
Int. J. Math. And Appl., 6(1–D)(2018), 629–634

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Comparison in Between Differential Transformation

Method and Power Series Method for 13th Order

Differential Equation with Boundary Value Problems

Shailly Mahajan1,∗, Subash Kumar2 and Arun Kumar Tomer3

1 Research Scholar, Mewar University, Chittorgarh, Rajasthan, India.

2 Principal, Pathankot College of Management & Technology, Pathankot, Punjab, India.

3 Department of Mathematics, S.M.D.R.S.D College, Pathankot, Punjab, India.

Abstract: Differential transformation method is proposed to discover the solution of the higher order differential equations with the

boundary value problem. The estimated solution of the problem is represented in the form of a rapid convergent series.
A numerical example has been considered to demonstrate the effectiveness, exactness and implementation of the method

and the results are compared with the exact solution. Afterward in the form of results are revealed graphically. The

numerical result find by DTM are compared with the solution which are find by Power series Method and other presented
method for instance the Variational Iteration Method (VIM) presented in this paper.
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1. Introduction

The standard Taylor series is one of the earliest analytic ways to solve many problems, like ordinary differential equations,

Partial differential equations, Linear Ordinary Differential Equations of higher order and integral equations. However, since

it requires a lot of calculation for the derivatives of functions. It takes a lot of computational time to higher order derivatives.

We have introduce Modification in Taylor series method which is called the differential transform method (DTM) in this

method to discover the coefficients of the Taylor series of the given function by solving the induced recursive equation from

the given differential equation. Since proposed in (Zhou, 1986), there are excellent curiosity on the applications of DTM to

solve various scientific problems. The DTM is an approximation to exact solution of the functions which are differentiable in

the form of polynomials. This method is dissimilar with the usual higher order Taylor series since the series needs extra time

in calculation and requires the computation of the essential derivatives. The DTM is an alternative method for receiving

Taylor series solution of the differential equations. This method reduces the size of computational domain and is effortlessly

relevant to various problems. Enlarge list of methods, exact, approximate and purely numerical are offered for the solution

of differential equations. Nearly all of these methods are computationally exhaustive, because they are trial-and error in

nature, or require complicated symbolic computations. The differential transformation technique is one of the numerical

methods for ordinary differential equations. This method establishes a semi-analytical numerical technique that uses Taylor
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series for the solution of differential equations in the form of a polynomial. Which is dissimilar from the high-order Taylor

series method which needs symbolic computation of the essential derivatives of the data functions? The Taylor series method

is computationally lengthy mainly for high order equations. The differential transform is an iterative procedure for obtaining

analytic Taylor series solutions of differential equations. The main benefit of this method is that it can be applied directly to

nonlinear ODEs with no requiring linearization, perturbation. This method will not utilize too much computer time when

applying to nonlinear or parameter varying systems. This method gives an analytical solution in the form of a polynomial.

But, it is different from Taylor series method that requires computation of the high order derivatives. The differential

transform method is an iterative procedure that is described by the transformed equations of original functions for solution

of differential equations. Chen and Liu have applied this method to solve two-boundary-value problems [6]. Jang, Chen

and Liu apply the two-dimensional differential transform method to solve partial differential equations. Yu and Chen apply

the differential transformation method to the optimization of the rectangular fins with variable thermal parameters [7].

Contrasting the traditional high order Taylor series method which requires a lot of symbolic computations, the differential

transform method is an iterative procedure for obtaining Taylor series solutions. The power series method, developed in

[11]. The analytical results of the boundary value problems have been obtained in terms of a convergent series with easily

computable components.

2. Differential Transformation Method

In this section, we introduce the differential transform method used in this paper to obtain approximate analytical solutions

for the linear ordinary order differential equations. This method has been developed in [1] as follows:

The differential transformation of the kth derivative of a function f(x) is defined by

F (k) =
1

k!

[
dkf(x)

dxk

]
x=x0

(1)

f(x) =

∞∑
k=0

F (k)(x− x0)k (2)

and the inverse differential transformation of F (k) is defined by

y(t) =

∞∑
k=0

F (k)tk (3)

The combination results of above equations are called app. solution of the functions y (t).

3. Properties of Differential Transform Method (DTM)

Serial No’s. The operation Properties of Differential Transform Method (DTM)

1 z(t) = u(t)± v(t) Z(k) = U(k)± V (k)

2 z(t) = αu(t) Z(k) = αU(k)

3 z(t) =
du(t)
dt

Z(k) = (k + 1)U(k + 1)

4 z(t) =
d2u(t)

dt2
Z(k) = (k + 1)(k + 2)U(k + 2)

5 z(t) =
dmu(t)
dtm

Z(k) = (k + 1)(k + 2).....(k +m)U(k +m)

6 z(t) = u(t)v(t) Z(k) =
∑k
n=0 V (n)U(k − n)

7
z(t) = tm

Z(k) = δ(k −m), δ(k −m) =


1, if

k = m

0, if

k 6= m
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Serial No’s. The operation Properties of Differential Transform Method (DTM)

8 z(t) = exp(ωt) Z(k) = ωk

k!

9
z(t) = (1 + t)m

Z(k) =
m(m−1)....(m−k+1)

k!

10

z(t) = sin(ωt+ λ)

and

z(t) = cos(ωt+ λ)

Z(k) = ωk

k!
sin
(∏

k
2

+ λ
)

and
Z(k) = ωk

k!
cos
(∏

k
2

+ λ
)

4. Power Series Method

The power series method, developed in [11], is use to search for a power series solution to certain differential Equations. We

consider the nth order BVP of the form

yn(x) + f(x)y(x) = g(x), λ0 < x < λ1 (4)

With the boundary conditions

y2n(λ0) = α2n, n = 0, 1, 2, 3, . . . , (k − 1) (5)

y2n(λ1) = β2n, n = 0, 1, 2, 3, . . . , (k − 1) (6)

Where f(x), g(x), and y(x) are assumed real and continuous on λ0 < x < λ1, α2n, β2n, are finite real constants. The given

n th order BVP (4), (5) and (6) are transformed to systems of ODEs such that we have

dy

dx
= y1,

dy1
dx

= y2,
dy2
dx

= y3,
dy3
dx

= y4, . . . ,
dyn
dx

= g(x)− f(x)y(x) (7)

With the boundary conditions

y1(λ0) = α0, y2(λ0) = α1, y3(λ0) = α2, . . . , y2k(λ0) = α2k−1, and (8)

y1(λ1) = β0, y2(λ1) = β1, y3(λ1) = β2, . . . , y2k(λ1) = β2k−1, (9)

Let the series approximation of (1), (2) and (3) be given as

yn(x) =

N∑
i=0

aix
i, N <∞ (10)

Where ai, i = [0, N ] are unknown constants to be determined and x ∈ [λ0, λ1]. Now, we estimate the unknown constants

ai; i = [0, N ] at x = λ0 by substituting (10) in (7) successively, which is as follows:

We consider the first derivative of yN w.r.t to x as y1, i.e.

dyN
dx

= y1 ⇒
d

dx
i

N∑
i=1

aix
i−1 = y1 ⇒ a1 + i

N∑
i=2

aix
i−1 = y1 (11)

At y1(λ0) = α0

a1 + i

N∑
i=2

aiλ
i−1
0 = α0 ⇒ a1 = α0 − i

N∑
i=2

aiλ
i−1
0 , (12)

Now equation (11) will become

y1 = α0 −
d

dx
i(i− 1)

N∑
i=0

aiλ
i−1
0 + i

N∑
i=0

aix
i−1 (13)
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dy1
dx

= y2 ⇒ i(i− 1)

N∑
i=2

aix
i−2 = y2 ⇒ 2a2 + i(i− 1)

N∑
i=3

aix
i−2 = y2 (14)

Next at y2(λ0) = α1

2a2 + i(i− 1)

N∑
i=3

aiλ
i−2
0 = α1 ⇒ a2 =

1

2

[
α1 − i(i− 1)

N∑
i=3

aiλ
i−2
0

]
(15)

y2 ⇒ α1 − i(i− 1)

N∑
i=3

aiλ
i−2
0 + i(i− 1)

N∑
i=3

aix
i−2 (16)

Carrying on the above sequential approach to the n th order we obtain the following recursive formulae at x = λ0

ak =
1

k!

[
αk−1 − k!

N∑
i=k+1

aiλ
i−k
0

]
, k ≥ 0 (17)

yk ⇒ αk−1 − k!

N∑
i=k+1

aiλ
i−k
0 + k!

N∑
i=k+1

aix
i−k (18)

Here, the choice of N is equivalent to the order of the BVP considered.

5. Illustrated Examples

In this section, the DTM has been successfully used to study the higher order linear ordinary differential equations. Choosing

examples with known solutions allows for a more complete error analysis as shown in example.

Example 5.1. Solve the 13th order differential equation

d13y

dx13
= cosx− sinx (19)

With the boundary conditions

y0(0) = 1, y1(0) = 1, y2(0) = −1, y3(0) = −1, y4(0) = 1, y5(0) = 1, y6(0) = −1,

y0(1) = 1, y1(1) = −1, y2(1) = −1, y3(1) = 1, y4(1) = 1, y5(1) = −1

(20)

The exact solution is y(x) = sinx+ cosx. Now, equation (19) transferred to system of ODEs such that we have

dy

dx
= y1,

dy1
dx

= y2,
dy2
dx

= y3,
dy3
dx

= y4, . . . ,
dyn
dx

= sinx+ cosx

With the boundary conditions at x = λ0 = 0, y1(0) = 1, y2(0) = 1, y3(0) = −1, y4(0) = −1, y5(0) = 1, y6(0) = 1,

y7(0) = −1, y8(0) = a, y9(0) = b, y11(0) = d, y12(0) = e, y13(0) = f . The series approximation of (19) is given as (10) were

the unknown constant ai, i = [0, N ] is uniquely determined by equation (17):

Since, λ0 = 0 we have equation (17) as

ak =
αk−1

k!
, k ≥ 0 (21)

Using Equation (21) for k = [0, 11], we have the following:

All values will change by above result (21)

a0 = 1, a1 = 1, a2 = −1

2
, a3 = −1

6
, a4 =

1

24
, a5 =

1

120
, a6 =

1

720
, a7 =

a

5040
,

a8 =
b

40320
, a9 =

c

362880
, a10 =

d

3628800
, a11 =

e

39916800
.

(22)
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Putting (22) into (10) for N = [0, 11], we obtain

y(x) =
1

120
x5 +

1

24
x4− 1

6
x3− 1

2
x2 +x+1

a

5040
x7 +

b

40320
x8 +

c

362880
x9 +

d

3628800
x10− 1

6
x3− 1

720
x6 +

e

39916800
x11. (23)

Using the boundary condition at x = λ1 = 1 in equation (23) we obtain the value of a, b, c, d, e at a = 1, b = 1, c = −1,

d = 0.99, e = −1 put all the values in (23). Same problem is evaluated by DTM as follows:

Taking differential transformation using properties of DTM and the following recurrence relation is obtained as follows:

Y (k + 13) =
k!

(k + 13)

[
1

k!
cos

(
πk

2

)
− 1

k!
sin

(
πk

2

)]
(24)

Using the boundary conditions at 0 and 1, we get

y(x) = 1 + x− x2

2
− x3

6
+
x4

24
+

x5

120
− x6

720
+Ax7 +Bx8 + Cx9 +Dx10 + Ex11 + Fx12 +

x13

62270208000
+O(x14)

Using inverse transformation, we get Values of A, B, C, D, E, F as follows

y(x) = 1 + x− x2

2
− x3

6
+
x4

24
+

x5

120
− x6

720
− 0.00019x7 + 0.0000248x8 + 2.756× 10−6x9 − 2.7654× 10−7x10

− 2.411× 10−8x11 + 1.81058× 10−9x12 +
x13

62270208000
+O(x14)

X Exact Solution DTM PSM VIM

0 1.000000 1.000000 1.000000 1

0.1 1.094837 1.09484 1.09234 0.994

0.2 1.178735 1.17874 1.17118 0.931

0.3 1.250856 1.25086 1.24950 0.769

0.4 1.310479 1.31048 1.31011 0.784

0.5 1.357008 1.35701 1.35387 0.657

0.6 1.389978 1.38998 1.37402 0.537

0.7 1.409059 1.40906 1.39033 0.384

0.8 1.414062 1.41406 1.40472 0.240

0.9 1.404936 1.40494 1.40001 0.129

1.0 1.381773 1.38177 1.36730 0
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6. Conclusion

The comparison in between the exact solution and its approximate solutions in example obtained with the help of PSM and

DTM. From the numerical results, it is clear that the DTM is efficient and accurate as compared to PSM. The results are

also expressed graphically in Figure. The Blue line represents the curve corresponding to the exact solution whereas the red

line (DTM) and green line (PSM) corresponds to the approximate solution.
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