Available Online: http://ijmaa.in

gl-subgroups and Isomorphism Theorems of gl-groups

Parimi Radhakrishna Kishore^{1,2,*}, Sileshe Gone Korma³

¹Department of Mathematics, Arba Minch University, Arba Minch, Ethiopia

²Guest Faculty, Department of Mathematics, SRM University, Andhra Pradesh, India

³Research Scholar, Department of Mathematics, Arba Minch University, Arba Minch, Ethiopia

Abstract

A generalised lattice ordered group (gl-group) is a partially ordered group (po-group) in which the underlying poset is a generalised lattice. This paper deals with the concept of gl-subgroup of a gl-group. Introduced the concept of gl-subgroup and proved that the quotient of a gl-group by its normal convex gl-subgroup is again a gl-group. Later, introduced the concept of gl-homomorphism and obtained the isomorphism theorems of gl-groups.

Keywords: group; subgroup; poset; lattice; homomorphism; isomorphism.

2020 Mathematics Subject Classification: 06-XX.

1. Introduction

The theory of lattice ordered groups (l-groups) is well known from the books [1, 7, 9]. The concept of generalised lattice introduced by Murty and Swamy in [8] and the theory of generalised lattices developed by the author Kishore in [2, 3, 4] that can play an intermediate role between posets and lattices. The concept of generalised lattice ordered group (gl-group) introduced and developed by the author Kishore in [5, 6]. In this paper section 2 contains some preliminaries from the references those are useful in the next sections. In section 3 introduced the concepts positive part of a finite subset of a gl-group, gl-subgroup of a gl-group, obtained an equivalent condition for a subgroup of a gl-group to be a gl-subgroup, observed that the class of all gl-subgroups (or convex gl-subgroups) is a complete lattice and finally proved that the quotient of a gl-group by its normal convex gl-subgroup is again a gl-group. In section 4 introduced the concepts gl-homomorphism, gl-isomorphism, proved that Kernel and Image of a gl-homomorphism are gl-subgroups, obtained an equivalent condition for a group homomorphism of gl-groups to be a gl-homomorphism, discussed about gl-homomorphic images and pre-images of gl-subgroups and finally obtained the isomorphism theorems of gl-groups.

^{*}Corresponding author (parimirkk@gmail.com)

2. Preliminaries

This section contains some preliminaries of this paper which are taken from the references those are useful in the next sections.

Definition 2.1 ([8]). Let (P, \leq) be a poset. P is said to be a generalised meet semilattice if for every non empty finite subset A of P, there exist a non empty finite subset B of P such that, $x \in L(A)$ if and only if $x \leq b$ for some $b \in B$. P is said to be a generalised join semilattice if for every non empty finite subset A of P, there exist a non empty finite subset B of P such that, $x \in U(A)$ if and only if $b \leq x$ for some $b \in B$. P is said to be a generalised lattice if it is both generalised meet and join semilattice.

It is observed that if P is a generalised meet (join) semilattice, then for any $L(A) \in \mathcal{L}(P)$ ($U(A) \in \mathcal{U}(P)$) there exists a unique finite subset B of P such that $L(A) = \bigcup_{b \in B} L(b)$ ($U(A) = \bigcup_{b \in B} U(b)$) and the elements of B are mutually incomparable and the set is denoted by ML(A) (mu(A)).

Definition 2.2 ([2]). Let P be a generalised lattice and S be a non-empty subset of P. Then S is said to be a subgeneralised lattice of P if for any finite subset A of S we have $ML(A) \subseteq S$ and $mu(A) \subseteq S$.

Definition 2.3 ([2]). Let P_1 , P_2 be generalised lattices. A map $f: P_1 \to P_2$ is said to be a homomorphism (or homomorphism of generalised lattices) if f(ML(A)) = ML(f(A)) and f(mu(A)) = mu(f(A)) for any finite subset A of P_1 .

The definitions of partially ordered group (po-group) and lattice ordered group (l-group) are well known from the books [1, 7, 9]. The additive identity element of a po-group is denoted by 0. The set $G^+ = \{x \in G \mid x \ge 0\}$ is called positive cone of a po-group G.

Theorem 2.4 ([9]). Let G be a po-group and S be a subgroup of G. The set of all left cosets of S in G, $G/S = \{x + S \mid x \in G\}$. Define a relation \leq on G/S by $x + S \leq y + S$ if and only if $x \leq y + s$ for some $s \in S$. Then (i) the relation \leq is reflexive and transitive (ii) $(G/S, \leq)$ is a poset if and only if S is convex.

Theorem 2.5 ([9]). Let G be a po-group and S be a convex normal subgroup of G. Then G/S is a po-group.

Theorem 2.6 ([9]). Let G, H be a po-groups and $f: G \to H$ be a group homomorphism. Then f is a po-homomorphism if and only if $f(G^+) \subseteq H^+$.

Definition 2.7 ([5]). A system $(G, +, \leq)$ is called a generalised lattice ordered group (gl-group) if (i) (G, \leq) is a generalised lattice, (ii) (G, +) is a group and (iii) every group translation $x \to a + x + b$ on G is isotone. That is $x \leq y \Rightarrow a + x + b \leq a + y + b$ for all $a, b \in G$.

Example 2.8 ([5]). Let $G = \{na \mid n \in \mathbb{Z}\}$ be an infinite cyclic additive group generated by an element a in G. Define a relation \leq on G such that for each $n \in \mathbb{Z}$, the element n is incomparable to (n + 1)a and it is covered by the elements (n + 2)a and (n + 3)a. Then $(G, +, \leq)$ is a gl-group.

Definition 2.9 ([6]). Let $(G, +, \leq)$ be a gl-group. For any $x \in G$, define the positive part, negative part and modulus of x respectively by $x^+ = mu\{x, 0\}$, $x^- = mu\{-x, 0\}$ and $|x| = mu\{x, -x\}$.

3. gl-subgroup and Quotient gl-group

In this section introduced the concepts positive part of a finite subset of a gl-group, gl-subgroup of a gl-group, observed that the class of all gl-subgroups (or convex gl-subgroups) is a complete lattice and finally discussed under what conditions the quotient of a gl-group by a gl-subgroup is a gl-group. Throughout this section, we shall denote by *G* a gl-group.

Definition 3.1. Let X be a finite subset of G. Define the positive part of X by $X^+ = mu(ML(X) \cup \{0\})$.

Recall that any non-trivial po-group is neither bounded below nor bounded above and hence not bounded. In Definition 3.1, if G is finite then it must be trivial, that is $G = \{0\}$, and this definition coincides with the usual definition of positive cone.

Example 3.2. Consider the gl-group as in the Example 2.8. Let $X = \{2a, 3a\}, Y = \{0, a\}$ and $Z = \{-2a, -a\}$. Then $X^+ = X$ and $Y^+ = \{0\} = Z^+$.

Theorem 3.3. Let X be a finite subset of G.

- (i) If $X \ge 0$ (that is $x \ge 0$ for all $x \in X$) then $ML(X^+) = ML(X)$.
- (ii) If $X \le 0$ (that is $x \le 0$ for all $x \in X$) then $ML(X^+) = \{0\}$.

Definition 3.4. A subgroup S of G is said to be a gl-subgroup (or sub gl-group) of G if S is a subgeneralised lattice of G.

In the following theorem obtained an equivalent condition for a subgroup of a gl-group to be a gl-subgroup using positive parts of finite subsets of it.

Theorem 3.5. A subgroup S of G is a gl-subgroup of G if and only if $X^+ \subseteq S$ for any finite subset X of S.

Proof. Suppose *S* is a gl-subgroup of *G* and *X* is a finite subset of *S*. Since *S* is a subgroup of *G*, we have $0 \in S$. Since *S* is a subgeneralised lattice of *G*, we have $ML(X) \subseteq S$ and then $X^+ = mu(ML(X) \cup \{0\}) \subseteq S$. Conversely suppose $X^+ \subseteq S$ for any finite subset *X* of *S*. Let *A* be a finite subset of *S* and say |A| = n. To show that $mu(A) \subseteq S$. We prove this by induction on *n*. If n = 1 and $A = \{a\}$, then $mu(A) = mu(\{a\}) = \{a\} \subseteq S$. Suppose n > 1 and assume that the result is true for n = k. Now we prove the result for n = k + 1. Say $A = \{a_1, a_2, \dots, a_k, a_{k+1}\} = B \cup \{a_{k+1}\}$ where $B = \{a_1, a_2, \dots, a_k\}$. Since *B* is a finite subset of *S* and |B| = k, by induction hypothesis we have $mu(B) \subseteq S$. By the given condition and the subgroupness of *S*, we have $mu(A) = (mu(B) - a_{k+1})^+ + a_{k+1} \subseteq S$. Thus $mu(A) \subseteq S$ for any finite subset *A* of *S*. Similarly we can prove $ML(A) \subseteq S$ for any finite subset *A* of *S*. Therefore *S* is a subgeneralised lattice of *G* and hence *S* is a gl-subgroup of *G*.

The intersection of any family of gl-subgroups of *G* is again a gl-subgroup of *G*. But the union of gl-subgroups of *G* need not be a gl-subgroup of *G*.

Example 3.6. Consider the gl-group as in the Example 2.8. Let $S = \{2na \mid n \in \mathbb{Z}\}$, $T = \{4na \mid n \in \mathbb{Z}\}$ and $U = \{6na \mid n \in \mathbb{Z}\}$. Then S, T and U are gl-subgroups of G. But $T \cup U$ is not a gl-subgroup of G.

Definition 3.7. A gl-subgroup S of G is said to be convex gl-subgroup of G if S is a convex subset of G.

In the Example 3.6, the gl-subgoups S, T and U are not convex. Clearly $\{0\}$ and G are convex gl-subgroups of G. The intersection of any two convex gl-subgroups of G is again a convex gl-subgroup of G. But in general the union of two convex gl-subgroups of G need not be a convex gl-subgroup of G.

Definition 3.8. Let X be a subset of G. Then the intersection of all gl-subgroups of G that contain X is called the gl-subgroup of G generated by X and it is denoted by G and it is denoted by G.

Note 3.9. The set of all gl-subgroups of G is denoted by S(G) and the set of all convex gl-subgroups of G is denoted by C(G).

Theorem 3.10.

- (i) S(G) is a complete lattice, in which $Inf\{A,B\} = A \cap B$ and $Sup\{A,B\} = \langle A \cup B \rangle$ for any $A,B \in S(G)$.
- (ii) C(G) is a complete lattice, in which $Inf\{A,B\} = A \cap B$ and $Sup\{A,B\} = C(A \cup B)$ for any $A,B \in C(G)$.

In Theorem 2.4, we have the quotient $(G/S, \leq)$ is a poset under some conditions. Now in the following theorem obtained that $(G/S, \leq)$ is a generalised lattice under some conditions.

Theorem 3.11. Let S be a convex subgroup of G. If S is a gl-subgroup of G, then G/S is a generalised lattice and the map $\phi: G \to G/S$ defined by $\phi(a) = a + S$ is a homomorphism of generalised lattices.

Proof. By Theorem 2.4, we have $(G/S, \leq)$ is a poset. To show that $(G/S, \leq)$ is a generalised lattice. Let $x+S,y+S\in G/S$ where $x,y\in G$. Since $t+S\in U(\{x+S,y+S\})$ for any $t\in mu(\{x,y\})$, we have $\bigcup_{t\in mu\{x,y\}}U(t+S)\subseteq U(\{x+S,y+S\})$. Let $p+S\in U(\{x+S,y+S\})$. Then there exists $s_1,s_2\in S$ such that $x\leq p+s_1$ and $y\leq p+s_2$. Since S is a subgeneralised lattice of G, we have $mu(\{s_1,s_2\})\subseteq S$. Thus for any $s\in mu(\{s_1,s_2\})$, we get $x,y\leq p+s$ and that is $p+s\in U(\{x,y\})$. Then there exists $t_1\in mu(\{x,y\})$ such that $t_1\leq p+s$. This implies $t_1+S\leq p+S$ and that is $p+S\in U(t_1+S)$. Thus $p+S\in \bigcup_{t\in mu(\{x,y\})}U(t+S)$ and then $U(\{x+S,y+S\})\subseteq \bigcup_{t\in mu\{x,y\}}U(t+S)$. Therefore $U(\{x+S,y+S\})=\bigcup_{t\in mu\{x,y\}}U(t+S)$. Thus $mu(\{x+S,y+S\})=\{t+S\mid t\in mu(\{x,y\})\}$. Similarly we can prove $ML(\{x+S,y+S\})=\{t+S\mid t\in ML(\{x,y\})\}$. In the same manner we can prove $mu(A+S)=mu(\{a+S\mid a\in A\})=\{t+S\mid t\in mu(A)\}=mu(A)+S$ and ML(A+S)=ML(A)+S for any finite subset A of G. Hence $(G/S,\leq)$ is a generalised lattice. Now to show that ϕ is a homomorphism of generalised lattices. Let A be a finite subset of G. Consider $\phi(mu(A))=$

 $\{\phi(t) \mid t \in mu(A)\} = \{t + S \mid t \in mu(A)\} = mu(A) + S = mu(A + S) = mu(\{a + S \mid a \in A\}) = mu(\{\phi(a) \mid a \in A\}) = mu(\phi(A))$. Similarly we can prove $\phi(ML(A)) = ML(\phi(A))$. Therefore ψ is a homomorphism of generalised lattices.

In the following theorem observed about that the converse of Theorem 3.11.

Theorem 3.12. Let S be a convex subgroup of G. If the poset $(G/S, \leq)$ is a generalised lattice and the map $\phi: G \to G/S$ defined by $\phi(a) = a + S$ is a homomorphism of generalised lattices then S is a gl-subgroup of G.

Proof. Let X be a finite subset of S. Then clearly X is a finite subset of G and $\phi(ML(X)) = ML(\phi(X))$. This implies $\{t+S \mid t \in ML(X)\} = \phi(ML(X)) = ML(\phi(X)) = ML(\{x+S \mid x \in X\}) = ML(\{S\}) = \{S\}$. Thus t+S=S for all $t \in ML(X)$ and therefore $ML(X) \subseteq S$. Since S is a subgroup of G, we have $ML(X) \cup \{0\} \subseteq S$. Now consider $\{a+S \mid a \in mu(ML(X) \cup \{0\})\} = \phi(mu(ML(X) \cup \{0\})) = mu(\phi(ML(X) \cup \{0\})) = mu(\{a+S \mid a \in ML(X) \cup \{0\}) = mu(\{S\}) = \{S\}$. Then a+S=S for all $a \in mu(ML(X) \cup \{0\})$. Thus $X^+ = mu(ML(X) \cup \{0\}) \subseteq S$. Therefore by theorem 3.5, we have S is a gl-subgroup of G.

In Theorem 2.5, we have the quotient G/S is a po-group under some conditions. Now in the following theorem obtained that G/S is a gl-group under some conditions.

Theorem 3.13. Let S be a normal convex gl-subgroup of G. Then G/S is a gl-group.

Proof. By Theorem 2.5, we have the quotient G/S is a po-group and by Theorem 3.11, we have it is a generalised lattice. Therefore G/S is a gl-group.

4. Homomorphism and Isomorphism Theorems

In this section introduced the concept of gl-homomorphism, discussed about gl-homomorphic images and pre-images of gl-subgroups and finally obtained the isomorphism theorems of gl-groups.

Definition 4.1. Let G, H be gl-groups. A group homomorphism $f: G \to H$ is said to be a gl-homomorphism if f is a homomorphism of generalised lattices.

Definition 4.2. Let G, H be gl-groups. A map $f: G \to H$ is said to be a gl-isomorphism of G onto H if f is a bijection and homomorphism of generalised lattices. G, H are said to be isomorphic denoted by $G \cong H$ if there is a gl-isomorphism of G onto H.

Theorem 4.3. Let G, H be gl-groups and $f: G \to H$ be a gl-homomorphism. Then

- (i) $Kerf = \{x \in G \mid f(x) = 0\}$ is a normal convex gl-subgroup of G and
- (ii) $Im f = f(G) = \{ f(x) \mid x \in G \}$ is a gl-subgroup of H.

In the following theorem discussed about gl-homomorphic images and pre-images of gl-subgroups.

Theorem 4.4. Let G, H be gl-groups and $f: G \to H$ be a gl-homomorphism. Then

- (i) S is a gl-subgroup of G implies $f(S) = \{f(x) \mid x \in S\}$ is a gl-subgroup of H.
- (ii) T is a gl-subgroup of H implies $f^{-1}(T) = \{x \in G \mid f(x) \in T\}$ is a gl-subgroup of G.
- (iii) T is a convex gl-subgroup of H implies $f^{-1}(T) = \{x \in G \mid f(x) \in T\}$ is a convex gl-subgroup of G.
- (iv) f is bijection and S is a convex gl-subgroup of G implies $f(S) = \{f(x) \mid x \in S\}$ is a convex gl-subgroup of G.

In the following theorem obtained an equivalent condition for a group homomorphism of gl-groups to be a gl-homomorphism using positive parts of finite subsets of it.

Theorem 4.5. Let G, H be gl-groups and $f: G \to H$ be a group homomorphism. Then f is a gl-homomorphism if and only if $f(X^+) = (f(X))^+$ for any finite subset X of G.

Proof. Suppose f is a gl-homomorphism. Let X be a finite subset of G. Consider $f(X^+) = f(mu(ML(X) \cup \{0\})) = mu(f(ML(X) \cup \{0\})) = mu(f(ML(X)) \cup \{f(0)\}) = mu(ML(f(X)) \cup \{f(0)\}) = (f(X))^+$. Conversely suppose $f(X^+) = (f(X))^+$ for any finite subset X of G. To show that f is a homomorphism of generalised lattices. Let A be a finite subset of G and say |A| = n. To show that mu(f(A)) = f(mu(A)). We prove this by induction on n. If n = 1 and say $A = \{a\}$, then $f(mu(A)) = f(mu(\{a\})) = f(a) = mu(\{f(a)\}) = mu(f(A))$. Therefore the result is true for n = 1. Suppose n > 1 and assume that the result is true for n = k. Now we prove that the result is true for n = k + 1. Say $A = \{a_1, a_2, \cdots, a_k, a_{k+1}\} = B \cup \{a_{k+1}\}$, where, $B = \{a_1, a_2, \cdots, a_k\}$. Since B is a finite subset of S and |B| = k, by induction hypothesis we have f(mu(B)) = mu(f(B)). Consider

$$f(mu(A)) = f((mu(B) - a_{k+1})^{+} + a_{k+1})$$

$$= f((mu(B) - a_{k+1})^{+}) + f(a_{k+1})$$

$$= (f(mu(B) - a_{k+1}))^{+} + f(a_{k+1})$$

$$= mu(ML(f(mu(B))) \cup \{f(a_{k+1})\})$$

$$= mu(ML(mu(f(B))) \cup \{f(a_{k+1})\})$$

$$= mu(f(B) \cup \{f(a_{k+1})\})$$

$$= mu(f(B \cup \{a_{k+1}\}))$$

$$= mu(f(A))$$

Therefore mu(f(A)) = f(mu(A)) for any finite subset A of G. Similarly we can prove ML(f(A)) = f(ML(A)) for any finite subset A of G. Thus f is a homomorphism of generalised lattices. Hence f is a gl-homomorphism.

In the following we prove first isomorphism theorem, correspondence theorem, second isomorphism theorem and third isomorphism theorem of gl-groups.

Theorem 4.6 (First isomorphism theorem). *Let* G, H *be gl-groups and* $f: G \to H$ *be a gl-homomorphism. Then* $G/Kerf \cong f(G)$.

Proof. Let N = Kerf. By Theorem 4.3, we have N is a normal convex gl-subgroup of G and f(G) is a gl-subgroup of G. Then by theorem 3.13 we have G/N is a gl-group. Define a map $\psi: G/N \to f(G)$ by $\psi(x+N)=f(x)$. Clearly ψ is a group homomorphism and bijection. To show that ψ is a gl-homomorphism. Let G be a finite subset of G/N and say G and say G be a finite subset of G. Consider G be a finite subset of G and say G be a finite subset of G. Consider G be a finite subset of G. Consider G be a finite subset of G. Consider G be a finite subset of G. Then G be a finite subset of G be a fi

Theorem 4.7 (Correspondence theorem). Let G be a gl-group and N be a normal convex gl-subgroup of G. Let A be the set of all convex gl-subgroups of G that contain N and $\mathcal{B} = \mathcal{C}(G/N)$. Define a map $\psi : A \to \mathcal{B}$ by $\psi(A) = A/N$. Then ψ is a lattice isomorphism of A onto \mathcal{B} .

Proof. By Theorem 3.10, we have \mathcal{A} is a sublattice of $\mathcal{C}(G)$ and $\mathcal{C}(G/N)$ is a lattice. Clearly ψ is well defined and one-one map. To show that ψ is a lattice homomorphism. Let $A_1, A_2 \in \mathcal{A}$. Then $\psi(A_1 \wedge A_2) = \psi(A_1 \cap A_2) = (A_1 \cap A_2)/N = (A_1/N) \cap (A_2/N) = \psi(A_1) \wedge \psi(A_2)$ and $\psi(A_1 \vee A_2) = \psi(C(A_1 \cup A_2)) = C(A_1 \cup A_2)/N = C((A_1/N) \cup (A_2/N)) = \psi(A_1) \vee \psi(A_2)$. Therefore ψ is a lattice homomorphism. To show that ψ is onto map. Let $B \in \mathcal{B} = \mathcal{C}(G/N)$. Since B is a subgroup of G/N, there exists a subgroup A of G that contain N such that B = A/N. Since A/N is a convex subset of G/N, we have A is a convex subset of G/N, we have A is a subgeneralised lattice of G/N, we have A is a subgeneralised lattice of A/N = B. Since A/N = B is a subgeneralised lattice of A/N = B. Therefore A/N = B is a subgroup of A/N = B is a subgeneralised lattice of A/N = B. Therefore A/N = B is a lattice isomorphism of A/N = B is a lattice isomorphism of A/N = B. Therefore A/N = B is a lattice isomorphism of A/N = B. Therefore A/N = B is a lattice isomorphism of A/N = B is a lattice isomorphism of A/N = B.

Theorem 4.8 (Second isomorphism theorem). *Let G be a gl-group*. *Let A be a convex gl-subgroup of G and N be a normal convex gl-subgroup of G*. *Then*

- (i) $A + N = \{a + n \mid a \in A, n \in N\}$ is a gl-subgroup of G
- (ii) $A \cap N$ is a normal convex gl-subgroup of A
- (iii) $A + N/N \cong A/A \cap N$.

Proof.

- (i) Since A, N are subgroups of G, clearly $A + N = \{a + n \mid a \in A, n \in N\}$. To show that A + N is a gl-subgroup of G. Let Z be a finite subset of A + N. Then write Z = X + M for some finite subset X of A and a finite subset M of N. Observe that $Z^+ + N = X^+ + N$ and then $Z^+ \subseteq A + N$. Therefore by theorem 3.5 we have A + N is a gl-subgroup of G.
- (ii) Clearly can prove.
- (iii) By (i) and Theorem 3.13, we have (A+N)/N is a gl-group. Define a map $\psi: A \to (A+N)/N$ by $\psi(a) = a + N$. Then clearly ψ is a group homomorphism and onto map. Let X be a finite subset of A. Consider $ML(\psi(X)) = ML(X+N) = ML(X) + N = \psi(ML(X))$. Similarly we can prove $mu(\psi(X)) = \psi(mu(X))$. Then ψ is a homomorphism of generalised lattices. Thus ψ is a gl-homomorphism and onto map. Now $Ker\psi = \{a \in A \mid \psi(a) = N\} = \{a \in A \mid a + N = N\} = \{a \in A \mid a \in N\} = A \cap N$. Therefore by first isomorphism theorem we get $A/A \cap N \cong A + N/N$.

Theorem 4.9 (Third isomorphism theorem). *Let* G *be a gl-group and* N, K *be normal convex gl-subgroups of* G *with* $N \subseteq K$. *Then* $(G/N)/(K/N) \cong G/K$.

Proof. By Theorem 3.13, we have G/N and G/K are gl-groups. Since K be normal convex gl-subgroup of G containing N, by theorem 4.7 we have K/N is a normal convex gl-subgroup of G/N. Define a map $\psi: G/N \to G/K$ by $\psi(a+N) = a+K$. Clearly ψ is a group homomorphism and onto map. Let Z be a finite subset of G/N and write Z = A/N for some A is a finite subset of G. Consider $\psi(ML(Z)) = \psi(ML(A)/N) = ML(A) + K = ML(A+K) = ML(A/K) = ML(\psi(A/N)) = ML(\psi(Z))$. Similarly we can prove $\psi(mu(Z)) = mu(\psi(Z))$. Then ψ is a homomorphism of generalised lattices. Thus ψ is a gl-homomorphism. Now $Ker\psi = \{x+N \in G/N \mid \psi(x+N) = K\} = \{x+N \in G/N \mid x+K=K\} = \{x+N \in G/N \mid x \in K\} = K/N$. Therefore by theorem 4.6 we have $(G/N)/(K/N) \cong G/K$.

Acknowledgment

The author would like to thank (late) Prof. Mellacheruvu Krishna Murty, Professor, Department of Mathematics, Andhra University, Visakhaptnam, India (and M.Phil & Ph.D - Research Director of the author Parimi Radhakrishna Kishore) for their valuable suggestions during the preparation of the paper.

References

- [1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., XXV(1967).
- [2] P. R. K. Kishore, M. K. Murty, V. S. Ramani and M. D. P. Patnaik, *On generalised lattices*, Southeast Asian Bulletin of Mathematics, 33(2009), 1091-1104.

- [3] P. R. K. Kishore, *The lattice of convex subgeneralised lattices of a generalised lattice*, International Journal of Algebra, 3(17)(2009), 815-821.
- [4] P. R. K. Kishore, One-one correspondence between a class of ideals and a class of congruences in a generalised lattice, Asian-European Journal of Mathematics, 3(4)(2010), 623-629.
- [5] P. R. K. Kishore, Generalised lattice ordered groups (gl-groups), International Journal of Algebra, 7(2)(2013), 63-68.
- [6] P. R. K. Kishore and D. C. Kifetew, *Properties of generalised lattice ordered groups*, International Journal of Computing Science and Applied Mathematics, 7(1)(2021), 25-27.
- [7] V. M. Kopytov and Medvedev N. Ya, *The theory of lattice ordered groups*, Springer Science Business Media, (1994).
- [8] M. K. Murty and U. M. Swamy, Distributive partially ordered sets, The Aligarh Bull. of Math., 8(1978), 1-16.
- [9] Stuart A. Steinberg, Lattice ordered rings and modules, Springer Science Business Media, (2010).
- [10] P. R. Kishore and M. H. Melesse, Fuzzy Ideals and Fuzzy Congruences of a Generalised Lattice, International Journal of Mathematics And its Applications, 8(3)(2020), 187-191.