

International Journal of Mathematics And its Applications

Connectedness in Digital Spaces with the Khalimsky Topology

K. Annie Kurien^{1,*} and M. S. Samuel²

Department of Mathematics, Mar Thoma College for Women, Perumbavoor, Ernakulam, Kerala, India.
 Department of Computer Applications, MACFAST, Thiruvalla, Pathanamthitta, Kerala, India.

Abstract: In this paper we prove certain results related to connectedness in topological digital spaces.

Keywords: Digital spaces, Alexandroff space, Khalimsky topology, arc connected. © JS Publication.

1. Introduction and Preliminaries

Digital geometry is considered in Z^n whereas continuous geometry can be used in R^n . To represent continuous geometrical objects in the computer we are limited to some sort of approximations. There are points in the Euclidean plane that can be described exactly on a computer. By introducing notions as connectedness and continuity on discrete sets we can represent discrete objects with the same accuracy as Euclid had in his geometry.

Definition 1.1 ([2]). A digital space is a pair (V, π) where V is a non-empty set and π is a binary symmetric relation on V such that for any two elements x and y of V there is a finite sequence (x^0, \ldots, x^n) of elements in V such that $x = x^0$ and $y = x^n$ and $(x^j, x^{j+1}) \in \pi$ for $j = 0, \ldots, n-1$.

Remark 1.2. All topological spaces are not digital and all digital spaces are not topological.

Definition 1.3. A topological space is said to be a smallest neighborhood space, or Alexandroff space, if arbitrary intersection of open sets is open.

Definition 1.4 (Khalimsky topology). Khalimsky line is the topology space (Z, t) where t is the Alexandroff topology as follows. For any $z \in Z$

$$t(z) = \begin{cases} \{z - 1, z, z + 1\} & \text{if } z \text{ is even} \\ \\ \{z\} & \text{if } z \text{ is odd} \end{cases}$$

t is a $T_{1/2}$ topology.

Definition 1.5. A topological space X is said to be Khalimsky arc connected if it satisfies the following conditions.

(1). X satisfies T_0 -axiom

(2). for all $x, y \in X, I = [a, b]_Z$ and $\phi : I \to X$ such that $\phi(a) = x, \phi(b) = y$ and ϕ is a homeomorphism of I into $\phi(I)$.

E-mail: shirlykmj@yahoo.co.in

2. Main Results

Theorem 2.1. Let X be a connected smallest neighborhood space. Then for any pair of points x and y of X there is a finite sequence $\{x^0, x^1, \ldots, x^n\}$ such that $x = x^0$ and $y = x^n$ and $\{x^j, x^{j+1}\}$ is connected for $i = 0, 1, \ldots, n-1$.

Proof. Let x be a point in X, and Y denote the set of points which can be connected to x by such a finite sequence. Clearly $x \in Y$. Suppose that $y \in Y$. Then $N(y) \subset Y$ and $\{\bar{y}\} \subset Y$. Thus Y is open, closed and non-empty. Since X is connected, this implies Y = X.

Theorem 2.2. A T_0 topological digital space is Khalimsky arc connected.

Proof. Let X be a topological digital space and let $a, b \in X$. We get a finite, connected sequence of points (x_0, \ldots, x_n) such that $x_0 = a$ and $x_n = b$. Since the sequence is finite, we get a subsequence $Y = \{y_0, \ldots, y_m\}$, that is minimal with respect to connectedness, and such that $y_0 = a$ and $y_m = b$. Hence Y has no connected proper subset containing a and b. Suppose that i > j and $\{y_i, y_j\}$ is connected. Then i = j + 1 for if not, the sequence $\{y_0, \ldots, y_j, y_i, \ldots, y_m\}$ would be a connected proper subset of the minimal sequence, which is a contradiction.

So there are two possibilities for $N_Y(y_0)$; either $N_Y(y_0) = \{y_0\}$ or $N_Y(y_0) = \{y_0, y_1\}$. Let s = 1 in the first case and s = 0in the second case. Re-index the sequence $\{y_i\}$ so that y_s is its first element and y_{m+s} its last. Let s = 1 in the first case and s = 0 in the second case. We will show that the function $\varphi : I = [s, s + m]_Z \to Y$, is a homeomorphism. Y is T_0 since X is T_0 . φ is surjective and by minimality injective also. To show that φ is a homeomorphism, it is sufficient to show that

$$N_Y(y_i) = \varphi(N_I(i)) \text{ for every } i \in I.$$
(1)

For i = s this holds by the choice of s. We use finite induction. Suppose that $s < k \le s + m$, and that (1) holds for i = k - 1. We consider two cases.

Case 1: k is odd. Then $N_I(k) = \{k\}$. We must show that y_{k-1} and y_{k+1} are not in $N_Y\{y_k\}$. But since equation (1) holds for i = k - 1, and $k \in N_I(k - 1)$, we know that $y_k \in N_Y(y_{k-1})$. So $y_{k-1} \notin N_Y(y_k)(Y_k, T_0)$ and also that $y_{k+1} \notin N_Y(y_k)$ since $N_Y(y_{k-1}) \cap N_Y(y_k)$ is a neighborhood of y_k which does not include y_{k+1} .

Case 2: k is even. We must show that $y_{k-1} \in N_Y(y_k)$ and $y_{k+1} \in N_Y(y_k)$ provided k < s + m.

Now $N_Y(y_{k-1}) = \{y_{k-1}\}$ by assumption, so clearly y_{k-1} belongs to $N_Y(y_k)$. If k < s + m and $y_k \in N_Y(y_{k+1})$ then $N_Y(y_k) \cap N_Y(y_{k+1})$ would be a neighborhood of y_k not containing y_{k-1} . This is a contradiction and hence $y_{k+1} \in N_Y(y_k)$. \Box

References

- Ulrich Echhardt and Longen J.Latecki, Topologies for the digital spaces Z² and Z³, Computer Vision and Image Understanding, 90(2003), 295-312.
- [2] Gabor T.Herman, Geometry of digital spaces, Birkhauser, (1998).
- [3] K.D.Joshy, Introduction to General Topology, Wiley Eastern Limited, (1983).
- [4] T.Y.Kong, Ralph Kopperman and Paul P.Meyer, A topological approach to digital topology, Amer. Math. Monthly, 98(1991), 901-917.
- [5] V.A.Kovalevsky, Finite topology as applied to image analysis, Computer vision, Graphics, Image process, 46(1989), 141-151.
- [6] S.Levialdi, On shrinking binary patterns, Commu. ACM, 15(1972), 7-10.