Mathematics And its Applications

ISSN: 2347-1557

Int. J. Math. And Appl., **11(3)**(2023), 11–20 Available Online: http://ijmaa.in

Multiplicative Domination Nirmala Indices of Graphs

V. R. Kulli^{1,*}

¹Department of Mathematics, Gulbarga University, Gulbarga, Karnataka, India

Abstract

In this study, we introduce the multiplicative domination Nirmala index, multiplicative modified domination Nirmala index of a graph. Furthermore, we compute these multiplicative domination Nirmala indices for some standard graphs, French windmill graphs, friendship graphs and book graphs.

Keywords: multiplicative domination Nirmala index; multiplicative modified domination Nirmala index; graph.

2020 Mathematics Subject Classification: 05C10, 05C69.

1. Introduction

In this paper, *G* denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex set and edge set of *G*. The degree $d_G(u)$ of a vertex *u* is the number of vertices adjacent to *u*. For undefined terms and notations, we refer the books [1, 2]. Graph indices have their applications in various disciplines of Science and Technology. For more information about graph indices, see [3]. The domination degree $d_d(u)$ [4] of a vertex *u* in a graph *G* is defined as the number of minimal dominating sets of *G* which contains *u*. Recently, some domination indices were studied in [5, 6, 7, 8]. In [9], Kulli introduced the domination Nirmala index of a graph *G* and it is defined as

$$DN(G) = \sum_{uv \in E(G)} \sqrt{d_d(u) + d_d(v)}$$

where $d_d(u)$ is the domination degree of a vertex u in G. The modified domination Nirmala index [9] of a graph G is defined as

$$^{m}DN\left(G\right)=\sum_{uv\in E\left(G\right)}\frac{1}{\sqrt{d_{d}\left(u\right)+d_{d}\left(v\right)}}.$$

^{*}Corresponding author (vrkulli@gmail.com)

We define the multiplicative domination Nirmala index of a graph G as

$$DNII(G) = \prod_{uv \in E(G)} \sqrt{d_d(u) + d_d(v)}.$$

We also define the multiplicative modified domination Nirmala index of a graph G as

^mDNII(G) =
$$\prod_{uv \in E(G)} \frac{1}{\sqrt{d_d(u) + d_d(v)}}.$$

Recently, some Nirmala indices were studied in [10-33].

In this paper, the multiplicative domination Nirmala index, multiplicative modified domination Nirmala index of some standard graphs, French windmill graphs, book graphs are computed.

2. Multiplicative Domination Nirmala Index

2.1 Results for Some Standard Graphs

Proposition 2.1. If K_n is a complete graph with n vertices, then

$$DNII(K_n) = \left(\sqrt{2}\right)^{\frac{n(n-1)}{2}}$$

Proof. If K_n is a complete graph, then $d_d(u) = 1$. From definition, we have

$$DNII(K_n) = \prod_{uv \in E(K_n)} \sqrt{d_d(u) + d_d(v)}$$
$$= \left(\sqrt{1+1}\right)^{\frac{n(n-1)}{2}}$$
$$= \left(\sqrt{2}\right)^{\frac{n(n-1)}{2}}.$$

Proposition 2.2. If S_{n+1} is a star graph with $d_d(u) = 1$, then

$$DNII(S_{n+1}) = \left(\sqrt{2}\right)^n.$$

Proposition 2.3. *If* $S_{p+1,q+1}$ *, is a double star graph with* $d_d(u) = 2$ *, then*

$$DNII(S_{p+1,q+1}) = (2)^{p+q+1}$$

Proposition 2.4. Let $K_{m,n}$ be a complete bipartite graph with $2 \le m \le n$. Then

$$DNII(K_{m,n}) = \left(\sqrt{m+n+2}\right)^{mn}$$

Proof. Let $G = K_{m,n}$, $m, n \ge 2$ with

$$d_d(u) = \begin{cases} m+1\\ n+1 & \text{for all } u \in V(G) \end{cases}$$

From definition, we have

$$DNII(K_{m,n}) = \prod_{uv \in E(K_{m,n})} \sqrt{d_d(u) + d_d(v)}$$
$$= \left(\sqrt{(m+1) + (n+1)}\right)^{mn}$$
$$= \left(\sqrt{m+n+2}\right)^{mn}.$$

2.2 Results for French Windmill Graphs

The French windmill graph F_n^m is the graph obtained by taking $m \ge 3$ copies of K_n , $n \ge 3$ with a vertex in common. The graph F_n^m is presented in Figure 1. The French windmill graph F_3^m is called a friendship graph.

Figure 1: French windmill graph F_n^m

Let *F* be a French windmill graph F_n^m . Then

$$d_d(u) = \begin{cases} 1, & \text{if } u \text{ is the center vertex;} \\ (n-1)^{m-1}, & \text{otherwise.} \end{cases}$$

Theorem 2.5. Let F be a French windmill graph F_n^m . Then

$$DNII(F) = \left(\sqrt{1 + (n-1)^{(m-1)}}\right)^{m(n-1)} \times \left(\sqrt{2(n-1)^{(m-1)}}\right)^{[(mn(n-1)/2) - m(n-1)]}$$

Proof. In F, there are two sets of edges. Let E_1 be the set of all edges which are incident with the center

vertex and E_2 be the set of all edges of the complete graph. Then

$$DNII(F) = \prod_{uv \in E(F)} \sqrt{d_d(u) + d_d(v)}$$

= $\prod_{uv \in E_1(F)} \sqrt{d_d(u) + d_d(v)} \times \prod_{uv \in E_2(F)} \sqrt{d_d(u) + d_d(v)}$
= $\left(\sqrt{1 + (n-1)^{(m-1)}}\right)^{m(n-1)} \times \left(\sqrt{(n-1)^{(m-1)} + (n-1)^{(m-1)}}\right)^{[(mn(n-1)/2) - m(n-1)]}$
= $\left(\sqrt{1 + (n-1)^{(m-1)}}\right)^{m(n-1)} \times \left(\sqrt{2(n-1)^{(m-1)}}\right)^{[(mn(n-1)/2) - m(n-1)]}$.

Corollary 2.6. Let F_3^m be a friendship graph. Then

$$DNII(F_3^m) = \left(\sqrt{1+2^{(m-1)}}\right)^{2m} \times \left(\sqrt{2^m}\right)^m.$$

2.3 Results for GoK_p

Theorem 2.7. Let $H = GoK_p$, where G is a connected graph with n vertices and m edges; and K_p is a complete graph. Then

DNII (H) =
$$\left(\sqrt{2(p+1)^{n-1}}\right)^{\frac{1}{2}(2m+np^2+np)}$$

Proof. If $H = GoK_p$, then $d_d(u) = (p+1)^{n-1}$. In K_p , there are $\frac{p(p-1)}{2}$ edges. Thus H has $\frac{1}{2}(2m+np^2+np)$ edges. Thus

$$DNII(H) = \prod_{uv \in E(H)} \sqrt{d_d(u) + d_d(v)}$$
$$= \left(\sqrt{(p+1)^{n-1} + (p+1)^{n-1}}\right)^{\frac{1}{2}(2m+np^2+np)}$$
$$= \left(\sqrt{2(p+1)^{n-1}}\right)^{\frac{1}{2}(2m+np^2+np)}$$

2.4 Results for B_n

The book graph B_n , $n \ge 3$, is a cartesian product of star S_{n+1} and path P_2 . For B_n , $n \ge 3$, we have

$$d_d(u) = \begin{cases} 3, & \text{if } u \text{ is the center vertex;} \\ 2^{n-1} + 1, & \text{otherwise.} \end{cases}$$

Theorem 2.8. If B_n , $n \ge 3$, is a book graph, then

$$DNII(B_n) = \left(\sqrt{6}\right)^1 \times \left(\sqrt{4+2^{n-1}}\right)^{2n} \times \left(\sqrt{2(2^{n-1}+1)}\right)^n.$$

Proof. In B_n , there are three types of edges as follow:

$$\begin{split} E_1 &= \{ uv \in E(B_n) | d_d(u) = d_d(v) = 3 \}, \\ E_2 &= \{ uv \in E(B_n) | d_d(u) = 3, d_d(v) = 2^{n-1} + 1 \}, \\ E_3 &= \{ uv \in E(B_n) | d_d(u) = d_d(v) = 2^{n-1} + 1 \}, \\ |E_3| &= r \end{split}$$

By definition, we have

$$DNII(B_n) = \prod_{uv \in E(B_n)} \sqrt{d_d(u) + d_d(v)}$$

= $\left(\sqrt{3+3}\right)^1 \times \left(\sqrt{3+(2^{n-1}+1)}\right)^{2n} \times \left(\sqrt{(2^{n-1}+1)+(2^{n-1}+1)}\right)^n$
= $\left(\sqrt{6}\right)^1 \times \left(\sqrt{4+2^{n-1}}\right)^{2n} \times \left(\sqrt{2(2^{n-1}+1)}\right)^n$

3. Multiplicative Modified Domination Nirmala Index

3.1 Results for Some Standard Graphs

Proposition 3.1. If K_n is a complete graph with n vertices, then

^{*m*}DNII (K_n) =
$$\left(\frac{1}{\sqrt{2}}\right)^{\frac{n(n-1)}{2}}$$

Proof. If K_n is a complete graph, then $d_d(u) = 1$. From definition, we have

$${}^{m}DNII(K_{n}) = \prod_{uv \in E(K_{n})} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}}$$
$$= \left(\frac{1}{\sqrt{1+1}}\right)^{\frac{n(n-1)}{2}}$$
$$= \left(\frac{1}{\sqrt{2}}\right)^{\frac{n(n-1)}{2}}$$

1	-	-	-	-
	-	-	-	-

Proposition 3.2. *If* S_{n+1} *is a star graph with* $d_d(u) = 1$ *, then*

^{*m*}DNII (S_{n+1}) =
$$\left(\frac{1}{\sqrt{2}}\right)^n$$
.

Proposition 3.3. *If* $S_{p+1,q+1}$ *is a double star graph with* $d_d(u) = 2$ *, then*

^{*m*}DNII (S_{p+1,q+1}) =
$$\left(\frac{1}{2}\right)^{p+q+1}$$

•

Proposition 3.4. Let $K_{m,n}$ be a complete bipartite graph with $2 \le m \le n$. Then

^mDNII(K_{m,n}) =
$$\left(\frac{1}{\sqrt{m+n+2}}\right)^{mn}$$

3.2 Results for French Windmill Graphs

Theorem 3.5. Let F be a French windmill graph F_n^m . Then

$${}^{m}DNII(F) = \left(\frac{1}{\sqrt{1 + (n-1)^{(m-1)}}}\right)^{m(n-1)} \times \left(\frac{1}{\sqrt{2(n-1)^{(m-1)}}}\right)^{[(mn(n-1)/2) - m(n-1)]}$$

Proof. In *F*, there are two sets of edges. Let E_1 be the set of all edges which are incident with the center vertex and E_2 be the set of all edges of the complete graph. Then

$${}^{m}DNII(F) = \prod_{uv \in E(F)} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}}$$

$$= \prod_{uv \in E_{1}(F)} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}} \times \prod_{uv \in E_{2}(F)} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}}$$

$$= \left(\frac{1}{\sqrt{1 + (n-1)^{(m-1)}}}\right)^{m(n-1)} \times \left(\frac{1}{\sqrt{(n-1)^{(m-1)} + (n-1)^{(m-1)}}}\right)^{[(mn(n-1)/2) - m(n-1)]}$$

$$= \left(\frac{1}{\sqrt{1 + (n-1)^{(m-1)}}}\right)^{m(n-1)} \times \left(\frac{1}{\sqrt{(n-1)^{(m-1)} + (n-1)^{(m-1)}}}\right)^{[(mn(n-1)/2) - m(n-1)]}$$

$$= \left(\frac{1}{\sqrt{1 + (n-1)^{(m-1)}}}\right)^{m(n-1)} \times \left(\frac{1}{\sqrt{2(n-1)^{(m-1)}}}\right)^{[(mn(n-1)/2) - m(n-1)]}$$

Corollary 3.6. Let F_3^m be a friendship graph. Then

^mDSNII(F₃^m) =
$$\left(\frac{1}{\sqrt{1+2^{(m-1)}}}\right)^{2m} \times \left(\frac{1}{\sqrt{2^m}}\right)^m$$
.

3.3 Results for *GoK*_p

Theorem 3.7. Let $H = GoK_p$, where G is a connected graph with n vertices and m edges; and K_p is a complete graph. Then

$$^{m}DNII(H) = \left(\frac{1}{\sqrt{2(p+1)^{n-1}}}\right)^{\frac{(2m+np^{2}+np)}{2}}$$

Proof. If $H = GoK_p$, then $d_d(u) = (p+1)^{n-1}$. In K_p , there are $\frac{p(p-1)}{2}$ edges. Thus H has $\frac{1}{2}(2m+np^2+np)$ edges. Hence

$${}^{m}DNII(F) = \prod_{uv \in E(F)} \frac{1}{\sqrt{d_d(u) + d_d(v)}}$$
$$= \left(\frac{1}{\sqrt{(p+1)^{n-1} + (p+1)^{n-1}}}\right)^{\frac{(2m+np^2+np)}{2}}$$
$$= \left(\frac{1}{\sqrt{2(p+1)^{n-1}}}\right)^{\frac{(2m+np^2+np)}{2}}$$

3.4 Results for B_n

The book graph B_n , $n \ge 3$, is a cartesian product of star S_{n+1} and path P_2 . For B_n , $n \ge 3$, we have

$$d_d(u) = \begin{cases} 3, & \text{if } u \text{ is center vertex,} \\ 2^{n-1} + 1, & \text{otherwise.} \end{cases}$$

Theorem 3.8. If B_n , $n \ge 3$, is a book graph, then

$$^{m}DNII(B_{n}) = \frac{1}{\sqrt{6}} \times \left(\frac{1}{\sqrt{4+2^{n-1}}}\right)^{2n} \times \left(\frac{1}{\sqrt{2(2^{n-1}+1)}}\right)^{n}.$$

Proof. In B_n , there are three types of edges as follow:

$$E_1 = \{ uv \in E(B_n) | d_d(u) = d_d(v) = 3 \}, \qquad |E_1| = 1$$
$$E_2 = \{ uv \in E(B_n) | d_d(u) = 3, d_d(v) = 2^{n-1} + 1 \}, \qquad |E_2| = 2r$$

$$E_2 = \{uv \in E(B_n) | d_d(u) = 3, d_d(v) = 2^{n-1} + 1\}, \quad |E_2| = 2$$

$$E_3 = \{ uv \in E(B_n) | d_d(u) = d_d(v) = 2^{n-1} + 1 \}, \qquad |E_3| = r$$

By definition, we have

^mDNII(B_n) =
$$\prod_{uv \in E(B_n)} \frac{1}{\sqrt{d_d(u) + d_d(v)}}$$

$$= \left(\frac{1}{\sqrt{3+3}}\right)^{1} \times \left(\frac{1}{\sqrt{3+(2^{n-1}+1)}}\right)^{2n} \times \left(\frac{1}{\sqrt{(2^{n-1}+1)+(2^{n-1}+1)}}\right)^{n}$$
$$= \frac{1}{\sqrt{6}} \times \left(\frac{1}{\sqrt{4+2^{n-1}}}\right)^{2n} \times \left(\frac{1}{\sqrt{2(2^{n-1}+1)}}\right)^{n}$$

4. Conclusion

In this study, the multiplicative domination Nirmala index, multiplicative modified domination Nirmala index for some standard graphs, French windmill graphs, book graphs are determined.

References

- [1] V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, (2012).
- [2] V. R. Kulli, *Theory of Domination in Graphs*, Vishwa International Publications, Gulbarga, India, (2010).
- [3] V. R. Kulli, Graph indices, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal, (eds) IGI Global, USA, (2019), 66-91.
- [4] A. M. Hanan Ahmed, A. Alwardi and M. Ruby Salestina, On domination topological indices of graphs, International Journal of Analysis and Applications, 19(1)(2021), 47-64.
- [5] V. R. Kulli, Domination Dharwad indices of graphs, submitted.
- [6] V. R. Kulli, Domination product connectivity indices of graphs, submitted.
- [7] S. Raju, Puttuswamy and S. R. Nayaka, On the second domination hyper index of graph and some graph operations, Advances and Applications in Discrete Mathematics, 39(1)(2023), 125-143.
- [8] A. A. Shashidhar, H. Ahmed, N. D. Soner and M. Cancan, Domination version: Sombor index of graphs and its significance in predicting physicochemical properties of butane derivatives, Eurasian Chemical Communications, 5(2023), 91-102.
- [9] V. R. Kulli, *Domination Nirmala indices of graphs*, International Journal of Mathematics and Computer Research, 11(6)(2023), 3497-3502.
- [10] V. R. Kulli, Nirmala index, International Journal of Mathematics Trends and Technology, 67(3)(2021), 8-12.
- [11] V. R. Kulli, V. Lokesha and K. Nirupadi, *Computation of inverse Nirmala indices of certain nanostructures*, International Journal of Mathematical Combinatorics, 2(2021), 32-39.

- [12] V. R. Kulli and I. Gutman, On some mathematical properties of Nirmala index, Annals of Pure and Applied Mathematics, 23(2)(2021), 93-99.
- [13] I. Gutman and V. R. Kulli, Nirmala energy, Open Journal of Discrete Applied Mathematics, 4(2)(2021), 11-16.
- [14] Mohit R. Nandargi and V. R. Kulli, *The (a, b)-Nirmala index*, International Journal of Engineering Sciences and Research Technology, 11(2)(2022), 37-42.
- [15] V. R. Kulli, Neighborhood Nirmala index and its exponential of nanocones and dendrimers, International Journal of Engineering Sciences and Research Technology, 10(5)(2021), 47-56.
- [16] V. R. Kulli, On multiplicative inverse Nirmala indices, Annals of Pure and Applied Mathematics, 23(2)(2021), 57-61.
- [17] V. R. Kulli, Different versions of Nirmala index of certain chemical stuctures, International Journal of Mathematics Trends and Technology, 67(7)(2021), 56-63.
- [18] V. R. Kulli, New irregularity Nirmala indices of some chemical structures, International Journal of Engineering Sciences and Research Technology, 10(8)(2021), 33-42.
- [19] I. Gutman, V. R. Kulli and I. Redzepovic, Nirmala index of Kragujevac trees, International Journal of Mathematics Trends and Technology, 67(6)(2021), 44-49.
- [20] V. R. Kulli, B. Chaluvaraju and T. V. Asha, Computation of Nirmala indices of some chemical networks, Journal of Ultra Scientists of Physical Sciences-A, 33(4)(2021), 30-41.
- [21] V. R. Kulli, Banhatti Nirmala index of certain chemical networks, International Journal of Mathematics Trends and Technology, 68(4)(2022), 12-17.
- [22] V. R. Kulli, *Status Nirmala index and its exponential of a graph*, Annals of Pure and Applied Mathematics, 25(2)(2021), 85-90.
- [23] V. R. Kulli, HDR Nirmala index, International Journal of Mathematics and Computer Research, 10(7)(2022), 2796-2800.
- [24] V. R. Kulli, Computation of E-Bnhatti Nirmala indices of tetrameric 1,3-Adamantane, Annals of Pure and Applied Mathematics, 26(2)(2022), 119-124.
- [25] V. R. Kulli, *Reverse Nirmala index*, International Journal of Engineering Sciences and Research Technology, 10(8)(2022), 12-19.
- [26] V. R. Kulli, *Revan Nirmala index*, Annals of Pure and Applied Mathematics, 26(1)(2022), 7-13.
- [27] V. R. Kulli, Multiplicative Nirmala and Banhatti-Nirmala indices of certain nanostar dendrimers, International Journal of Mathematical Archive, 13(10)(2022), 8-15.

- [28] V. R. Kulli, Temperature Sombor and Temperature Nirmala indices, International Journal of Mathematics and Computer Research, 10(9)(2022), 2910-2915.
- [29] V. R. Kulli, Edge versions of Sombor and Nirmala indices of some nanotubes and nanotori, International Journal of Mathematics and Computer Research, 11(3)(2023), 3305-3310.
- [30] V. R. Kulli, Gourava Nirmala indices of certain nanostructures, International Journal of Mathematical Archive, 14(2)(2023), 1-9.
- [31] A. H. Karim, N. E. Arif and A. M. Ramadan, *The M-Polynomial and Nirmalaindex of certain composite graphs*, Tikrit Journal of Pure Science, 27(3)(2022), 92-101.
- [32] N. K. Raut and G. K. Sanap, On Nirmala indices of carbon nanocone C4[2], IOSR Journal of Mathematics, 18(4)(2022), 10-15.
- [33] N. F. Yalcin, Bounds on Nirmala energy of graphs, Acta Univ. Sapientiae Informatica, 14(2)(2022), 302-315.