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Abstract

A generalised lattice ordered group (gl-group) is a partially ordered group (po-group) in which the

underlying poset is a generalised lattice. This paper deals with the concept of gl-subgroup of a

gl-group. Introduced the concept of gl-subgroup and proved that the quotient of a gl-group by its

normal convex gl-subgroup is again a gl-group. Later, introduced the concept of gl-homomorphism

and obtained the isomorphism theorems of gl-groups.
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1. Introduction

The theory of lattice ordered groups (l-groups) is well known from the books [1, 7, 9]. The concept

of generalised lattice introduced by Murty and Swamy in [8] and the theory of generalised lattices

developed by the author Kishore in [2, 3, 4] that can play an intermediate role between posets and

lattices. The concept of generalised lattice ordered group (gl-group) introduced and developed by the

author Kishore in [5, 6]. In this paper section 2 contains some preliminaries from the references those

are useful in the next sections. In section 3 introduced the concepts positive part of a finite subset of

a gl-group, gl-subgroup of a gl-group, obtained an equivalent condition for a subgroup of a gl-group

to be a gl-subgroup, observed that the class of all gl-subgroups (or convex gl-subgroups) is a complete

lattice and finally proved that the quotient of a gl-group by its normal convex gl-subgroup is again a

gl-group. In section 4 introduced the concepts gl-homomorphism, gl-isomorphism, proved that Kernel

and Image of a gl-homomorphism are gl-subgroups, obtained an equivalent condition for a group

homomorphism of gl-groups to be a gl-homomorphism, discussed about gl-homomorphic images and

pre-images of gl-subgroups and finally obtained the isomorphism theorems of gl-groups.
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2. Preliminaries

This section contains some preliminaries of this paper which are taken from the references those are

useful in the next sections.

Definition 2.1 ( [8]). Let (P, ≤) be a poset. P is said to be a generalised meet semilattice if for every non

empty finite subset A of P, there exist a non empty finite subset B of P such that, x ∈ L(A) if and only if x ≤ b

for some b ∈ B. P is said to be a generalised join semilattice if for every non empty finite subset A of P, there

exist a non empty finite subset B of P such that, x ∈ U(A) if and only if b ≤ x for some b ∈ B. P is said to be a

generalised lattice if it is both generalised meet and join semilattice.

It is observed that if P is a generalised meet (join) semilattice, then for any L(A) ∈ L(P) (U(A) ∈ U (P))

there exists a unique finite subset B of P such that L(A) =
⋃

b∈B L(b) (U(A) =
⋃

b∈B U(b)) and the

elements of B are mutually incomparable and the set is denoted by ML(A) (mu(A)).

Definition 2.2 ( [2]). Let P be a generalised lattice and S be a non-empty subset of P. Then S is said to be a

subgeneralised lattice of P if for any finite subset A of S we have ML(A) ⊆ S and mu(A) ⊆ S.

Definition 2.3 ( [2]). Let P1, P2 be generalised lattices. A map f : P1 → P2 is said to be a homomorphism (or

homomorphism of generalised lattices) if f (ML(A)) = ML( f (A)) and f (mu(A)) = mu( f (A)) for any finite

subset A of P1.

The definitions of partially ordered group (po-group) and lattice ordered group (l-group) are well

known from the books [1, 7, 9]. The additive identity element of a po-group is denoted by 0. The set

G+ = {x ∈ G | x ≥ 0} is called positive cone of a po-group G.

Theorem 2.4 ( [9]). Let G be a po-group and S be a subgroup of G. The set of all left cosets of S in G, G/S =

{x + S | x ∈ G}. Define a relation ≤ on G/S by x + S ≤ y + S if and only if x ≤ y + s for some s ∈ S. Then

(i) the relation ≤ is reflexive and transitive (ii) (G/S,≤) is a poset if and only if S is convex.

Theorem 2.5 ( [9]). Let G be a po-group and S be a convex normal subgroup of G. Then G/S is a po-group.

Theorem 2.6 ( [9]). Let G, H be a po-groups and f : G → H be a group homomorphism. Then f is a

po-homomorphism if and only if f (G+) ⊆ H+.

Definition 2.7 ( [5]). A system (G, + ,≤) is called a generalised lattice ordered group (gl-group) if (i) (G, ≤)

is a generalised lattice, (ii) (G, +) is a group and (iii) every group translation x → a + x + b on G is isotone.

That is x ≤ y ⇒ a + x + b ≤ a + y + b for all a, b ∈ G.

Example 2.8 ( [5]). Let G = {na | n ∈ Z} be an infinite cyclic additive group generated by an element a in G.

Define a relation ≤ on G such that for each n ∈ Z, the element na is incomparable to (n + 1)a and it is covered

by the elements (n + 2)a and (n + 3)a. Then (G,+,≤) is a gl-group.

Definition 2.9 ( [6]). Let (G, + ,≤) be a gl-group. For any x ∈ G, define the positive part, negative part and

modulus of x respectively by x+ = mu{x, 0}, x− = mu{−x, 0} and |x| = mu{x,−x}.
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3. gl-subgroup and Quotient gl-group

In this section introduced the concepts positive part of a finite subset of a gl-group, gl-subgroup of

a gl-group, observed that the class of all gl-subgroups (or convex gl-subgroups) is a complete lattice

and finally discussed under what conditions the quotient of a gl-group by a gl-subgroup is a gl-group.

Throughout this section, we shall denote by G a gl-group.

Definition 3.1. Let X be a finite subset of G. Define the positive part of X by X+ = mu(ML(X) ∪ {0}).

Recall that any non-trivial po-group is neither bounded below nor bounded above and hence not

bounded. In Definition 3.1, if G is finite then it must be trivial, that is G = {0}, and this definition

coincides with the usual definition of positive cone.

Example 3.2. Consider the gl-group as in the Example 2.8. Let X = {2a, 3a}, Y = {0, a} and Z = {−2a,−a}.

Then X+ = X and Y+ = {0} = Z+.

Theorem 3.3. Let X be a finite subset of G.

(i) If X ≥ 0 (that is x ≥ 0 for all x ∈ X) then ML(X+) = ML(X).

(ii) If X ≤ 0 (that is x ≤ 0 for all x ∈ X) then ML(X+) = {0}.

Definition 3.4. A subgroup S of G is said to be a gl-subgroup (or sub gl-group) of G if S is a subgeneralised

lattice of G.

In the following theorem obtained an equivalent condition for a subgroup of a gl-group to be a gl-

subgroup using positive parts of finite subsets of it.

Theorem 3.5. A subgroup S of G is a gl-subgroup of G if and only if X+ ⊆ S for any finite subset X of S.

Proof. Suppose S is a gl-subgroup of G and X is a finite subset of S. Since S is a subgroup of G, we have

0 ∈ S. Since S is a subgeneralised lattice of G, we have ML(X) ⊆ S and then X+ = mu(ML(X)∪{0}) ⊆

S. Conversely suppose X+ ⊆ S for any finite subset X of S. Let A be a finite subset of S and say

|A| = n. To show that mu(A) ⊆ S. We prove this by induction on n. If n = 1 and A = {a}, then

mu(A) = mu({a}) = {a} ⊆ S. Suppose n > 1 and assume that the result is true for n = k. Now we

prove the result for n = k + 1. Say A = {a1, a2, · · ·, ak, ak+1} = B ∪ {ak+1} where B = {a1, a2, · · ·, ak}.

Since B is a finite subset of S and |B| = k, by induction hypothesis we have mu(B) ⊆ S. By the given

condition and the subgroupness of S, we have mu(A) = (mu(B)− ak+1)
+ + ak+1 ⊆ S. Thus mu(A) ⊆ S

for any finite subset A of S. Similarly we can prove ML(A) ⊆ S for any finite subset A of S. Therefore

S is a subgeneralised lattice of G and hence S is a gl-subgroup of G.

The intersection of any family of gl-subgroups of G is again a gl-subgroup of G. But the union of

gl-subgroups of G need not be a gl-subgroup of G.
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Example 3.6. Consider the gl-group as in the Example 2.8. Let S = {2na | n ∈ Z}, T = {4na | n ∈ Z} and

U = {6na | n ∈ Z}. Then S, T and U are gl-subgroups of G. But T ∪ U is not a gl-subgroup of G.

Definition 3.7. A gl-subgroup S of G is said to be convex gl-subgroup of G if S is a convex subset of G.

In the Example 3.6, the gl-subgoups S, T and U are not convex. Clearly {0} and G are convex gl-

subgroups of G. The intersection of any two convex gl-subgroups of G is again a convex gl-subgroup

of G. But in general the union of two convex gl-subgroups of G need not be a convex gl-subgroup of

G.

Definition 3.8. Let X be a subset of G. Then the intersection of all gl-subgroups of G that contain X is called the

gl-subgroup of G generated by X and it is denoted by < X >. Also the intersection of all convex gl-subgroups

of G that contain X is called the convex gl-subgroup of G generated by X and it is denoted by C(X).

Note 3.9. The set of all gl-subgroups of G is denoted by S(G) and the set of all convex gl-subgroups of G is

denoted by C(G).

Theorem 3.10.

(i) S(G) is a complete lattice, in which In f {A, B} = A ∩ B and Sup{A, B} =< A ∪ B > for any A, B ∈

S(G).

(ii) C(G) is a complete lattice, in which In f {A, B} = A ∩ B and Sup{A, B} = C(A ∪ B) for any A, B ∈

C(G).

In Theorem 2.4, we have the quotient (G/S,≤) is a poset under some conditions. Now in the following

theorem obtained that (G/S,≤) is a generalised lattice under some conditions.

Theorem 3.11. Let S be a convex subgroup of G. If S is a gl-subgroup of G, then G/S is a generalised lattice

and the map ϕ : G → G/S defined by ϕ(a) = a + S is a homomorphism of generalised lattices.

Proof. By Theorem 2.4, we have (G/S,≤) is a poset. To show that (G/S,≤) is a generalised lattice.

Let x + S, y + S ∈ G/S where x, y ∈ G. Since t + S ∈ U({x + S, y + S}) for any t ∈ mu({x, y}),

we have
⋃

t∈mu{x,y} U(t + S) ⊆ U({x + S, y + S}). Let p + S ∈ U({x + S, y + S}). Then there exists

s1, s2 ∈ S such that x ≤ p + s1 and y ≤ p + s2. Since S is a subgeneralised lattice of G, we have

mu({s1, s2}) ⊆ S. Thus for any s ∈ mu({s1, s2}), we get x, y ≤ p + s and that is p + s ∈ U({x, y}).

Then there exists t1 ∈ mu({x, y}) such that t1 ≤ p + s. This implies t1 + S ≤ p + S and that is

p+ S ∈ U(t1 + S). Thus p+ S ∈ ⋃
t∈mu({x,y}) U(t+ S) and then U({x + S, y+ S}) ⊆ ⋃

t∈mu{x,y} U(t+ S).

Therefore U({x + S, y+ S}) = ⋃
t∈mu{x,y} U(t+ S). Thus mu({x + S, y+ S}) = {t+ S | t ∈ mu({x, y})}.

Similarly we can prove ML({x + S, y + S}) = {t + S | t ∈ ML({x, y})}. In the same manner we can

prove mu(A + S) = mu({a + S | a ∈ A}) = {t + S | t ∈ mu(A)} = mu(A) + S and ML(A + S) =

ML(A) + S for any finite subset A of G. Hence (G/S,≤) is a generalised lattice. Now to show that

ϕ is a homomorphism of generalised lattices. Let A be a finite subset of G. Consider ϕ(mu(A)) =
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{ϕ(t) | t ∈ mu(A)} = {t + S | t ∈ mu(A)} = mu(A) + S = mu(A + S) = mu({a + S | a ∈ A}) =

mu({ϕ(a) | a ∈ A}) = mu(ϕ(A)). Similarly we can prove ϕ(ML(A)) = ML(ϕ(A)). Therefore ψ is a

homomorphism of generalised lattices.

In the following theorem observed about that the converse of Theorem 3.11.

Theorem 3.12. Let S be a convex subgroup of G. If the poset (G/S,≤) is a generalised lattice and the map

ϕ : G → G/S defined by ϕ(a) = a + S is a homomorphism of generalised lattices then S is a gl-subgroup of G.

Proof. Let X be a finite subset of S. Then clearly X is a finite subset of G and ϕ(ML(X)) = ML(ϕ(X)).

This implies {t + S | t ∈ ML(X)} = ϕ(ML(X)) = ML(ϕ(X)) = ML({x + S | x ∈ X}) = ML({S}) =

{S}. Thus t + S = S for all t ∈ ML(X) and therefore ML(X) ⊆ S. Since S is a subgroup of G, we

have ML(X) ∪ {0} ⊆ S. Now consider {a + S | a ∈ mu(ML(X) ∪ {0})} = ϕ(mu(ML(X) ∪ {0})) =

mu(ϕ(ML(X) ∪ {0})) = mu({a + S | a ∈ ML(X) ∪ {0}) = mu({S}) = {S}. Then a + S = S for all

a ∈ mu(ML(X) ∪ {0}). Thus X+ = mu(ML(X) ∪ {0}) ⊆ S. Therefore by theorem 3.5, we have S is a

gl-subgroup of G.

In Theorem 2.5, we have the quotient G/S is a po-group under some conditions. Now in the following

theorem obtained that G/S is a gl-group under some conditions.

Theorem 3.13. Let S be a normal convex gl-subgroup of G. Then G/S is a gl-group.

Proof. By Theorem 2.5, we have the quotient G/S is a po-group and by Theorem 3.11, we have it is a

generalised lattice. Therefore G/S is a gl-group.

4. Homomorphism and Isomorphism Theorems

In this section introduced the concept of gl-homomorphism, discussed about gl-homomorphic images

and pre-images of gl-subgroups and finally obtained the isomorphism theorems of gl-groups.

Definition 4.1. Let G, H be gl-groups. A group homomorphism f : G → H is said to be a gl-homomorphism if

f is a homomorphism of generalised lattices.

Definition 4.2. Let G, H be gl-groups. A map f : G → H is said to be a gl-isomorphism of G onto H if f is a

bijection and homomorphism of generalised lattices. G, H are said to be isomorphic denoted by G ∼= H if there is

a gl-isomorphism of G onto H.

Theorem 4.3. Let G, H be gl-groups and f : G → H be a gl-homomorphism. Then

(i) Ker f = {x ∈ G | f (x) = 0} is a normal convex gl-subgroup of G and

(ii) Im f = f (G) = { f (x) | x ∈ G} is a gl-subgroup of H.

In the following theorem discussed about gl-homomorphic images and pre-images of gl-subgroups.
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Theorem 4.4. Let G, H be gl-groups and f : G → H be a gl-homomorphism. Then

(i) S is a gl-subgroup of G implies f (S) = { f (x) | x ∈ S} is a gl-subgroup of H.

(ii) T is a gl-subgroup of H implies f−1(T) = {x ∈ G | f (x) ∈ T} is a gl-subgroup of G.

(iii) T is a convex gl-subgroup of H implies f−1(T) = {x ∈ G | f (x) ∈ T} is a convex gl-subgroup of G.

(iv) f is bijection and S is a convex gl-subgroup of G implies f (S) = { f (x) | x ∈ S} is a convex gl-subgroup

of H.

In the following theorem obtained an equivalent condition for a group homomorphism of gl-groups

to be a gl-homomorphism using positive parts of finite subsets of it.

Theorem 4.5. Let G, H be gl-groups and f : G → H be a group homomorphism. Then f is a gl-homomorphism

if and only if f (X+) = ( f (X))+ for any finite subset X of G.

Proof. Suppose f is a gl-homomorphism. Let X be a finite subset of G. Consider

f (X+) = f (mu(ML(X) ∪ {0})) = mu( f (ML(X) ∪ {0})) = mu( f (ML(X)) ∪ { f (0)}) =

mu(ML( f (X)) ∪ { f (0)}) = ( f (X))+. Conversely suppose f (X+) = ( f (X))+ for any finite subset X of

G. To show that f is a homomorphism of generalised lattices. Let A be a finite subset of G and say

|A| = n. To show that mu( f (A)) = f (mu(A)). We prove this by induction on n. If n = 1 and say

A = {a}, then f (mu(A)) = f (mu({a})) = f (a) = mu({ f (a)}) = mu( f (A)). Therefore the result is

true for n = 1. Suppose n > 1 and assume that the result is true for n = k. Now we prove that the

result is true for n = k + 1. Say A = {a1, a2, · · ·, ak, ak+1} = B ∪ {ak+1}, where, B = {a1, a2, · · ·, ak}.

Since B is a finite subset of S and |B| = k, by induction hypothesis we have f (mu(B)) = mu( f (B)).

Consider

f (mu(A)) = f ((mu(B)− ak+1)
+ + ak+1)

= f ((mu(B)− ak+1)
+) + f (ak+1)

= ( f (mu(B)− ak+1))
+ + f (ak+1)

= mu(ML( f (mu(B))) ∪ { f (ak+1)})

= mu(ML(mu( f (B))) ∪ { f (ak+1)})

= mu( f (B) ∪ { f (ak+1)})

= mu( f (B ∪ {ak+1}))

= mu( f (A))

Therefore mu( f (A)) = f (mu(A)) for any finite subset A of G. Similarly we can prove ML( f (A)) =

f (ML(A)) for any finite subset A of G. Thus f is a homomorphism of generalised lattices. Hence f is

a gl-homomorphism.
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In the following we prove first isomorphism theorem, correspondence theorem, second isomorphism

theorem and third isomorphism theorem of gl-groups.

Theorem 4.6 (First isomorphism theorem). Let G, H be gl-groups and f : G → H be a gl-homomorphism.

Then G/Ker f ∼= f (G).

Proof. Let N = Ker f . By Theorem 4.3, we have N is a normal convex gl-subgroup of G and f (G) is a

gl-subgroup of H. Then by theorem 3.13 we have G/N is a gl-group. Define a map ψ : G/N → f (G)

by ψ(x + N) = f (x). Clearly ψ is a group homomorphism and bijection. To show that ψ is a gl-

homomorphism. Let T be a finite subset of G/N and say T = X + N = {x + N | x ∈ X} where X

is a finite subset of G. Consider T+ = (X + N)+ = mu(ML(X + N) ∪ {N}) = mu((ML(X) + N) ∪

(0 + N)) = mu((ML(X) ∪ {0}) + N) = mu(ML(X) ∪ {0}) + N = X+ + N. Then ψ(T+) = f (X+ +

N) = f (X+) = ( f (X))+ = (ψ(X + N))+ = (ψ(T))+. Thus by theorem 4.5 ψ is a gl-homomorphism.

Therefore ψ is a gl-isomorphism of G/N onto f (G). Hence G/N ∼= f (G).

Theorem 4.7 (Correspondence theorem). Let G be a gl-group and N be a normal convex gl-subgroup of G.

Let A be the set of all convex gl-subgroups of G that contain N and B = C(G/N). Define a map ψ : A → B by

ψ(A) = A/N. Then ψ is a lattice isomorphism of A onto B.

Proof. By Theorem 3.10, we have A is a sublattice of C(G) and C(G/N) is a lattice. Clearly ψ is

well defined and one-one map. To show that ψ is a lattice homomorphism. Let A1, A2 ∈ A. Then

ψ(A1 ∧ A2) = ψ(A1 ∩ A2) = (A1 ∩ A2)/N = (A1/N) ∩ (A2/N) = ψ(A1) ∧ ψ(A2) and ψ(A1 ∨ A2) =

ψ(C(A1 ∪ A2)) = C(A1 ∪ A2)/N = C((A1/N) ∪ (A2/N)) = ψ(A1) ∨ ψ(A2). Therefore ψ is a lattice

homomorphism. To show that ψ is onto map. Let B ∈ B = C(G/N). Since B is a subgroup of G/N,

there exists a subgroup A of G that contain N such that B = A/N. Since A/N is a convex subset of

G/N, we have A is a convex subset of G. Let X be a finite subset of A. Then X/N is a finite subset of

A/N = B. Since B is a subgeneralised lattice of G/N, we have ML(X)/N = ML(X/N) ⊆ A/N. Then

ML(X) ⊆ A. Similarly we can prove mu(X) ⊆ A. Thus A is a subgeneralised lattice of G. Then A is a

convex gl-subgroup of G that contain N, that is A ∈ A and ψ(A) = A/N = B. Therefore ψ is an onto

map. Hence ψ is a lattice isomorphism of A onto B.

Theorem 4.8 (Second isomorphism theorem). Let G be a gl-group. Let A be a convex gl-subgroup of G and

N be a normal convex gl-subgroup of G. Then

(i) A + N = {a + n | a ∈ A, n ∈ N} is a gl-subgroup of G

(ii) A ∩ N is a normal convex gl-subgroup of A

(iii) A + N/N ∼= A/A ∩ N.

Proof.
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(i) Since A, N are subgroups of G, clearly A + N = {a + n | a ∈ A, n ∈ N}. To show that A + N

is a gl-subgroup of G. Let Z be a finite subset of A + N. Then write Z = X + M for some finite

subset X of A and a finite subset M of N. Observe that Z+ + N = X+ + N and then Z+ ⊆ A + N.

Therefore by theorem 3.5 we have A + N is a gl-subgroup of G.

(ii) Clearly can prove.

(iii) By (i) and Theorem 3.13, we have (A + N)/N is a gl-group. Define a map ψ : A → (A + N)/N

by ψ(a) = a + N. Then clearly ψ is a group homomorphism and onto map. Let X be a finite

subset of A. Consider ML(ψ(X)) = ML(X + N) = ML(X) + N = ψ(ML(X)). Similarly we can

prove mu(ψ(X)) = ψ(mu(X)). Then ψ is a homomorphism of generalised lattices. Thus ψ is a

gl-homomorphism and onto map. Now Kerψ = {a ∈ A | ψ(a) = N} = {a ∈ A | a + N = N} =

{a ∈ A | a ∈ N} = A ∩ N. Therefore by first isomorphism theorem we get A/A ∩ N ∼= A + N/N.

Theorem 4.9 (Third isomorphism theorem). Let G be a gl-group and N, K be normal convex gl-subgroups

of G with N ⊆ K. Then (G/N)/(K/N) ∼= G/K.

Proof. By Theorem 3.13, we have G/N and G/K are gl-groups. Since K be normal convex gl-subgroup

of G containing N, by theorem 4.7 we have K/N is a normal convex gl-subgroup of G/N. Define a map

ψ : G/N → G/K by ψ(a + N) = a + K. Clearly ψ is a group homomorphism and onto map. Let Z be

a finite subset of G/N and write Z = A/N for some A is a finite subset of G. Consider ψ(ML(Z)) =

ψ(ML(A)/N) = ML(A) + K = ML(A + K) = ML(A/K) = ML(ψ(A/N)) = ML(ψ(Z)). Similarly

we can prove ψ(mu(Z)) = mu(ψ(Z)). Then ψ is a homomorphism of generalised lattices. Thus ψ is a

gl-homomorphism. Now Kerψ = {x + N ∈ G/N | ψ(x + N) = K} = {x + N ∈ G/N | x + K = K} =

{x + N ∈ G/N | x ∈ K} = K/N. Therefore by theorem 4.6 we have (G/N)/(K/N) ∼= G/K.
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