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Abstract: Aim of the paper is to investigate heat transfer through Couette flow of a viscous incrompessible fluid between two infinite

horizontal parallel porous flat plates. The lower plate is stationary and the upper plate is moving with uniform velocity U

subjected to transverse sinusoidal injection through lower plate and uniform suction through upper plate. Hence, the flow
becomes three-dimensional due to fluid injection through lower plate. The governing equations of motion and energy are

solved by regular perturbation technique and separation of variables technique. Velocity and temperature distributions

are discussed numerically and shown through graphs. Nusselt number and coefficient of skin-friction at the plates are
derived, discussed numerically and shown through graphs.
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1. Introduction

The flow of fluid through porous medium has many applications in various branches of Science and Technology, that’s

why this field has attracted the attention of number of scholars. In fact, a porous material containing the fluid is a non-

homogeneous medium, but it may be possible to treat it as a homogeneous one. For the sake of analysis, by taking its

dynamical properties to be equal to the local averages of the original non-homogeneous continuum. Thus a complicated

problem of the flow through a porous medium gets reduced to the flow problem of a homogeneous fluid with some additional

resistance. A series of investigations have been made by different scholars where the porous medium is either bounded by

horizontal or vertical surfaces. The effect of periodic variation of suction velocity on three-dimensional convective flow and

heat transfer through a porous medium was discussed by Gersten and Gross [10]. Ram and Mishra [7] applied the equations

of motion to study the unsteady MHD flow of conducting fluid through porous medium. Varshney [6] analysed an oscillatory

two-dimensional flow through porous medium bounded by a horizontal porous plate subjected to a variable suction velocity.

Raptis [2] investigated the unsteady flow through a porous medium bounded by an infinite porous plate subjected to a

constant suction and variable temperature. Raptis and Perdikis [1] studied free convective flow through a porous medium

bounded by a vertical porous plate with constant suction when the free stream velocity oscillates in time about a constant

mean value.
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On the other hand, flows through porous medium in the channels have numerous Engineering and Geophysical applications,

e.g. in the field of chemical engineering for filteration and purification processes; in the field of agriculture engineering to study

the underground water resources; in petroleum technology to study the moment of natural gas, oil and water through the oil

reservoirs etc. In view of these applications , Singh [9] presented couette flow with transpiration cooling for ordinary medium.

Singh and Sharma [8] investigated magnetohydrodynamic three-dimensional couette flow with transpiration cooling.

Vidhya and Sundarammal Kesavan [12] presented laminar convection through porous medium between two vertical parallel

plates with heat source.The effect of heat source on free convective flow of a incompressible, viscous, electrically conducting

fluid through a porous medium bounded by an oscillating porous plate in the slip flow regime in presence of a transverse

magnetic field was studied by Das, Mishra and Mishra [15]. Khem chand [11] investigated the heat transfer and hydromag-

netic boundary layer flow of an electrically conducting viscous, incompressible fluid over a continuous flat surface moving

in a parallel free stream. Das, Maity and Das [14] analysed the unsteady free convective flow of a viscous incompressible

electrically conducting fluid past an infinite vertical porous flat plate in a porous medium with constant suction in presence

of a uniform transverse magnetic field. Gireesha et.al [4] described three-dimensional Couette flow of a dusty fluid with heat

transfer.Jha and Apere [5] explained time-dependent MHD Couette flow of rotating fluid with Hall and ion-slip currents.

Das et. al [13] studied the effect of variable suction and radiative heat transfer on MHD couette flow through a porous

medium in the slip flow regime. Transient free convection flow past a vertical plate through porous medium with variation

in slip flow regime was studied by Mishra [3]. Zhang [16] investigated the effect of wall surface modification in the combined

Couette and Poiseuille flows in a nano channel. In the present paper Heat transfer through three-dimensionl couette flow

through porous medium bounded between parallel porous plates is investigated.

2. Formulation of the Problem

Consider Couette flow of a viscous incompressible fluid through a porous medium bounded between two infinite parallel

flat porous plates. The lower stationary porous plate is lying horizontally on x∗ − z∗ plane and upper moving porous plate

is placed parallel to lower plate at distance ‘h’. The y∗-axis is taken perpendicular to the planes of the plates. The lower

and the upper plates are maintained at constant temperatures T0 and T1, respectively, when T1 > T0. The upper plate is

subjected to a constant suction velocity V, whereas the lower plate is subjected to a transverse sinusoidal injection velocity

of the form given by

v∗(z∗) = V (1 + ε cosπz∗/h) (1)

where e(� 1) is a positive quantity. Without any loss of generality, the distance ‘h’ between the plates is taken equal to

the wave length of the injection velocity. All physical quantities are independent of x∗ for fully developed laminar flow and

the flow remains three-dimensional due to the periodic injection of fluid through lower plate. The governing equations of

continuity, motion and energy in the presence of volumetric rate of heat generation/absorption are

∂v∗

∂y∗
+
∂w∗

∂z∗
= 0, (2)

v∗
∂u∗

∂y∗
+ w∗

∂u∗

∂z∗
= υ

[
∂2u∗

∂y∗2
+
∂2u∗

∂z∗2

]
− υu∗

K∗
(3)

v∗
∂v∗

∂y∗
+ w∗

∂v∗

∂z∗
= −1

ρ

∂p∗

∂y∗
+ υ

[
∂2v∗

∂y∗2
+
∂2v∗

∂z∗2

]
− υv∗

K∗
, (4)

v∗
∂w∗

∂y∗
+ w∗

∂w∗

∂z∗
= −1

ρ

∂p∗

∂z∗
+ υ

[
∂2w∗

∂y∗2
+
∂2w∗

∂z∗2

]
− υw∗

K∗
(5)

ρCp

[
v∗
∂T ∗

∂y∗
+ w∗

∂T ∗

∂z∗

]
= κ

[
∂2T ∗

∂y∗2
+
∂2T ∗

∂z∗2

]
+Q∗(T ∗ − Ts) (6)
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where ρ is the density, p∗ the pressure, K∗ the permeability of the porous medium, ν the kinematic viscosity, κ the thermal

conductivity, Cp the specific heat at constant pressure, Q∗ the volumetric rate of heat generation/absorption and Ts the

static temperature. The boundary conditions are

y∗ = 0 : u∗ = 0, v∗(z∗) = V (1 + ε cosπz∗/h), w∗ = 0, T ∗ = Ts + (T1 − Ts)(1 + ε cosπz∗/h),

y∗ = h : u∗ = U, v∗ = V,w∗ = 0, T ∗ = T1

(7)

2.1. Method of Solution

Introducing the following non-dimensional quantities

y =
y∗

h
, z =

z∗

h
, u =

u∗

U
, w =

w∗

V
, v =

v∗

V
, p =

p∗

ρV 2
, θ =

T ∗ − Ts
T1 − Ts

, Re =
V h

ν
, Pr =

µCp
κ

, Q =
Q∗h

ν
(8)

into the equations (2) to (6), we get

∂v

∂y
+
∂w

∂z
= 0 (9)

v
∂u

∂y
+ w

∂u

∂z
=

1

Re

(
∂2u

∂y2
+
∂2u

∂z2

)
− u

ReK
(10)

v
∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

Re

(
∂2v

∂y2
+
∂2v

∂z2

)
− v

ReK
(11)

v
∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

(
∂2w

∂y2
+
∂2w

∂z2

)
− w

ReK
(12)

v
∂θ

∂y
+ w

∂θ

∂z
=

1

RePr

(
∂2θ

∂y2
+
∂2θ

∂z2

)
+Qθ (13)

where Re is the cross-flow Reynolds number, Pr the Prandtl number, K the permeability parameter and Q the volumetric

rate of heat generation/absorption. The boundary conditions in non-dimensional form are

y = 0 : u = 0, v = 1 + ε cosπz,w = 0, θ = 1 + ε cosπz,

y = 1 : u = 1, v = 1, w = 0, θ = 1

(14)

Since e(� 1) is very small, Therefore assuming

f(y, z) = f0(y) + εf1(y, z) (15)

where f stands for u, v, w, p or θ. When e = 0, the problem reduces to the two-dimensional Couette flow through porous

medium. Using (15) into the equations (9) to (13), and equating the terms of O(e), we get

dv0
dy

= 0⇒ v0 is independent of y, say v0 = 1, i.e. v0 is constant. (16)

d2u0

dy2
−Redu0

dy
− u0

K
= 0 (17)

d2θ0
dy2

−RePrdθ0
dy

+RePrQθ0 = 0 (18)

The corresponding boundary conditions are

y = 0 : u0 = 0, v0 = 1, θ0 = 1;

y = 1 : u0 = 1, v0 = 1, θ0 = 1.

(19)
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Equations (17) and (18) are ordinary differential equations and solved under the boundary conditions (19). Through straight

forward calculations, the solutions of u0 and θ0 are known and given by

u0(y) =
exp(m1y)− e(m2y)

exp(m1)− exp(m2)
(20)

θ0(y) =
{1− exp(α2)} exp(α1y) + {exp(α1)− 1} exp(α2y)

exp(α1)− exp(α2)
(21)

where m1 = 1
2

[
Re+

√
Re2 + 4

K

]
, m2 = 1

2

[
Re−

√
Re2 + 4

K

]
, α1 = 1

2

[
RePr +

√
Re2 Pr2−4QRePr

]
and α2 =

1
2

[
RePr −

√
Re2 Pr2−4QRePr

]
. When e 6= 0, substituting (15) into the equations (9) to (13) and comparing the co-

efficients of O(e), we get

∂v1
∂y

+
∂w1

∂z
= 0 (22)

v1
∂u0

∂y
+ v0

∂u1

∂y
=

1

Re

(
∂2u1

∂y2
+
∂2u1

∂z2

)
− u1

ReK
(23)

∂v1
∂y

= −∂p1
∂y

+
1

Re

(
∂2v1
∂y2

+
∂2v1
∂z2

)
− v1
ReK

(24)

∂w1

∂y
= −∂p1

∂z
+

1

Re

(
∂2w1

∂y2
+
∂2w1

∂z2

)
− w1

ReK
(25)

v1
∂θ0
∂y

+
∂θ1
∂y

=
1

RePr

(
∂2θ1
∂y2

+
∂2θ1
∂z2

)
+Qθ1 (26)

The corresponding boundary conditions become

y = 0 : u1 = 0, v1 = cosπz,w1 = 0, θ1 = cosπz;

y = 1 : u1 = 0, v1 = 0, w1 = 0, θ1 = 0

(27)

The equations (22), (24) and (25) are independent of the mean flow and mean temperature, and equations (23) and (26),

respectively. In view of the boundary conditions (27), the following assumptions are made to solve the equations (22), (24)

and (25)

v1(y, z) = v11(y) cosπz, (28)

w1(y, z) = − 1

π
v′11(y) sinπz (29)

p1(y, z) = p11(y) cosπz (30)

where the prime denotes differentiation with respect to y. Now it is observed that the continuity equation (22) is satisfied.

On substitution of the equations (28) to (30) into the equations (24) and (25), an ordinary differential equation is obtained

and solved under the boundary conditions (27). Hence, the expressions of v1(y, z), w1(y, z) and p1(y, z) are known and given

by

v1(y, z) =
1

D
[D1 exp(λ1y) +D2 exp(λ2y) +D3 exp(πy) +D4 exp(−πy)] cosπz (31)

w1(y, z) =
1

πD
[−D1λ1 exp(λ1y)−D2λ2 exp(λ2y)−D3π exp(πy) +D4π exp(−πy)] sinπz, (32)

p1(y, z) =
1

ReπD

[
−D3

(
πRe+

1

K

)
exp(πy) +D4

(
−πRe+

1

K

)
exp(−πy)

]
cosπz. (33)

where D, D1 to D4, λ1 and λ2 are constants and given in Appendix. In order to solve the differential equations (23) and

(26) for u1 and θ1, respectively, it is assumed that

u1 = u11(y) cosπz (34)
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θ1 = θ11(y) cosπz (35)

Using (34) and (35) into the equations (23) and (26), respectively; we get

u′′11 −Reu′11 −
(
π2 +

1

K

)
u11 = Rev11u

′
0 (36)

θ′′11 −RePrθ′11 + (RePrQ− π2)θ11 = RePrv11θ
′
0 (37)

Here the prime denotes differentiation with respect to y. The corresponding boundary conditions are given by

y = 0 : u11 = 0, θ11 = 1,

y = 1 : u11 = 0, θ11 = 0

(38)

Equations (36) and (37) are ordinary differential equations and solved under the boundary conditions (38). Through straight

forward calculations, the solutions of u1(y, z) and θ1(y, z) are known and given by

u1(y, z) = [M1 exp(λ1y) +M2 exp(λ2y)

+
Rem2

D{exp(m2)− exp(m1)}

{
D1 exp{(m2 + λ1)y}

2m2λ1 + 1
K

+
D2 exp{(m2 + λ2)y}

2m2λ2 + 1
K

}
+

Rem2

D{exp(m2)− exp(m1)}

{
D3 exp{(m2 + π)y} −D4 exp{(m2 − π)y}

π(2m2 − Re)

}
− Rem1

D{exp(m2)− exp(m1)}

{
D1 exp{(m1 + λ1)y}

2m1λ1 + 1
K

+
D2 exp{(m1 + λ2)y}

2m1λ2 + 1
K

}
− Rem1

D{exp(m2)− exp(m1)}

{
D3 exp{(m1 + π)y} −D4 exp{(m1 − π)y}

π(2m1 − Re)

}
] cosπz, (39)

θ1(y, z) = [N1 exp(β1y) +N2 exp(β2y) +D5

{
D1 exp{(λ1 + α1)y}

G1
+
D2 exp{(λ2 + α1)y}

G2

}
+D6

{
D1 exp{(λ1 + α2)y}

G5
+
D2 exp{(λ2 + α2)y

G6

}
+D5

{
D3 exp{(π + α1)y}

G3
+
D4 exp{(−π + α1)y}

G4

}
+D6

{
D3 exp{(π + α2)y}

G7
+
D4 exp{(−π + α2)y}

G8

}
] cosπz. (40)

where G1 to G8, M1, M2, N1, N2, α1, α2, β1, β2 are constants, and their expressions are given in Appendix.

3. Skin-friction Coefficient

Skin-friction coefficient at both the plates is given by

Cf =
τωh

µU
=

(
∂u

∂y

)
y=0,1

, (41)

where τω = µ
(
∂u∗

∂y∗ + ∂v∗

∂x∗

)
y∗=0,h

. Hence

(Cf )0 =
m1 −m2

exp(m1)− exp(m2)
+ ε[M1λ1 +M2λ2 +

Rem2

D{exp(m2)− exp(m1)}

{
D1(m2 + λ1)

2m2λ1 + 1
K

+
D2(m2 + λ2)

2m2λ2 + 1
K

}
+

Rem2

D{exp(m2)− exp(m1)}

{
D3(m2 + π)−D4(m2 − π)

π(2m2 − Re)

}
− Rem1

D{exp(m2)− exp(m1)}

{
D3(m1 + π)−D4(m1 − π)

π(2m1 − Re)

}
− Rem1

D{exp(m2)− exp(m1)}

{
D1(m1 + λ1)

2m1λ1 + 1
K

+
D2(m1 + λ2)

2m1λ2 + 1
K

}
] cosπz, (42)
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and

(Cf )1 =
m1 exp(m1)−m2 exp(m2)

exp(m1)− exp(m2)
+ ε cosπz[M1λ1 exp(λ1) +M2λ2 exp(λ2)

+
Rem2

D{exp(m2)− exp(m1)}

{
D1(m2 + λ1) exp(m2 + λ1)

2m2λ1 + 1
K

+
D2(m2 + λ2) exp(m2 + λ2)

2m2λ2 + 1
K

}
− Rem1

D{exp(m2)− exp(m1)}

{
D1(m1 + λ1) exp(m1 + λ1)

2m1λ1 + 1
K

+
D2(m1 + λ2) exp(m1 + λ2)

2m1λ2 + 1
K

}
+

Rem2

D{exp(m2)− exp(m1)}

{
D3(m2 + π) exp(m2 + π)−D4(m2 − π) exp(m2 − π)

π(2m2 −Re)

}
− Rem1

D{exp(m2)− exp(m1)}

{
D3(m1 + π) exp(m1 + π)−D4(m1 − π) exp(m1 − π)

π(2m1 −Re)

}
]. (43)

4. Nusselt Number

The rate of heat transfer in terms of Nusselt number at both the plates is given by

Nu =
qh

κ(T1 − Ts)
= −

(
∂T

∂y

)
y=0,1

, (44)

where q = −κ
(
∂T∗

∂y∗

)
y∗=0,h

. Hence

Nu0 =
1

exp(α2)− exp(α1)
{α1{1− exp(α2)}+ α2{exp(α1)− 1}} − ε[β1N1 + β2N2

+D5

{
(λ1 + α1)D1

G1
+

(λ2 + α1)D2

G2
+

(π + α1)D3

G3
+

(−π + α1)D4

G4

}
+D6

{
(λ1 + α2)D1

G5
+

(λ2 + α2)D2

G6
+

(π + α2)D3

G7
+

(−π + α2)D4

G8

}
] cosπz, (45)

and

Nu1 =
1

exp(α2)− exp(α1)
{α1{1− exp(α2)} exp(α1) + α2{exp(α1)− 1} exp(α2)} − ε[β1N1 exp(β1) + β2N2 exp(β2)

+D5


(λ1+α1)D1

G1
exp((λ1 + α1) + (λ2+α1)D2

G2
exp(λ2 + α1)

+ (π+α1)D3
G3

exp(π + α1) + (−π+α1)D4
G4

exp(−π + α1)


+D6


(λ1+α2)D1

G5
exp(λ1 + α2) + (λ2+α2)D2

G6
exp(λ2 + α2)

+ (π+α2)D3
G7

exp(π + α2) + (−π+α2)D4
G8

exp(−π + α2)

] cosπz. (46)

5. Results and Discussion

It is observed from figure 1 that fluid velocity decreases due to increase in the cross-flow velocity of fluid and increases due

to increase in the peremeability of the medium. It is noted from figure 2 that fluid temperature decreases due to increase

in the cross-flow velocity of fluid or the Prandtl number in the presence of heat sink. It is observed from figure 3 that fluid

temperature increases due to increase in heat generation parameter, while it decreases due to increase in the Prandtl number

or heat sink parameter. It is seen from figure 4 that skin-friction coefficient at the lower plate decreases due to increase in

the cross-flow velocity of fluid , while it increases due to increase in the peremeability parameter when other parameters are

kept fixed. It is noted from figure 5 that skin-friction coefficient at the upper plate increases due to increase in the cross-flow

velocity of fluid , while it decreases due to increase in the peremeability parameter when other parameters are kept fixed. It

is observed from figure 6 that the Nusselt number at the lower plate increases due to increase in the Prandtl number, heat
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sink parameter or cross-flow velocity of fluid when other parameters are kept fixed. It is seen from figure 7 that the Nusselt

number at the upper plate decreases due to increase in the Prandtl number , heat sink parameter or cross-flow velocity of

fluid when other parameters are kept fixed.

Figure 1. Velocity distribution versus y when ε = 0.2, z = 0.33.

Figure 2. Temperature distribution versus y when ε = 0.2, Q = −2, z = 0.33.
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Figure 3. Temperature distribution versus y when ε = 0.2, Re = 1, z = 0.33.

Figure 4. Skin-friction coefficient Cf0 at lower plate versus Re when ε = 0.2.
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Figure 5. Skin-friction coefficient Cf1 at upper plate versus Re when ε = 0.2.

Figure 6. Nusselt number Nu0 at lower plate versus Re when z = 0.5, ε = 0.2 and K = 0.2.
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Figure 7. Nusselt number Nu1 at upper plate versus Re when z = 0.5, ε = 0.2 and K = 0.2.
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Appendix

m1 =
1

2

{
Re+

√
Re2 +

4

K

}
,

m2 =
1

2

{
Re−

√
Re2 +

4

K

}
,

α1 =
1

2

RePr +

√
Re2

2

Pr−4QRePr

 ,

α2 =
1

2

RePr −
√
Re2

2

Pr−4QRePr

 ,

λ1 =
Re+

√
Re2 + 4

(
π2 + 1

K

)
2

,

λ2 =
Re−

√
Re2 + 4

(
π2 + 1

K

)
2

,

β1 =
RePr +

√
Re2 Pr2−4(RePrQ− π2)

2
,

β2 =
RePr −

√
Re2 Pr2−4(RePrQ− π2)

2
,

G1 = (λ1 + α1)(λ1 + α1 −RePr) +RePrQ− π2,

G2 = (λ2 + α1)(λ2 + α1 −RePr) +RePrQ− π2,

G3 = (π + α1)(π + α1 −RePr) +RePrQ− π2,

G4 = (−π + α1)(−π + α1 −RePr) +RePrQ− π2,

G5 = (λ1 + α2)(λ1 + α2 −RePr) +RePrQ− π2,

G6 = (λ2 + α2)(λ2 + α2 −RePr) +RePrQ− π2,

G7 = (π + α2)(π + α2 −RePr) +RePrQ− π2,

G8 = (−π + α2)(−π + α2 −RePr) +RePrQ− π2,

D = (π − λ1)(π + λ2){exp(λ2 − π) + exp(λ1 + π)− 2π(λ2 − λ1){exp(λ1 + λ2) + 1}

− (π + λ1)(π − λ2){exp(λ2 + π) + exp(λ1 − π)},

D1 = −2πλ2 + π(λ2 + π) exp(λ2 + π)− π(π − λ2) exp(λ2 − π),

D2 = 2πλ1 − π(π + λ1) exp(λ1 − π)− π(λ1 − π) exp(λ1 + π),
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D3 = −λ1(λ2 + π) exp(λ2 − π) + λ2(λ1 + π) exp(λ1 − π)− π(λ2 − λ1) exp(λ1 + λ2),

D4 = λ1(λ2 − π) exp(λ2 + π) + λ2(π − λ1) exp(π + λ1) + π(λ1 − λ2) exp(λ1 + λ2),

D5 =
RePrα1{1− exp(α2)}
D{exp(α1)− exp(α2)} ,

D6 =
RePrα2{exp(α1)− 1}
D{exp(α1)− exp(α2)} ,

D7 =
Rem2

D{exp(m2)− exp(m1)}{exp(λ1)− exp(λ2)} ,

D8 =
Rem1

D{exp(m2)− exp(m1)}{exp(λ1)− exp(λ2)} ,

D9 =
RePrα1{1− exp(α2)}

D{exp(α1)− exp(α2)}{exp(β1)− exp(β2)} ,

D10 =
RePrα2{exp(α1)− 1}

D{exp(α1)− exp(α2)}{exp(β1)− exp(β2)} ,

M1 = D7

{
D1{exp(λ2)− exp(m2 + λ1)}

2m2λ1 + 1
K

+
D2{exp(λ2)− exp(m2 + λ2)}

2m2λ2 + 1
K

}
+D7

{
D3{exp(λ2)− exp(m2 + π)} −D4{exp(λ2)− exp(m2 − π)}

π(2m2 −Re)

}
−D8

{
D1{exp(λ2)− exp(m1 + λ1)}

2m1λ1 + 1
K

+
D2{exp(λ2)− exp(m1 + λ2)}

2m1λ2 + 1
K

}
−D8

{
D3{exp(λ2)− exp(m1 + π)} −D4{exp(λ2)− exp(m1 − π)}

π(2m1 −Re)

}
,

M2 = −D7

{
D1{exp(λ1)− exp(m2 + λ1)}

2m2λ1 + 1
K

+
D2{exp(λ1)− exp(m2 + λ2)}

2m2λ2 + 1
K

}
−D7

{
D3{exp(λ1)− exp(m2 + π)} −D4{exp(λ1)− exp(m2 − π)}

π(2m2 −Re)

}
+D8

{
D1{exp(λ1)− exp(m1 + λ1)}

2m1λ1 + 1
K

+
D2{exp(λ1)− exp(m1 + λ2)}

2m1λ2 + 1
K

}
+D8

{
D3{exp(λ1)− exp(m1 + π)} −D4{exp(λ1)− exp(m1 − π)}

π(2m1 −Re)

}
,

N1 =
exp(β2)

exp(β2)− exp(β1)

+D9

{
D1{exp(β2)− exp(λ1 + α1)}

G1
+
D2{(exp(β2)− exp(λ2 + α1)}

G2

}
+D9

{
D3{exp(β2)− exp(π + α1)}

G3
+
D4{exp(β2)− exp(−π + α1)}

G4

}
+D10

{
D1{exp(β2)− exp(λ1 + α2)}

G5
+
D2{(exp(β2)− exp(λ2 + α2)}

G6

}
+D10

{
D3{exp(β2)− exp(π + α2)}

G7
+
D4{exp(β2)− exp(−π + α2)}

G8

}
,

N2 =
exp(β1)

exp(β1)− exp(β2)

−D9

{
D1{exp(β1)− exp(λ1 + α1)}

G1
+
D2{(exp(β1)− exp(λ2 + α1)}

G2

}
−D9

{
D3{exp(β1)− exp(π + α1)}

G3
+
D4{exp(β1)− exp(−π + α1)}

G4

}
−D10

{
D1{exp(β1)− exp(λ1 + α2)}

G5
+
D2{(exp(β1)− exp(λ2 + α2)}

G6

}
−D10

{
D3{exp(β1)− exp(π + α2)}

G7
+
D4{exp(β1)− exp(−π + α2)}

G8

}
.
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