Relation between Khalimsky Topology and Slapal's Topology

K. Annie Kurien ${ }^{1, *}$ and M. S. Samuel ${ }^{2}$
1 Department of Mathematics, Mar Thoma College for Women, Perumbavoor, Ernakulam, Kerala, India.
2 Department of Computer Applications, MACFAST, Thiruvalla, Pathanamthitta, Kerala, India.

Abstract: In this paper we study properties of both Khalimsky topology and Slapal's topology and the relation between them.
Keywords: Khalimsky topology, Slapal's topology, quotient topology, Alexandroff topological space, 4-adjacent, 8-adjacent. (C) JS Publication.

1. Introduction

An important problem of digital topology is to provide the digital plane Z^{2} with a convenient structure for the study of geometric and topological properties of digital images. A basic criterion for such a convenience is the validity of an analogy of the Jordan curve theorem. It was in 1990 that a topology on Z^{2} convenient for the study of digital images was introduced by Khalimsky. A drawback of the Khalimsky topology is that the Jordan curves with respect to it can never turn at an acute angle. To overcome this deficiency, another topology on Z^{2} was introduced by Slapal.

Notationt 1.1 ([6]). Let $z=(x, y) \in Z^{2}$. Put

$$
\begin{aligned}
H_{2}(z) & =\{(x-1, y),(x+1, y)\} \\
V_{2}(z) & =\{(x, y-1),(x, y+1)\} \\
D_{4}(z) & =H_{2}(z) \cup\{(x-1, y-1),(x+1, y-1)\} \\
U_{4}(z) & =H_{2}(z) \cup\{(x-1, y+1),(x+1, y+1)\} \\
L_{4}(z) & =V_{2}(z) \cup\{(x-1, y-1),(x-1, y+1)\} \\
R_{4}(z) & =V_{2}(z) \cup\{(x+1, y-1),(x+1, y+1)\}
\end{aligned}
$$

Then we put

$$
\begin{aligned}
& A_{4}(z)=H_{2}(z) \cup V_{2}(z) \\
& A_{8}(z)=H_{2}(z) \cup L_{4}(z) \cup R_{4}(z)
\end{aligned}
$$

[^0]$$
=V_{2}(z) \cup D_{4}(z) \cup U_{4}(z)
$$
and $A_{4}^{\prime}(z)=A_{8}(z)-A_{4}(z) . A_{4}(z)$ and $A_{8}(z)$ are said to be 4-adjacent and 8-adjacent to z respectively.
$$
H_{2}(z), V_{2}(z), D_{4}(z), V_{4}(z), L_{4}(z), R_{4}(z)
$$
and $A_{4}^{\prime}(z)$ are called horizontally 2-adjacent, vertically 2-adjacent, down 4-adjacent, up 4-adjacent, left 4-adjacent, right 4-adjacent and diagonally 4-adjacent to z respectively.

Definition 1.2. For any $z=(x, y) \in Z^{2}$

$$
V(z)= \begin{cases}\{z\} \cup A_{8}(z) & \text { if } x, y \text { are even, } \\ \{z\} \cup H_{2}(z) & \text { if } x \text { is even, and } y \text { is odd } \\ \{z\} \cup V_{2}(z) & \text { if } x \text { is odd and } y \text { is even } \\ \{z\} & \text { otherwise }\end{cases}
$$

The topological space $\left(Z^{2}, V\right)$ is called the Khalimsky topological space.

Definition $1.3([5])$. Let w be the Alexandroff $T_{1 / 2}$ topology on Z^{2} defined as follows. For any point $z=(x, y) \in Z^{2}$

$$
w(z)= \begin{cases}\{z\} \cup A_{8}(z) & \text { if } x=4 k, y=4 l, k, l \in Z \\ \{z\} \cup A_{4}^{\prime}(z) & \text { if } x=2+4 k, y=2+4 l, k, l \in Z \\ \{z\} \cup D_{4}(z) & \text { if } x=2+4 k, y=1+4 l, k, l \in Z \\ \{z\} \cup U_{4}(z) & \text { if } x=2+4 k, y=3+4 l, k, l \in Z \\ \{z\} \cup L_{4}(z) & \text { if } x=1+4 k, y=2+4 l, k, l \in Z \\ \{z\} \cup R_{4}(z) & \text { if } x=3+4 k, y=2+4 k, k, l \in Z \\ \{z\} \cup H_{2}(z) & \text { if } x=2+4 k, y=4 l, k, l \in Z \\ \{z\} \cup V_{2}(z) & \text { if } x=4 k, y=2+4 l, k, l \in Z \\ \{z\} & \text { otherwise }\end{cases}
$$

2. Quotient Topologies of w

Remark 2.1. Given a topological space (X, p), a set Y and a surjection $e: X \rightarrow Y$, a topology q on Y is said to be the quotient topology of p generated by e if q is the finest topology on Y for which $e:(X, p) \rightarrow(Y, q)$ is continuous. For Alexandroff topological spaces (X, p) and (Y, q), a map $c:(X, p) \rightarrow(Y, q)$ is continuous if and only if $e(p\{x\}) \subseteq q\{e(x)\}$ for every $x \in X$. We need the following lemma.

Lemma 2.2. Let $(X, p),(Y, q)$ be Alexandroff topological spaces and let $e: X \rightarrow Y$ be a surjection. Then the following condition is sufficient for q to be the quotient topology of p generated by e. For any pair of points $x, y \in Y, x \in q(y)$ if and only if there are $a \in e^{-1}(x)$ and $b \in e^{-1}(y)$ such that $a \in p(b)$.

We require the following surjection for the forthcoming theorem.

Notationt 2.3. Let $f: Z^{2} \rightarrow Z^{2}$ be a surjection given as follows. For every $(x, y) \in Z^{2}$

$$
f(x, y)= \begin{cases}(2 k, 2 l) & \text { if }(x, y)=(4 k, 4 l) \\ (2 k, 2 l+1) & \text { if }(x, y) \in A_{4}(4 k, 4 l+2) \\ (2 k+1,2 l) & \text { if }(x, y) \in A_{4}(4 k+2,4 l) \\ (2 k+1,2 l+1) & \text { if }(x, y) \in A_{4}^{\prime}(4 k+2,4 l+2),\end{cases}
$$

where $k, l \in Z$.

Theorem 2.4. The Khalimsky topology t coincides with the quotient topology of w generated by f.
Proof. We can show that for any points $z_{1}, z_{2} \in Z^{2}, z_{1} \in t\left(z_{2}\right)$ if and only if there are points $a \in f^{-1}\left(z_{1}\right)$ and $b \in f^{-1}\left(z_{2}\right)$ such that $a \in w(b)$. This is true if $z_{1}=z_{2}$. Therefore suppose that $z_{1} \neq z_{2}$. Let $z_{1} \in t\left(z_{2}\right)$. Then z_{2} is not a closed point in $\left(Z^{2}, t\right)$, hence $z_{2}=(x, y)$ where x or y is even. Thus we have the following three possibilities.

Case 1: $z_{2}=(2 k, 2 l)$, for some $k, l \in Z$ and $z_{1} \in A_{8}\left(z_{2}\right)-\left\{z_{2}\right\}$. Then $f^{-1}\left(z_{2}\right)=(4 k, 4 l)$ and we get one of the following eight cases.
(1). $z_{1}=(2 k+1,2 l)$ hence $f^{-1}(z)=A_{4}(4 k+2,4 l),(4 k+1,4 l) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k+1,4 l) \in w\{4 k, 4 l\}$
(2). $z_{1}=(2 k-1,2 l)$ hence $f^{-1}\left(z_{1}\right)=A_{4}(4 k-2,4 l),(4 k-1,4 l) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k-1,4 l) \in w(4 k, 4 l)$
(3). $z_{1}=(2 k, 2 l+1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}(4 k, 4 l+2),(4 k, 4 l+1) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k, 4 l+1) \in w\{(4 k, 4 l)\}$
(4). $z_{1}=(2 k, 2 l-1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}(4 k, 4 l-2),(4 k, 4 l-1) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k, 4 l-1) \in w\{(4 k, 4 l)\}$
(5). $z_{1}=(2 k+1,2 l+1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}^{\prime}(4 k+2,4 l+2),(4 k+1,4 l+1) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k+1,4 l+1) \in w\{(4 k, 4 l)\}$
(6). $z_{1}=(2 k+1,2 l-1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}^{\prime}(4 k+2,4 l-2),(4 k+1,4 l-1) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k+1,4 l-1) \in w\{(4 k, 4 l)\}$
(7). $z_{1}=(2 k-1,2 l+1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}^{\prime}(4 k-2,4 l+2),(4 k-1,4 l+1) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k-1,4 l+1) \in w\{(4 k, 4 l)\}$
(8). $z_{1}=(2 k-1,2 l-1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}^{\prime}(4 k-2,4 l-2),(4 k-1,4 l+1) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k-1,4 l-1) \in w\{(4 k, 4 l)\}$.

Case 2: $z_{2}=(2 k, 2 l+1)$, for some $k, l \in Z$ and $z_{1} \in H_{2}\left(z_{2}\right)-\left\{z_{2}\right\}$. Then

$$
f^{-1}\left(z_{2}\right)=A_{4}(4 k, 4 l+2),\{(4 k+1,4 l+2),(4 k-1,4 l+2)\} \subset f^{-1}\left(z_{2}\right)
$$

and we get one of the following two cases
(1). $z_{1}=(2 k+1,2 l+1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}^{\prime}(4 k+2,4 l+2),(4 k+1,4 l+1) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k+1,4 l+1) \in$ $w\{4 k+1,4 l+2\}$
(2). $z_{1}=(2 k-1,2 l+1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}^{\prime}(4 k-2,4 l+2),(4 k-1,4 l+3) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k-1,4 l+3) \in$ $w\{(4 k-1,4 l+2)\}$

Case 3: $z_{2}=(2 k+1,2 l)$, for some $k, l \in Z$ and $z_{1} \in V_{2}\left(z_{2}\right)-\left\{z_{2}\right\}$. Then

$$
f^{-1}\left(z_{2}\right)=A_{4}(4 k+2,4 l),\{(4 k+2,4 l+2),(4 k+2,4 l-1)\} \subseteq f^{-1}\left(z_{2}\right)
$$

and we get one of the following two cases
(1). $z_{1}=(2 k+1,2 l+1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}^{\prime}(4 k+2,4 l+2),(4 k+1,4 l+1) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k+1,4 l+1) \in$ $w\{4 k+2,4 l+2\}$
(2). $z_{1}=(2 k+1,2 l-1)$ hence $f^{-1}\left(z_{1}\right)=A_{4}^{\prime}(4 k+2,4 l-2),(4 k+1,4 l-3) \in f^{-1}\left(z_{1}\right)$ and we have $(4 k+1,4 l-1) \in$ $w\{(4 k+2,4 l-1)\}$ we have shown that whenever $z_{1} \in t\left\{z_{2}\right\}$ there are points $a \in f^{-1}\left(z_{1}\right)$ and $b \in^{-1}\left(z_{2}\right)$ such that $a \in w(b)$.

Conversely suppose that there are points $a \in f^{-1}\left(z_{1}\right)$ and $b \in^{-1}\left(z_{2}\right)$ such that $a \in w(b)$. Then $f^{-1}\left(z_{1}\right)$ is not open in $\left(Z^{2}, w\right)$. Therefore we have the following three possibilities.

Case 1: $f^{-1}\left(z_{1}\right) A_{4}(4 k, 4 l+2)$ for some $k, l \in Z$ hence $z_{1}=(2 k, 2 l+1)$ and we get one of the following two cases
(1). $z_{2}=(2 k, 2 l+2)$ because then $f^{-1}\left(z_{2}\right)=\{(4 k, 4 l+4)\}, a \in(4 k, 4 l+3) \in f^{-1}\left(z_{1}\right)$ and $b=(4 k, 4 l+4) \in f^{-1}\left(z_{2}\right)$ then we have $z_{1} \in t\left\{z_{2}\right\}$
(2). $z_{2}=(2 k, 2 l)$ because then $f^{-1}\left(z_{2}\right)=\{(4 k, 4 l)\}, a=(4 k, 4 l+1) \in f^{-1}\left(z_{1}\right)$ and $b=(4 k, 4 l) \in f^{-1}\left(z_{2}\right)$. So $z_{1} \in t\left\{z_{2}\right\}$.

Case 2: $f^{-1}\left(z_{1}\right)=A_{4}(4 k+2,4 l)$ for some $k, l \in Z$ hence $z_{1}=(2 k+1,2 l)$ and we get one of the following two cases
(1). $z_{2}=(2 k+2,2 l)$ because then $f^{-1}\left(z_{2}\right)=\{(4 k+4 l, 4 l)\}, a=(4 k+3,4 l) \in f^{-1}\left(z_{1}\right)$ and $b=(4 k+4,4 l) \in f^{-1}\left(z_{2}\right)$ so we have $z_{1} \in t\left\{z_{2}\right\}$.
(2). $z_{2}=(2 k, 2 l)$ because then $f^{-1}\left(z_{2}\right)=\{(4 k, 4 l)\}, a=(4 k+1,4 l) \in f^{-1}\left(z_{1}\right)$ and $b=(4 k, 4 l) \in f^{-1}\left(z_{2}\right)$, then we have $z_{1} \in t\left\{z_{2}\right\}$.

Case 3: $f^{-1}\left(z_{1}\right)=A_{4}^{\prime}(4 k+2,4 l+2)$ for some $k, l \in Z$ hence $z_{1}=(2 k+1,2 l+1)$ and we get one of the following four cases
(1). $z_{2}=(2 k+2,2 l+2)$ because then $f^{-1}\left(z_{2}\right)=\{(4 k+4,4 l+4)\}, a=(4 k+3,4 l+3) \in f^{-1}\left(z_{1}\right)$ and $b=(4 k+4,4 l+4) \in f^{-1}\left(z_{2}\right)$ so we have $z_{1} \in t\left\{z_{2}\right\}$
(2). $z_{2}=(2 k, 2 l+2)$ because then $f^{-1}\left(z_{2}\right)=\{(4 k, 4 l+4)\}, a=(4 k+1,4 l+3) \in f^{-1}\left(z_{1}\right)$ and $b=(4 k, 4 l+4) \in f^{-1}\left(z_{2}\right), z_{1} \in$ $t\left\{z_{2}\right\}$
(3). $z_{2}=(2 k+2,2 l)$ because then $f^{-1}\left(z_{2}\right)=\{(4 k+4,4 l)\}, a=(4 k+3,4 l+1) \in f^{-1}\left(z_{1}\right)$ and $b=(4 k+4,4 l) \in f^{-1}\left(z_{2}\right)$, so we have $z_{1} \in t\left\{z_{2}\right\}$
(4). $z_{2}=(2 k, 2 l)$ because then $f^{-1}\left(z_{2}\right)=\{(4 k, 4 l)\}, a=(4 k+1,4 l+1) \in f^{-1}\left(z_{1}\right)$ and $b=(4 k, 4 l) \in f^{-1}\left(z_{2}\right)$, so we have $z_{1} \in t\left\{z_{2}\right\}$

We have shown that $a \in f^{-1}\left(z_{1}\right), b \in f^{-1}\left(z_{2}\right)$ and $a \in w(b)$ imply $z_{1} \in t\left(z_{2}\right)$. By lemma $2.2, t$ is the quotient topology of w generalized by f.

Notationt 2.5. Let $g: Z^{2} \rightarrow Z^{2}$ be the surjection as follows. For any $(x, y) \in Z^{2}$

$$
g(x, y)= \begin{cases}k+l, l-k & \text { if }(x, y) \in A_{8}(4 k, 4 l), k, l \in Z \\ (k+l+1, l-k) & \text { if }(x, y)=(4 k+2,4 l+2) \\ & \text { for some } k, l \in Z \text { with } k+1 \text { odd }\end{cases}
$$

or $(x, y) \in A_{12}(4 k+2,4 l+2)$ for some $k, l \in Z$ with $k+l$ even, where $A_{12}(k, l)=\left\{(x, y) \in Z^{2}, x=k\right.$ and $|y-l| \leq 3$ or $y=l$ and $|x-k| \leq 3\}$. Thus A_{12} consists of the point (k, l) and the 12 nearest points to (k, l) each of which has one co-ordinate common with (k, l).

References

[1] Ulrich Echhardt and Longen J.Latecki, Topologies for the digital spaces Z^{2} and Z^{3}, Computer Vision and Image Understanding, 90(2003), 295-312.
[2] Gabor T.Herman, Geometry of digital spaces, Birkhauser, (1998).
[3] E.D.Khalimsky, R.Kopperman and P.R.Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36(1990), 1-17.
[4] A.Rosenfeld, Digital topology, American Mathematical Monthly, 86(1979), 621-630.
[5] J.Slapal, Closure operations for digital topology, Theor. Comp. Sci., 305(2003), 457-471.
[6] J.Slapal, Digital Jordan curves, Topology Appl., 153(17)(2006), 3255-3264.

[^0]: * E-mail: shirlykmj@yahoo.co.in

