ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Double Crown Related E Cordial Graphs

Mukund V. Bapat^{1,*}

1 Hindale, Devgad, Sindhudurg, Maharashtra, India.

Abstract: WE obtain different families of graphs by attaching two pendent edges at each vertex of G. We call these graphs as double

crown graphs and denote them by G^{++} . We show that C_n^{++} and S_4^{++} and W_{n+1}^{++} are E-cordial families.

MSC: 05C78.

Keywords: Double crown, E-cordial, double, pendent edge, wheel, shel labeling.

© JS Publication.

1. Introduction

In 1997 Yilmaz and Cahit [4] introduced a weaker version of edge graceful labeling called E-cordial. The word cordial was used first time in this paper. Let G be a graph with vertex set V and edge set E. Let f be a function that maps E into $\{0,1\}$. Define f on V by $f(v) = \sum \{f(uv)/(uv) \in E\} \pmod{2}$. The function f is called as E cordial labeling if $|e_f(0) - e_f(1)| \le 1$ and $|v_f(0) - v_f(1)| \le 1$. Where $e_f(i)$ is the number of edges labeled with i = 0, 1 and $v_f(i)$ is the number of vertices labeled with i = 0, 1. We also use $v_f(0, 1) = (a, b)$ to denote the number of vertices labeled with 0 are a and that with 1 are b. Similarly $e_f(0, 1) = (x, y)$ to denote number of edges labeled with 0 are x and that labeled with 1 are y respectively. A lot of work has been done in this type of labeling and the above mentioned paper gave rise to number of cordial labelings. A graph that admits E-cordial labeling is called as E-cordial graph. Yilmaz and Cahit has shown that Trees T_n with n vertices and Complete graphs K_n on n vertices are E-cordial if and only if n is not congruent to 2 (modulo 4). Friendship graph $C_3^{(n)}$ for all n and fans Fn for n not congruent to 1 (mod 4). One may refer A Dynamic survey of graph labeling for more details on completed work. In this paper we show that C_n^{++} and S_4^{++} and S_4^{++} are E-cordial families. For definitions and terminology we refer [2, 3, 5].

2. Definitions

Definition 2.1 (Crown Graph). Initially this was defined for Cycle graph and denoted by C_n^+ . It was obtained by attaching an pendent edge each to every vertex of C_n . We develop the concept for any graph G and denote it by G^+ . It is obtained from a graph G by attaching a pendent edge at each vertex of G. Note that $|V(G^+)| = 2.|V(G)|$ and for edges $|E(G^+)| = |E(G)| + |V(G)|$.

^{*} E-mail: mukundbapat@yahoo.com

Definition 2.2 (Double crown Of G = (p, q) graph). We obtain it by attaching two pendent edges at each vertex of G. We denote it by G^{++} . Note that $|E(G^{++})| = 2p + q$, $|V(G^{++})| = 3p$.

Definition 2.3 (Shel graph S_n). It is obtained by taking chords from a fixed point of C_n to every other vertex of C_n other than neighbouring two vertices. It has 2n-3 edges and n vertices.

3. Main Results

Theorem 3.1. $G = C_n^{++}$ is E-cordial.

Proof. Define C_n^{++} in terms of vertex set and Edge set as follows: $V(G) = \{v_1, v_2, v_3, \dots, v_n\} \cup \{v_{i,j}, i = 1, 2, \dots, n \text{ and } j = 1, 2\}; E(G) = \{e_i = (v_i v_{i+1})/i = 1, 2, \dots, n; i+1 \text{ taken modulo } n\} \cup \{e_{i,j} = (v_i v_{i,j})/i = 1, 2, \dots, n \text{ and } j = 1, 2\}.$ Note that |V(G)| = 3n and |E(G)| = 3n. Define a function $f: E(G) \to \{0, 1\}$ given by

Case 1: n is divisible by 4. Take $t = \frac{n}{4}$; n = 2x.

$$f(e_i)=0$$
 for $i\equiv 2,3 \pmod 3$ and $i\le 3t;$ $f(e_i)=1$ for all other i
$$f(e_{i,j})=0 \text{ for all } i=1,\dots,x$$
 $f(e_{i,j})=1$ for all $x+1\le i\le n$

Note that $v_f(0,1) = (\frac{3n}{2}, \frac{3n}{2}), ef(0,1) = (\frac{3n}{2}, \frac{3n}{2}).$

Case 2: $n \equiv 1 \pmod{4}$

$$f(e_i)=0$$
 for $i\equiv 2,3 \pmod 3$ and $i\le 3t$ where $t=\left[\frac{n}{4}\right]$ $f(e_i)=1$ for all other i $f(e_{11})=0,$ $f(e_{12})=1,$ $f(e_{i,j})=0$ for all $i=2,\ldots,q+1$ (where $q=\frac{n-1}{2}$) $f(e_{i,j})=1$ for all other i

Note that $v_f(0,1) = (q+1,q), e_f(0,1) = (\frac{3n-1}{2}, \frac{3n-1}{2} + 1).$

Case 3: $n \equiv 3 \pmod{4}$.

$$f(e_i) = 0$$
 for $i \equiv 2, 3 \pmod{4}$ and $1 \le i \le 3t$ where $t = \left[\frac{n}{4}\right] + 1$ $f(e_i) = 1$ for rest of i $f(e_{i,j}) = 0$ for $1 \le i \le \frac{n+3}{2}$ for $j = 1, 2$ and $i \ne 2$ $f(e_{i,j}) = 1$ for rest of $i, j = 1, 2, i \ne 2$ for $i = 2,$ $f(e_{i,1}) = 0$ and $f(e_{i,2}) = 1$

Note that number distribution is $e_f(0,1) = (\frac{3n+1}{2}, \frac{3n-1}{2}) = v_f(0,1)$.

Case 4: $n \equiv 2 \pmod{4}$ the desired labeling does not exist.

Figure 1. C_9^{++} is E-cordial actual edge labels are shown

Theorem 3.2. S_n^{++} which is double crown of shel S_n is E-cordial graph.

Proof. We define $G = S_4^{++}$ in terms of vertex set and Edge set as follows: $V(G) = \{v_1, v_2, v_3, \dots, v_n\} \cup \{v_{i,j}, i = 1, 2, \dots, n \text{ and } j = 1, 2\}; E(G) = \{e_i = (v_i v_{i+1})/i = 1, 2, \dots, n, i+1 \text{ taken modulo } n\} \cup \{e_{i,j} = (v_i v_{i,j})/i = 1, 2, \dots, n \text{ and } j = 1, 2\} \cup \{c_i = (v_1 v_i)/i = 3, 4, \dots, n-1\}.$ Define a function $f : E(G) \to \{0, 1\}$ given by Case 1: $n \equiv 3 \pmod{4}$. Let $t = \frac{n-1}{2}$,

$$f(e_i)=0$$
 for $i=1,2,\ldots,t$
$$f(e_i)=1$$
 otherwise
$$f(c_i)=0$$
 for $i=1,2,\ldots,t',$ where $t'=\frac{n-3}{2}$
$$f(c_i)=1$$
 otherwise
$$f(e_{i,j})=0$$
 for $i=1$ to $\frac{n+1}{2}$
$$f(e_{i,j})=1$$
 for $i=\frac{n+3}{2},\ldots,n$

Note that $v_f(0,1) = (\frac{3n+1}{2}, \frac{3n-1}{2}), e_f(0,1) = (2n-1, 2n-2).$

Case 2: $n \equiv 1 \pmod{4}$. Let $t = \frac{n-1}{2}$.

$$f(e_i) = 0$$
 for $i = 1, 2, ..., t$
 $f(e_i) = 1$ otherwise
 $f(c_i) = 0$ for $i = 1, 2, ..., t'$
 $f(c_i) = 1$ otherwise $t' = \frac{n-3}{2}$
 $f(e_{i,j}) = 0$ for $i = 2$ to $\frac{n+1}{2}$, $j = 1, 2$
 $f(e_{1,1}) = 0$,
 $f(e_{1,2}) = 1$
 $f(e_{i,j}) = 1$ for $i = \frac{n+3}{2}, ..., n, j = 1, 2$.

Note that the label numbers are $v_f(0,1) = (\frac{3n+1}{2}, \frac{3n-1}{2}), e_f(0,1) = (2n-2, 2n-1)$ for $n \equiv 2 \pmod{4}$ the desired labeling dose't exists.

Figure 2. E-cordial labeling copy of S_9^{++}

Case 3: $n \equiv 0 \pmod{4}$. On n we take three subcases as $n \equiv 4 \pmod{12}$, $n \equiv 8 \pmod{4}$ and $n \equiv 12 \pmod{4}$. We define $G = S_4^{++}$ in terms of vertex set and Edge set as follows: $V(G) = \{v_1, v_2, v_3, \dots, v_n\} \cup \{v_{i,j}, i = 1, 2, \dots, n \text{ and } j = 1, 2\}$; $E(G) = \{e_i = (v_i v_{i+1})/i = 1, 2, \dots, n, \text{ where } i+1 \text{ taken modulo n}\} \cup \{e_{i,j} = (v_i v_{i,j})/i = 1, 2, \dots, n \text{ and } j = 1, 2\} \cup \{c_i = (v_i v_i)/i = 3, 4, \dots, n-1\}$. Define a function $f: E(G) \to \{0, 1\}$ given by Case 1: $n \equiv 0 \pmod{4}$.

Subcase 1: $n \equiv 4 \pmod{12}$. This gives n = 12x + 4 for suitable $x = 0, 1, 2, \ldots$ In this case we have |V| = 3n = 36x + 12. For E-cordial labeling we must have $v_f(0,1) = (18x + 6, 18x + 6)$ and on edges we have |E| = 4n - 3 = 48x + 13 and $e_f(0,1) = (2n-1, 2n-2) = (24x + 7, 24x + 6)$ or $e_f(0,1) = (2n-2, 2n-1) = (24x + 6, 24x + 7)$. We choose $e_f(0,1) = (2n-1, 2n-2) = (24x + 7, 24x + 6)$. Define a function $f: E(G) \rightarrow \{0,1\}$ as follows: $f(e_{i,j}) = 1$ for j = 1,2 and $i = 1,2,3,\ldots,9x+3$. $f(e_{i,j}) = 0$ for j = 1,2 and $i = 9x + 4, 9x + 5,\ldots,n$. Choose 2x triangles on S_n not having common edge but having apex vertex of S_n as a common vertex, Take label on all these triangle edges as 1. Label all rest of edges on S_n^{++} as 0. The label distribution is $v_f(0,1) = (\frac{3n}{2}, \frac{3n}{2}), e_f(0,1) = (2n-1, 2n-2)$.

Subcase 2: $n \equiv 8 \pmod{12}$. n = 12x + 8 for suitable $x = 0, 1, 2, \ldots$ In this case we have |V| = 3n = 36x + 24. For E-cordial labeling we must have $v_f(0,1) = (18x + 12, 18x + 12)$ and on edges we have |E| = 4n - 3 = 48x + 29 and $e_f(0,1) = (2n-1, 2n-2) = (24x + 15, 24x + 14)$ or $e_f(0,1) = (2n-2, 2n-1) = (24x + 14, 24x + 15)$. We choose $e_f(0,1) = (2n-1, 2n-2) = (24x + 14, 24x + 15)$. Let t = 3x. Define a function $f : E(G) \to \{0,1\}$ as follows: $f(e_{i,j}) = 1$ for j = 1, 2 and $i = 1, 2, 3, \ldots, 9x + 6$. $f(e_{i,j}) = 0$ for j = 1, 2 and $i = 9x + 7, 9x + 8, \ldots, n$. Choose 2x + 1 triangles on S_n not having common edge but having apex vertex of S_n as a common vertex. Take label on all these triangle edges as 1. Label all rest of edges on S_n^{++} as 0. The label distribution is $v_f(0,1) = (\frac{3n}{2}, \frac{3n}{2}), e_f(0,1) = (2n-2, 2n-1)$.

Subcase 3: $n \equiv 12 \pmod{12}$; n = 12x + 12; for suitable $x = 0, 1, 2, 3, \ldots$. In this case we have |V| = 3n = 36x + 36. For E-cordial labeling we must have $v_f(0,1) = (18x + 18, 18x + 18)$ and on edges we have |E| = 4n - 3 = 48x + 48 and $e_f(0,1) = (2n-1, 2n-2) = (24x + 23, 24x + 22)$ or $e_f(0,1) = (2n-2, 2n-1) = (24x + 22, 24x + 23)$. We choose $e_f(0,1) = (2n-1, 2n-2) = (24x + 7, 24x + 6)$. Define a function $f: E(G) \to \{0,1\}$ as follows: $f(e_{i,j}) = 1$ for j = 1,2 and $i = 1,2,3,\ldots,9x+9$. $f(e_{i,j}) = 0$ for j = 1,2 and $i = 9x + 10, 9x + 11,\ldots,n$. Choose one square and 2x triangles on S_n not having common edge but having apex vertex of S_n as a common vertex, take label on all these triangle edges as 1. Label all rest of edges on S_n^{++} as 0. The label distribution is $v_f(0,1) = (\frac{3n}{2}, \frac{3n}{2}), e_f(0,1) = (2n-1, 2n-2)$.

Theorem 3.3. $G = W_{n+1}^{++}$ is E-cordial.

Proof. It can be defined as: take a cycle on length n (C_n) . Take a new vertex w and join it to each vertex of C_n by an edge each. To each vertex v_i of cycle two pendent edges are attached (i = 1, 2, ..., n). We define G in the following way in terms of V(G) and E(G). $V(G) = \{v_1, v_2, ..., V_n\} \cup \{u_{i,j} \mid for \ i = 1, 2, ..., n \ and \ j = 1, 2\} \cup \{w\}U\{w', w''\}$. $E(G) = \{ei = (v_i v_{i+1})/i = 1, 2, ..., n \ where \ i + 1 \ is taken modulo n \} \cup \{ei, j = (viuj)/i = 1, 2, ..., n \ and \ j = 1, 2.\} \cup \{wi = (wv_i)/i = 1, 2, ..., n\} \cup \{(ww'), (ww'')\}$. Define a function $f: E(G) \to \{1, 0\}$ as follows.

Case 1: $(n+1) \equiv 0 \pmod{4}$.

$$f(v_i) = 0$$
 for $i = 1, 2, ..., 2x - 1$ and $f(v_i) = 1$ otherwise $f(w_i) = 0$ for $i = 2, 3, ..., 2x + 2$ $f(w_i) = 1$ otherwise $f(e_{i,j}) = 0$ for all $j = 1, 2$ and $i = 1, 2, ..., 2x$ $f(e_{ij}) = 1$ for all $i = 2x + 1, ..., n$ and $j = 1, 2$ $f(ww') = 1$

We observe that label numbers are $v_f(0,1) = (6x,6x)$ and $e_f(0,1) = (2n+1,2n+1)$.

Case 2: $n+1 \equiv 1 \pmod{4}$. Define a function $f: E(G) \rightarrow \{1,0\}$ as follows.

$$f(e_i) = 0 \text{ for } i = 1, 2, \dots, \frac{n}{2}$$

$$f(e_i) = 1 \text{ for } \frac{n}{2} + 1, \dots, n$$

$$f(w_i) = 0 \text{ for } i = 1, 2, \dots, \frac{n}{2}$$

$$f(w_i) = 1 \text{ for } i = \frac{n}{2} + 1, \frac{n}{2} + 2, \dots, n$$

$$f(e_{ij}) = 1 \text{ for all } j = 1, 2 \text{ and } i = 1, 2, \dots, \frac{n}{2}$$

$$f(e_{ij}) = 0 \text{ for all } j = 1, 2 \text{ and } i = \frac{n}{2} + 1, \frac{n}{2} + 2, \dots, n$$

$$f(ww') = 0,$$

$$f(ww'') = 1$$

We observe that label numbers are $v_f(0,1) = (\frac{3n-1}{2}, \frac{3n+1}{2})$ and $e_f(0,1) = (2n+1, 2n+1)$.

Case 3: $n + 1 \equiv 3 \pmod{4}$

$$f(e_i) = 0 \text{ for } i = 1, 2, \dots, \frac{n}{2}$$

$$f(e_i) = 1 \text{ for } \frac{n}{2} + 1, \dots, n$$

$$f(w_i) = 0 \text{ for } i = 1, 2, \dots, \frac{n}{2}$$

$$f(w_i) = 1 \text{ for } i = \frac{n}{2} + 1, \frac{n}{2} + 2, \dots, n$$

$$f(e_{ij}) = 1 \text{ for all } j = 1, 2 \text{ and } i = 1, 2, \dots, \frac{n}{2}$$

$$f(e_{ij}) = 0 \text{ for all } j = 1, 2 \text{ and } i = \frac{n}{2} + 1, \frac{n}{2} + 2, \dots, n$$

$$f(ww') = 0,$$

$$f(ww'') = 1$$

We observe that label numbers are $v_f(0,1) = (\frac{3n+1}{2}, \frac{3n-1}{2})$ and $e_f(0,1) = (2n+1, 2n+1)$. When $n+1 \equiv 2 \pmod{4}$ there is no E-cordial labeling.

Figure 3. Labeled copy of W_5^{++}

4. Conclusion

We have shown three types of cycle related graphs to be E-cordial. They are namely C_n^{++} , S_n^{++} , W_{n+1}^{++} . This work makes us to construct $G^{++\cdots+}$ (for t times) and we think that these new graphs for $G = C_n$, S_n , W_{n+1} are E-cordial under certain constraints as above. It is necessary to investigate E-cordiality for more graphs.

References

- [1] M.V.Bapat, Equitable and other types of graph labeling, Ph.D. thesis, University Of Mumbai, (2004).
- [2] J.A.Gallian, A dynamic survey of graph labellings, Electronic Journal of Combinatorics, 7(2015), #DS6.
- [3] F.Harary, Graph Theory, Narosa Publishing House, New Delhi.
- [4] I.Cahit and R.Yilmaz, E-cordial graphs, Ars Combinatoria, 46(1997), 251-256.
- [5] D.West, ${\it Introduction~to~Graph~Theory},$ Pearson Education Asia.