 \equiv 2(\bmod 4)$ there is no E-cordial labeling.

Figure 3. Labeled copy of W_{5}^{++}

4. Conclusion

We have shown three types of cycle related graphs to be E-cordial. They are namely $C_{n}^{++}, S_{n}^{++}, W_{n+1}^{++}$. This work makes us to construct $G^{++\cdots+}$ (for t times) and we think that these new graphs for $G=C_{n}, S_{n}, W_{n+1}$ are E-cordial under certain constraints as above. It is necessary to investigate E-cordiality for more graphs.

References

[1] M.V.Bapat, Equitable and other types of graph labeling, Ph.D. thesis, University Of Mumbai, (2004).
[2] J.A.Gallian, A dynamic survey of graph labellings, Electronic Journal of Combinatorics, 7(2015), \#DS6.
[3] F.Harary, Graph Theory, Narosa Publishing House, New Delhi.
[4] I.Cahit and R.Yilmaz, E-cordial graphs, Ars Combinatoria, 46(1997), 251-256.
[5] D.West, Introduction to Graph Theory, Pearson Education Asia.

[^0]: * E-mail: mukundbapat@yahoo.com

