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1. Introduction

Let A denote the class of functions of the form

f (z) = z +

∞∑
n=2

anz
n (1)

which are analytic in the unit disc E = {z : |z| < 1}. Let U be the class of bounded functions

w (z) =

∞∑
n=1

cnz
n

which are regular in the unit disc and satisfying the conditions w(0) = 0 and |w (z)| < 1 in E. For functions f and g analytic

in E, we say that f is subordinate to g, denoted by f ≺ g, if there exists a Schwarz function w (z) ∈ U , w (z) analytic in

E with w(0) = 0 and |w (z)| < 1 in E, such that f (z) = g (w (z)). By S, S∗ and C we denote subclass of A, consisting

of functions which are respectively univalent, starlike and convex in E. Let C′ denote the class of functions f (z) ∈ A of

the form (1) and satisfying the conditions Re
(

zf ′(z)
g(z)

)
> 0, where g (z) = z +

∞∑
n=2

bnz
n is convex in E. The class C′ was

introduced by Selvaraj [4] and studied further by Abdel-Gawad and Thomas [1]. Let C′ (A,B) denote the class of functions

f (z) ∈ A of the form (1) and satisfying the conditions

Re

(
zf ′ (z)

g (z)

)
≺ 1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1,
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where 3b3 = p2 + p1d2 + d3 is convex in E. The class C′ (A,B) was introduced and studied by Mehrok and Singh [3]. In

particular C′ (1,−1) ≡ C′. Let K′C (α) denote the class of functions f (z) ∈ A of the form (1) and satisfying the conditions

Re

(
f ′ (z)

g′ (z)

)
> α, z ∈ E

where g (z) = z +
∞∑

n=2

bnz
n belongs to C′. The class K′C (α) was introduced and studied by Stelin and Selvaraj [6]. Let

K′C (A,B) denote the class of functions f (z) ∈ A of the form (1) and satisfying the conditions

f ′ (z)

g′ (z)
≺ 1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1, z ∈ E

where g (z) = z +
∞∑

n=2

bnz
n belongs to C′. The class K′C (A,B) was introduced and studied by Singh and Singh [5]. In

particular, K′C (1− 2α,−1) ≡ K′C (α), the class studied by Stelin and Selvaraj [6]. Also K′C (1,−1) ≡ K′C . Motivated by

above defined classes, we introduce the following subclass of analytic functions. Let K′C (A,B;C,D) denote the class of

functions f (z) ∈ A of the form (1) and satisfying the conditions

f ′ (z)

g′ (z)
≺ 1 + Cz

1 +Dz
, z ∈ E

where g (z) = z +
∞∑

n=2

bnz
n belongs to C′ (A,B) and −1 ≤ D ≤ B < A ≤ C ≤ 1. The following observations are obvious:

(1). K′C (1,−1;A,B) ≡ K′C (A,B) .

(2). K′C (1,−1; 1− 2α,−1) ≡ K′C (α) .

By definition of subordination it follows that f (z) ∈ K′C (A,B;C,D) if and only if f (z) can be represented in the form

f ′ (z)

g′ (z)
=

1 + Cw (z)

1 +Dw (z)
= P (z) , w (z) ∈ U,−1 ≤ D ≤ B < A ≤ C ≤ 1, z ∈ E. (2)

To avoid repetition, we lay down once for all that −1 ≤ D ≤ B < A ≤ C ≤ 1, z ∈ E. We study the class K′C (A,B;C,D)

and obtain coefficient estimates, distortion theorems and radius of convexity.

2. Preliminary Results

We need the following lemmas:

Lemma 2.1 ([2]). Let

f ′ (z)

g′ (z)
= P (z) = 1 +

∞∑
n=1

pnz
n, (3)

then

|pn| ≤ (C −D) , n ≥ 1. (4)

The bounds are sharp, being attained for the functions

Pn (z) =
1 + Cδzn

1 +Dδzn
, |δ| = 1.

Lemma 2.2 ([3]). If g (z) = z +
∞∑

n=2

bnz
n ∈ C′ (A,B), then

|bn| ≤
(n− 1) (A−B)

n
+

1

n
, n ≥ 2.

The bounds are sharp being attained for the function

g′ (z) =
1

(1− δ1z)2
1 +Aδ2z

n−1

1 +Bδ2zn−1
, |δ1| = 1, |δ2| = 1.
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3. Coefficient Estimates

Theorem 3.1. If f (z) ∈ K′C (A,B;C,D), then

|an| ≤
(n− 1)

n

[
(C −D) + (A−B) +

(C −D) (A−B) (n− 2)

2

]
+

1

n
, n ≥ 2. (5)

The bounds are sharp.

Proof. As f (z) ∈ K′C (A,B;C,D), therefore (2) and (3) gives

1 +

∞∑
n=2

nanz
n−1 =

(
1 +

∞∑
n=2

nbnz
n−1

)(
1 +

∞∑
n=1

pnz
n

)
. (6)

Equating the coefficients of zn−1 in (6), we have

nan = nbn + (n− 1) bn−1p1 + (n− 2) bn−2p2 + ...+ 2b2pn−2 + pn−1. (7)

Therefore using (4),

n |an| ≤ n |bn|+ (C −D) [(n− 1) |bn−1|+ (n− 2) |bn−2|+ ...+ 2 |b2|+ 1] . (8)

Using Lemma 2.2 in (8), it yields

|an| ≤
(n− 1)

n

[
(C −D) + (A−B) +

(C −D) (A−B) (n− 2)

2

]
+

1

n
.

For n = 2, equality signs in (5) hold for the functions fn (z) defined by

f ′n (z) =
1

(1− δ1z)2
1 +Aδ2z

n−1

1 +Bδ2zn−1

(
1 + Cδ3z

n

1 +Dδ3zn

)
, |δ1| = 1, |δ2| = 1, |δ3| = 1. (9)

On replacing A by 1, B by -1, C by A and D by B, Theorem 3.1 gives the following result proved by Singh and Singh [5]:

Corollary 3.2. If f (z) ∈ K′C (A,B), then

|an| ≤
(2n− 1)

n
+

(A−B) (n− 1)2

n
, n ≥ 2.

On replacing A by 1, B by -1, C by 1− 2α and D by -1 in Theorem 3.1, the following result due to Stelin and Selvaraj [6]

is obvious:

Corollary 3.3. If f (z) ∈ K′C (α), then

|an| ≤
2

n
(1− α) (n− 1)2 +

(2n− 1)

n
, n ≥ 2.

On replacing A by 1, B by -1, C by 1 and D by -1, Theorem 3.1 gives the following result:

Corollary 3.4. If f (z) ∈ K′C , then

|an| ≤
2n2 − 2n+ 1

n
, n ≥ 2.
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Theorem 3.5. If f (z) ∈ K′C (A,B;C,D), then

|a2| ≤
1

2
[(C −D) + (A−B) + 1] , (10)

|a3| ≤
1

3
[(C −D) (A−B + 2) + 2 (A−B) + 1] . (11)

Proof. Since g (z) = z +
∞∑

n=2

bnz
n ∈ C′ (A,B), it follows that

zg′ (z) = q (z)P (z) , q (z) ∈ C, (12)

where

q (z) = z +

∞∑
n=2

dnz
n.

Also P (z) = 1 +
∞∑

n=1

pnz
n, so (12) yields

2b2 = p1 + d2,

3b3 = p2 + p1d2 + d3.

As f (z) ∈ K′C (A,B;C,D), we have

f ′ (z) = g′ (z)Q (z) , (13)

where Q (z) = 1 +
∞∑

n=1

qnz
n. Equating coefficients in (13), we get

2a2 = q1 + 2b2, (14)

3a3 = q2 + 2b2q1 + 3b3. (15)

The results (10) and (11) follows on using classical inequalities |p1| ≤ (A−B) , |p2| ≤ (A−B), |q1| ≤ (C −D) , |q2| ≤

(C −D), |d1| ≤ 1 and |d2| ≤ 1 in (14) and (15).

On replacing A by 1, B by -1, C by A and D by B, Theorem 3.2 gives the following result:

Corollary 3.6. If f (z) ∈ K′C (A,B), then

|a2| ≤
1

2
[(A−B) + 3] ,

|a3| ≤
1

3
[4 (A−B) + 5] .

On replacing A by 1, B by -1, C by 1− 2α and D by -1 in Theorem 3.1, the following result due to Stelin and Selvaraj [6]

is obvious:

Corollary 3.7. If f (z) ∈ K′C (α), then

|a2| ≤
5− 2α

2
,

|a3| ≤
13− 8α

3
.

On replacing A by 1, B by -1, C by 1 and D by -1, Theorem 3.1 gives the following result:

Corollary 3.8. If f (z) ∈ K′C , then

|a2| ≤
5

2
,

|a3| ≤
13

3
.
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4. Distortion Theorems

Theorem 4.1. If f (z) ∈ K′C (A,B;C,D), then for |z| = r, 0 < r < 1, we have

(1− Cr) (1−Ar)
(1−Dr) (1−Br) (1 + r)

≤
∣∣f ′ (z)∣∣ ≤ (1 + Cr) (1 +Ar)

(1 +Dr) (1 +Br) (1− r) (16)

and ∫ r

0

(1− Ct) (1−At)
(1−Dt) (1−Bt) (1 + t)

dt ≤ |f (z)| ≤
∫ r

0

(1 + Ct) (1 +At)

(1 +D) (1 +Bt) (1− t)dt. (17)

Estimates are sharp.

Proof. From (2), we have ∣∣f ′ (z)∣∣ =
∣∣g′ (z)∣∣ ∣∣∣∣ 1 + Cw (z)

1 +Dw (z)

∣∣∣∣ , w (z) ∈ U. (18)

It is easy to show that the transformation

f ′ (z)

g′ (z)
=

1 + Cw (z)

1 +Dw (z)

maps |w (z)| ≤ r onto the circle ∣∣∣∣f ′ (z)g′ (z)
− 1− CDr2

1−D2r2

∣∣∣∣ ≤ (C −D) r

(1−D2r2)
, |z| = r.

This implies that

1− Cr
1−Dr ≤

∣∣∣∣ 1 + Cw (z)

1 +Dw (z)

∣∣∣∣ ≤ 1 + Cr

1 +Dr
. (19)

Also it was proved by Mehrok and Singh [3] that for g (z) ∈ C′ (A,B),

(1−Ar)
(1−Br) (1 + r)

≤
∣∣g′ (z)∣∣ ≤ (1 +Ar)

(1 +Br) (1− r) . (20)

(18) together with (19) and (20) yields (16). On integrating (16), (17) follows. For n = 2, the function fn (z) defined by

(9), gives sharp estimates.

On replacing A by 1, B by -1, C by A and D by B, Theorem 3.1 gives the following result proved by Singh and Singh [5]:

Corollary 4.2. If f (z) ∈ K′C (A,B), then for |z| = r, 0 < r < 1, we have

(1− r) (1−Ar)
(1−Br) (1 + r)2

≤
∣∣f ′ (z)∣∣ ≤ (1 + r) (1 +Ar)

(1 +Br) (1− r)2

and ∫ r

0

(1− t) (1−At)
(1−Bt) (1 + t)2

dt ≤ |f (z)| ≤
∫ r

0

(1 + t) (1 +At)

(1 +Bt) (1− t)2
dt.

On replacing A by 1, B by -1, C by 1− 2α and D by -1, Theorem 4.1 gives the following result due to Stelin and Selvaraj

[6]:

Corollary 4.3. If f (z) ∈ K′C (α), then

(1− r) (1− (1− 2α) r)

(1 + r)3
≤
∣∣f ′ (z)∣∣ ≤ (1 + r) (1 + (1− 2α) r)

(1− r)3

and

(1− 2α) log (1 + r)− (6α− 4)

1 + r
− (2− 2α)

(1 + r)2
− (2− 4α) ≤ |f (z)| ≤ − (1− 2α) log (1− r) +

(6α− 4)

1− r +
(2− 2α)

(1− r)2
+ (2− 4α)

for |z| = r, 0 < r < 1, z ∈ E.
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For C = 1, D = −1, A = 1, B = −1, Theorem 4.1 gives the following result:

Corollary 4.4. If f (z) ∈ K′C , then
(1− r)2

(1 + r)3
≤
∣∣f ′ (z)∣∣ ≤ (1 + r)2

(1− r)3
.

5. Radius of Convexity

Theorem 5.1. Let f (z) ∈ K′C (A,B;C,D), then f (z) is convex in |z| < r0, where r0 is the smallest positive root in (0,1)

of

[(CD − C +D)AB + (B −A)CD] r4 + 2 [ABD −ACD +BC −AD] r3

+ [CD −AC − 3AD +AB +BC −BD −A+B − C +D] r2 + (2D − 2A) r + 1 = 0.

. (21)

Results are sharp.

Proof. As f (z) ∈ K′C (A,B;C,D), we have

f ′ (z) = g′ (z)P (z) . (22)

After differentiating (22) logarithmically, we get

1 +
zf ′′ (z)

f ′ (z)
= 1 +

zg′′ (z)

g′ (z)
+
zP ′ (z)

P (z)
. (23)

It was proved by Mehrok and Singh [3] that for g ∈ C′ (A,B), we have

Re

(
1 +

zg′′ (z)

g′ (z)

)
≥ 1− 2Ar + (AB −A+B) r2

(1 + r) (1−Ar) (1−Br) .

Also from (19), we have ∣∣∣∣ 1 + Cw (z)

1 +Dw (z)

∣∣∣∣ = |P (z)| ≤ 1 + Cr

1 +Dr
.

So ∣∣∣∣zP ′ (z)P (z)

∣∣∣∣ ≤ r (C −D)

(1 + Cr) (1 +Dr)
.

Therefore (23) yields,

Re

(
1 +

zf ′′ (z)

f ′ (z)

)
≥ Re

(
1 +

zg′′ (z)

g′ (z)

)
−
∣∣∣∣zp′ (z)p (z)

∣∣∣∣
≥ 1− 2Ar + (AB −A+B) r2

(1 + r) (1−Ar) (1−Br) − r (C −D)

(1 + Cr) (1 +Dr)

[(CD − C +D)AB + (B −A)CD] r4 + 2 [ABD −ACD +BC −AD] r3

=
+ [CD −AC − 3AD +AB +BC −BD −A+B − C +D] r2 + (2D − 2A) r + 1

(1 + r) (1−Ar) (1−Br) (1 + Cr) (1 +Dr)

Hence f (z) is convex in |z| < r0, where r0 is the smallest positive root in (0, 1) of

[(CD − C +D)AB + (B −A)CD] r4 + 2 [ABD −ACD +BC −AD] r3

+ [CD −AC − 3AD +AB +BC −BD −A+B − C +D] r2 + (2D − 2A) r + 1 = 0.
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On replacing A by 1, B by -1, C by A and D by B, Theorem 5.1 gives the following result due to Singh and Singh [5]:

Corollary 5.2. Let f (z) ∈ K′C (A,B), then f (z) is convex in |z| < r1, where r1 is the smallest positive root in (0,1) of

(A−B − 3AB) r3 + (AB − 3A− 3B) r2 + (2B − 3) r + 1 = 0.

On replacing A by 1, B by -1, C by 1− 2α and D by -1, Theorem 5.1 gives the following result due to Stelin and Selvaraj

[6]:

Corollary 5.3. If f (z) ∈ K′C (α), then f (z) is convex in |z| < r2, where r2 is the smallest positive root in (0,1) of the

equation

(8α− 5) r2 − 4r + 1 = 0.

For A = 1, B = −1, C = 1, D = −1, Theorem 5.1 gives the following result:

Corollary 5.4. Let f (z) ∈ K′C , then f (z) is convex in |z| < 1
5
.
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