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Abstract

In this study, we introduce the multiplicative domination Nirmala index, multiplicative modified

domination Nirmala index of a graph. Furthermore, we compute these multiplicative domination

Nirmala indices for some standard graphs, French windmill graphs, friendship graphs and book

graphs.
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1. Introduction

In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex set

and edge set of G. The degree dG(u) of a vertex u is the number of vertices adjacent to u. For

undefined terms and notations, we refer the books [1, 2]. Graph indices have their applications in

various disciplines of Science and Technology. For more information about graph indices, see [3].

The domination degree dd (u) [4] of a vertex u in a graph G is defined as the number of minimal

dominating sets of G which contains u. Recently, some domination indices were studied in [5, 6, 7, 8].

In [9], Kulli introduced the domination Nirmala index of a graph G and it is defined as

DN (G) = ∑
uv∈E(G)

√
dd (u) + dd (v)

where dd (u) is the domination degree of a vertex u in G.

The modified domination Nirmala index [9] of a graph G is defined as

mDN (G) = ∑
uv∈E(G)

1√
dd (u) + dd (v)

.

*Corresponding author (vrkulli@gmail.com)



Multiplicative Domination Nirmala Indices of Graphs / V. R. Kulli 12

We define the multiplicative domination Nirmala index of a graph G as

DNII (G) = ∏
uv∈E(G)

√
dd (u) + dd (v).

We also define the multiplicative modified domination Nirmala index of a graph G as

mDNII (G) = ∏
uv∈E(G)

1√
dd (u) + dd (v)

.

Recently, some Nirmala indices were studied in [10-33].

In this paper, the multiplicative domination Nirmala index, multiplicative modified domination

Nirmala index of some standard graphs, French windmill graphs, book graphs are computed.

2. Multiplicative Domination Nirmala Index

2.1 Results for Some Standard Graphs

Proposition 2.1. If Kn is a complete graph with n vertices, then

DNII (Kn) =
(√

2
) n(n−1)

2
.

Proof. If Kn is a complete graph, then dd(u) = 1. From definition, we have

DNII (Kn) = ∏
uv∈E(Kn)

√
dd (u) + dd (v)

=
(√

1 + 1
) n(n−1)

2

=
(√

2
) n(n−1)

2
.

Proposition 2.2. If Sn+1 is a star graph with dd(u) = 1, then

DNII (Sn+1) =
(√

2
)n

.

Proposition 2.3. If Sp+1,q+1, is a double star graph with dd(u) = 2, then

DNII
(
Sp+1,q+1

)
= (2)p+q+1 .

Proposition 2.4. Let Km,n be a complete bipartite graph with 2 ≤ m ≤ n. Then

DNII (Km,n) =
(√

m + n + 2
)mn

.
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Proof. Let G = Km,n, m, n ≥ 2 with

dd (u) =

 m + 1

n + 1 for all u ∈ V(G)

From definition, we have

DNII (Km,n) = ∏
uv∈E(Km,n)

√
dd (u) + dd (v)

=

(√
(m + 1) + (n + 1)

)mn

=
(√

m + n + 2
)mn

.

2.2 Results for French Windmill Graphs

The French windmill graph Fm
n is the graph obtained by taking m ≥ 3 copies of Kn, n ≥ 3 with a

vertex in common. The graph Fm
n is presented in Figure 1. The French windmill graph Fm

3 is called a

friendship graph.

Figure 1: French windmill graph Fm
n

Let F be a French windmill graph Fm
n . Then

dd (u) =

 1, if u is the center vertex;

(n − 1)m−1 , otherwise.

Theorem 2.5. Let F be a French windmill graph Fm
n . Then

DNII (F) =
(√

1 + (n − 1)(m−1)
)m(n−1)

×
(√

2 (n − 1)(m−1)
)[(mn(n−1)/2)−m(n−1)]

.

Proof. In F, there are two sets of edges. Let E1 be the set of all edges which are incident with the center
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vertex and E2 be the set of all edges of the complete graph. Then

DNII (F) = ∏
uv∈E(F)

√
dd (u) + dd (v)

= ∏
uv∈E1(F)

√
dd (u) + dd (v)× ∏

uv∈E2(F)

√
dd (u) + dd (v)

=

(√
1 + (n − 1)(m−1)

)m(n−1)

×
(√

(n − 1)(m−1) + (n − 1)(m−1)
)[(mn(n−1)/2)−m(n−1)]

=

(√
1 + (n − 1)(m−1)

)m(n−1)

×
(√

2 (n − 1)(m−1)
)[(mn(n−1)/2)−m(n−1)]

.

Corollary 2.6. Let Fm
3 be a friendship graph. Then

DNII (Fm
3 ) =

(√
1 + 2(m−1)

)2m
×
(√

2m
)m

.

2.3 Results for GoKp

Theorem 2.7. Let H = GoKp, where G is a connected graph with n vertices and m edges; and Kp is a complete

graph. Then

DNII (H) =

(√
2 (p + 1)n−1

) 1
2 (2m+np2+np)

.

Proof. If H = GoKp, then dd (u) = (p + 1)n−1. In Kp, there are p(p−1)
2 edges. Thus H has 1

2 (2m + np2 +

np) edges. Thus

DNII (H) = ∏
uv∈E(H)

√
dd (u) + dd (v)

=

(√
(p + 1)n−1 + (p + 1)n−1

) 1
2 (2m+np2+np)

=

(√
2 (p + 1)n−1

) 1
2 (2m+np2+np)

2.4 Results for Bn

The book graph Bn, n ≥ 3, is a cartesian product of star Sn+1 and path P2. For Bn, n ≥ 3, we have

dd (u) =

 3, if u is the center vertex;

2n−1 + 1, otherwise.
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Theorem 2.8. If Bn, n ≥ 3, is a book graph, then

DNII (Bn) =
(√

6
)1

×
(√

4 + 2n−1
)2n

×
(√

2 (2n−1 + 1)
)n

.

Proof. In Bn, there are three types of edges as follow:

E1 = {uv ∈ E(Bn)|dd(u) = dd(v) = 3}, |E1| = 1

E2 = {uv ∈ E(Bn)|dd(u) = 3, dd(v) = 2n−1 + 1}, |E2| = 2r

E3 = {uv ∈ E(Bn)|dd(u) = dd(v) = 2n−1 + 1}, |E3| = r

By definition, we have

DNII (Bn) = ∏
uv∈E(Bn)

√
dd (u) + dd (v)

=
(√

3 + 3
)1

×
(√

3 + (2n−1 + 1)
)2n

×
(√

(2n−1 + 1) + (2n−1 + 1)
)n

=
(√

6
)1

×
(√

4 + 2n−1
)2n

×
(√

2 (2n−1 + 1)
)n

3. Multiplicative Modified Domination Nirmala Index

3.1 Results for Some Standard Graphs

Proposition 3.1. If Kn is a complete graph with n vertices, then

mDNII (Kn) =

(
1√
2

) n(n−1)
2

.

Proof. If Kn is a complete graph, then dd(u) = 1. From definition, we have

mDNII (Kn) = ∏
uv∈E(Kn)

1√
dd (u) + dd (v)

=

(
1√

1 + 1

) n(n−1)
2

=

(
1√
2

) n(n−1)
2
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Proposition 3.2. If Sn+1 is a star graph with dd(u) = 1, then

mDNII (Sn+1) =

(
1√
2

)n

.

Proposition 3.3. If Sp+1,q+1 is a double star graph with dd(u) = 2, then

mDNII
(
Sp+1,q+1

)
=

(
1
2

)p+q+1

.

Proposition 3.4. Let Km,n be a complete bipartite graph with 2 ≤ m ≤ n. Then

mDNII (Km,n) =

(
1√

m + n + 2

)mn

.

3.2 Results for French Windmill Graphs

Theorem 3.5. Let F be a French windmill graph Fm
n . Then

mDNII (F) =

 1√
1 + (n − 1)(m−1)

m(n−1)

×

 1√
2 (n − 1)(m−1)

[(mn(n−1)/2)−m(n−1)]

.

Proof. In F, there are two sets of edges. Let E1 be the set of all edges which are incident with the center

vertex and E2 be the set of all edges of the complete graph. Then

mDNII (F) = ∏
uv∈E(F)

1√
dd (u) + dd (v)

= ∏
uv∈E1(F)

1√
dd (u) + dd (v)

× ∏
uv∈E2(F)

1√
dd (u) + dd (v)

=

 1√
1 + (n − 1)(m−1)

m(n−1)

×

 1√
(n − 1)(m−1) + (n − 1)(m−1)

[(mn(n−1)/2)−m(n−1)]

=

 1√
1 + (n − 1)(m−1)

m(n−1)

×

 1√
(n − 1)(m−1) + (n − 1)(m−1)

[(mn(n−1)/2)−m(n−1)]

=

 1√
1 + (n − 1)(m−1)

m(n−1)

×

 1√
2 (n − 1)(m−1)

[(mn(n−1)/2)−m(n−1)]

Corollary 3.6. Let Fm
3 be a friendship graph. Then

mDSNII (Fm
3 ) =

(
1√

1 + 2(m−1)

)2m

×
(

1√
2m

)m

.
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3.3 Results for GoKp

Theorem 3.7. Let H = GoKp, where G is a connected graph with n vertices and m edges; and Kp is a complete

graph. Then

mDNII (H) =

 1√
2 (p + 1)n−1


(2m+np2+np)

2

.

Proof. If H = GoKp, then dd (u) = (p + 1)n−1. In Kp, there are p(p−1)
2 edges. Thus H has 1

2 (2m + np2 +

np) edges. Hence

mDNII (F) = ∏
uv∈E(F)

1√
dd (u) + dd (v)

=

 1√
(p + 1)n−1 + (p + 1)n−1


(2m+np2+np)

2

=

 1√
2 (p + 1)n−1


(2m+np2+np)

2

3.4 Results for Bn

The book graph Bn, n ≥ 3, is a cartesian product of star Sn+1 and path P2. For Bn, n ≥ 3, we have

dd (u) =

 3, if u is center vertex,

2n−1 + 1, otherwise.

Theorem 3.8. If Bn, n ≥ 3, is a book graph, then

mDNII (Bn) =
1√
6
×
(

1√
4 + 2n−1

)2n

×
(

1√
2 (2n−1 + 1)

)n

.

Proof. In Bn, there are three types of edges as follow:

E1 = {uv ∈ E(Bn)|dd(u) = dd(v) = 3}, |E1| = 1

E2 = {uv ∈ E(Bn)|dd(u) = 3, dd(v) = 2n−1 + 1}, |E2| = 2r

E3 = {uv ∈ E(Bn)|dd(u) = dd(v) = 2n−1 + 1}, |E3| = r

By definition, we have

mDNII (Bn) = ∏
uv∈E(Bn)

1√
dd (u) + dd (v)
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=

(
1√

3 + 3

)1

×
(

1√
3 + (2n−1 + 1)

)2n

×
(

1√
(2n−1 + 1) + (2n−1 + 1)

)n

=
1√
6
×
(

1√
4 + 2n−1

)2n

×
(

1√
2 (2n−1 + 1)

)n

4. Conclusion

In this study, the multiplicative domination Nirmala index, multiplicative modified domination

Nirmala index for some standard graphs, French windmill graphs, book graphs are determined.
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