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Abstract: In 1965, the concept of total coloring was introduced by Behzad [1] and in 1967 he [2] came out new ideology that, the

total chromatic number of complete graph and complete bi-partite graph. A total coloring of a graph G is an assignment

of colors to both the vertices and edges of G, such that no two adjacent or incident vertices and edges of G are assigned
the same colors. In this paper, we have discussed the total coloring of splitting graph of Path, Cycle and Star graph.

Also, we determine the total chromatic number of splitting graph of Path, Cycle and Star graphs.
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1. Introduction

In this paper, we have chosen finite, simple and undirected graphs. Let G = (V (G), E(G)) be a graph with the vertex set

V (G) and the edge set E(G), respectively. A total coloring of G is a function f : S → C, where S = V (G) ∪ E(G) and C

is a set of colors to satisfies the given conditions.

(1). no two adjacent vertices receive the same color.

(2). no two adjacent edges receive the same color.

(3). no edges and its end vertices receive the same color.

The total chromatic number χ′′(G) of a graph G is the minimum cardinality k such that G may have a total coloring by

kcolors. Behzad [1] and Vizing [13] Conjectured that for every simple graph G has ∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2, where

∆(G) is the maximum degree of the graph G. This conjecture is called as the Total Coloring Conjecture(TCC). Rosenfeld [9]

and Vijayaditya [12] verified the TCC, for every graph G with maximum degree ≤ 3 and Kostochka [6] for maximum degree

≤ 5. In Borodin [3] verified the total coloring conjecture(TCC) for the maximaum degree ≥ 9 in planar graphs. In 1989, Yap

et.al [14] proved that the TCC(Total Coloring Conjecture) is true for any graph G of order n having maximum degree at least

n−4. In 1993, Hilton et.al [5] proved that any graph G has a total coloring with at most ∆(G)+2 colors if ∆(G) ≥ 3
4
|V (G)|.

In recent era, total coloring have been extensively studied in different families of graph. Geetha et.al [4] given the tight bound
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of the Behzad and Vizing conjecture on total coloring for the generalized Sierpinski graphs of cycle graphs and Hypercube

graphs. Also they give a total coloring for the Wk-recursive topology of some graphs. Mohan et.al [7] given the tight bound

for the Behzad and Vizing conjecture in Corona product of certain classes of graph. Muthuramakrishnan et.al [8] prove that

total chromatic number of middle, total, line graph of star graph and square graph of bistar graph. Sudha et.al [11] proved

that total chromatic number of sudha grid graphs, gear and crown graphs.

Definition 1.1. The path graph Pn, is a graph with n vertices that can be enumerated such that two vertices are adjacent

if and only if they are consecutive in the enumeration.

Definition 1.2. The cycle graph Cn, is a graph with n vertices that can be enumerated such that two vertices are adjacent

if and only if they are consecutive in the enumeration or are the first and last vertex in the enumeration.

Definition 1.3. A tree containing exactly one vertex that is not a pendent vertex is called a star graph K1,n.

Definition 1.4. For a graph G, the splitting graph S′(G) [10] of a graph G is obtained by adding a new vertex v′ corresponding

to each vertex v of G such that N(v) = N(v′).

2. Main Results

Theorem 2.1. Let S′(Pn) be the splitting graph of path graph of order n. Then χ′′(S′(Pn)) = ∆(S′(Pn)) + 1, n ≥ 2.

Proof. Let {v1, v2, . . . , vn} be the vertices of path Pn and {e1, e2, . . . , en}, where {ei = vivi+1 : 1 ≤ i ≤ n − 1} be the

edges of path Pn. By the definition of splitting graph, adding the new vertices {vi′ : 1 ≤ i ≤ n} corresponding to the vertices

{vi : 1 ≤ i ≤ n} of Pn, which are added to obtain S′(Pn). In S′(Pn), the vertex set and the edge set is given by V (S′(Pn)) =

{vi : 1 ≤ i ≤ n}∪{vi′ : 1 ≤ i ≤ n} and E(S′(Pn)) = {vivi+1 : 1 ≤ i ≤ n−1}∪{vivi+1
′ : 1 ≤ i ≤ n−1}∪{vi′vi+1 : 1 ≤ i ≤ n}

We define the total coloring f, such that f : S → C, where S = V (S′(Pn))∪E(S′(Pn)) and C = {1, 2, 3, 4, 5}. Now we assign

the total coloring to these vertices and edges as follows.

f(vi) = f(vi
′) =


1, for all i ≡ 1 (mod 3)

2, for all i ≡ 2 (mod 3) for 1 ≤ i ≤ n

3, for all i ≡ 0 (mod 3)

f(vivi+1) =


3, for all i ≡ 1 (mod 3)

1, for all i ≡ 2 (mod 3) for 1 ≤ i ≤ n

2, for all i ≡ 0 (mod 3)

f(vi
′vi+1) = 4, for 1 ≤ i ≤ n− 1

f(vivi+1
′) = 5, for 1 ≤ i ≤ n− 1

It is clear that the above method of total coloring, the graph S′(Pn) is properly total colored with ∆(S′(Pn)) + 1 = 5 colors.

Hence the total chromatic number of the splitting graph of Pn, χ
′′(S′(Pn)) = ∆(S′(Pn)) + 1 = 5.

Example 2.2. Consider the splitting graph of path P6.
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Figure 1. Total Coloring of splitting graph of path graph S′(P6)

By using the total coloring pattern as given in Theorem 2.1, the colors {1, 2, 3, 4, 5} are assigned to these vertices and

edges as shown in figure 1. Thus the total chromatic number of splitting graph of P6 is 5.

Theorem 2.3. Let S′(Cn) be the splitting graph of cycle graph of order n. Then

χ′′(S′(Cn)) =


∆(S′(Cn)) + 1, n is even

∆(S′(Cn)) + 2, n is odd

Proof. Let {v1, v2, . . . , vn} be the vertices of cycle Cn and {e1, e2, . . . , en−1}, where {ei = vivi+1 : 1 ≤ i ≤ n − 1} and

{en = vnv1} be the edges of cycle Cn. By the definition of splitting graph, adding the new vertices {vi′ : 1 ≤ i ≤ n}

corresponding to the vertices {vi : 1 ≤ i ≤ n} of Cn, which are added to obtain S′(Cn). In S′(Cn), the vertex set and the

edge set is given by V (S′(Cn)) = {vi : 1 ≤ i ≤ n} ∪ {vi′ : 1 ≤ i ≤ n} and E(S′(Cn)) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vivi+1
′ :

1 ≤ i ≤ n− 1} ∪ {vi′vi+1 : 1 ≤ i ≤ n} ∪ {vnv1} ∪ {vn′v1} ∪ {vnv1′}.

We construct the total coloring f, such that f : S → C, where S = V (S′(Cn)) ∪ E(S′(Cn)) and C = {1, 2, 3, 4, 5, 6}. Now

we assign the total coloring to these vertices and edges as follows. we consider the following two cases

Case (i): When n is even

f(vi) =


1, if i is odd, for 1 ≤ i ≤ n

2, if i is even

f(vi
′) = 3, for 1 ≤ i ≤ n

f(vivi+1) =


3, if i is odd, for 1 ≤ i ≤ n− 1

4, if i is even

f(vnv1) = 4

f(vivi+1
′) =


2, if i is odd, for 1 ≤ i ≤ n− 1

1, if i is even

f(vnv1
′) = 1, f(vn

′v1) = 5

f(vi
′vi+1) = 5, for 1 ≤ i ≤ n

Based on the above coloring pattern, the graph S′(Cn) is total colored with ∆(S′(Cn))+1 colors. Hence the total chromatic

number of splitting graph of Cn, χ
′′(S′(Cn)) = ∆(S′(Cn)) + 1 for n is even.

Case (ii): When n is odd

f(vi) =


1, if i is odd, for 1 ≤ i ≤ n− 1

2, if i is even
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f(vn) = 3

f(vi
′) = 6, for 1 ≤ i ≤ n

f(vivi+1) =


3, if i is odd, for 1 ≤ i ≤ n− 1

4, if i is even

f(vnv1) = 6

f(vivi+1
′) =


2, if i is odd, for 1 ≤ i ≤ n− 1

1, if i is even

f(vnv1
′) = 1, f(vn

′v1) = 5

f(vi
′vi+1) = 5, for 1 ≤ i ≤ n− 1

Based on the above coloring pattern, the graph S′(Cn) is total colored with ∆(S′(Cn))+1 colors. Hence the total chromatic

number of splitting graph of Cn, χ
′′(S′(Cn)) = ∆(S′(Cn)) + 2 for n is odd.

Example 2.4. Consider the splitting graph of cycle C8.
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Figure 2. Total Coloring of splitting graph of cycle graph S′(C8)

By using the total coloring pattern as given in Case (i) of Theorem 2.3, the colors {1, 2, 3, 4, 5} are assigned to these vertices

and edges as shown in figure 2. Thus the total chromatic number of splitting graph of C8 is 5.

Example 2.5. Consider the splitting graph of cycle C7.
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Figure 3. Total Coloring of splitting graph of cycle graph S′(C7)

By using the total coloring pattern as given in Case (ii) of Theorem 2.3, the colors {1, 2, 3, 4, 5,6} are assigned to these

vertices and edges as shown in figure 2. Thus the total chromatic number of splitting graph of C7 is 6.
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Theorem 2.6. Let S′(K1,n) be the splitting graph of star graph of order n. Then χ′′(S′(K1,n)) = 2n+ 1, n ≥ 2.

Proof. Let V (K1,n) = {v} ∪ {vi : 1 ≤ i ≤ n}, where {vi : 1 ≤ i ≤ n} be the pendent vertices and {v} be the root

vertex of K1,n. E(K1,n) = {vvi : 1 ≤ i ≤ n}. Now construct the splitting graph, adding the new vertices {v′} and

{vi′ : 1 ≤ i ≤ n} corresponding to the vertices {v} and {vi : 1 ≤ i ≤ n} of K1,n, which are added to obtain S′(K1,n). In

S′(K1,n), the vertex set and the edge sets are given by V (S′(K1,n)) = {vi : 1 ≤ i ≤ n} ∪ {vi′ : 1 ≤ i ≤ n} ∪ {v} ∪ {v′}

and E(S′(K1,n)) = {vvi : 1 ≤ i ≤ n} ∪ {vvi′ : 1 ≤ i ≤ n} ∪ {v′vi : 1 ≤ i ≤ n}. We define the total coloring f, such that

f : S → C, where S = V (S′(K1,n)) ∪ E(S′(K1,n)) and C = {1, 2, 3, . . . 2n + 1}. Now we assign the total coloring to these

vertices and edges as follows

f(v) = 1, f(v′) = 2

f(vi) = f(vvi
′) =


2i+ 1, if 2i+ 1 6≡ 0 (mod 2n+ 1) for 1 ≤ i ≤ n

2n+ 1, otherwise

f(vi
′) = f(vvi) =


2i, if (2i) 6≡ 0 (mod 2n) for 1 ≤ i ≤ n

2n, otherwise

f(v′vi) =


2i− 1, if (2i− 1) 6≡ 0 (mod 2n− 1) for 1 ≤ i ≤ n

2n− 1, otherwise

Based on the above coloring pattern, the graph S′(K1,n) is properly total colored with ∆(S′(K1,n)) + 1 colors. Hence the

total chromatic number of splitting graph of K1,n), χ′′(S′(K1,n)) = 2n+ 1.

Example 2.7. Consider the splitting graph of star graph S6.
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Figure 4. Total Coloring of splitting graph of star graph S′(S6)

By apply the total coloring pattern given in the Theorem 2.6, the colors {1,2,. . . , 13} are assigned to these vertices and

edges as shown in figure 4. Thus the total chromatic number of splitting graph of star K1,6 is 13.

References

[1] M.Behzad, Graphs and their chromatic numbers, Doctoral Thesis, Michigan State University, (1965).

[2] M.Behzad, G.Chartrand and J.K.Cooper, The color numbers of complete graphs, Journal London Math. Soc., 42(1967),

226-228.

663



Total Coloring of Splitting Graph of Path, Cycle and Star Graphs

[3] O.V.Borodin, On the total coloring planar graphs, J. Reine Angew Math., 394(1989), 180-185.

[4] J.Geetha and K.Somasundaram, Total coloring generalized Sierpinski graphs, Australasian Journal of Combinatorics,

63(1)(2015), 58-69.

[5] A.J.W.Hilton and H.R.Hind, Total chromatic number of graphs having large maximum degree, Discrete Math., 117

(1-3)(1993), 127-140.

[6] A.V.Kostochka, the total coloring of a multigraph with maximal degree 4, Discrete Math., 17(1989), 161-163.

[7] S.Mohan, J.Geetha and K.Somasundaram, Total coloring of Corona Product of two graphs, Australasian Journal of

Combinatorics, 68(1)(2017), 15-22.

[8] D.Muthuramakrishnan and G.Jayaraman, Total Chromatic Number of Star and Bistar graphs, International Journal of

Pure and Applied Mathematics, 117(21)(2017), 699-708.

[9] M.Rosenfeld, On the total colouring of certain graphs, Israel J. Math., 9(3)(1971), 396-402.

[10] E.Sampathkumar and H.B.Walikar, On spliting graph of a graph, J. Karnatak Univ. Sci., 25 and 26 (Combined)(1980-

81), 13-16.

[11] S.Sudha and K.Manikandan, Total chromatic number of Sudha grid graphs, gear and crown graphs, International Journal

of Pure and Applied Mathematics, 109(8)(2016), 7-15.

[12] N.Vijayaditya, On total chromatic number of a graph, J. London Math Soc., 3(2)(1971), 405-408.

[13] V.G.Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk (in Russian), 23(6)(1968), 117-134.

[14] H.P.Yap, Wang Jian-Fang and Zhang Zhongfu, The chromatic number of graphs of high degree, J. Austral. Math.

Soc.,(Series-A), 47 (1989), 445-452.

664


	Introduction
	Main Results
	References

