ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Relation between Khalimsky Topology and Slapal's Topology

K. Annie Kurien^{1,*} and M. S. Samuel²

- 1 Department of Mathematics, Mar Thoma College for Women, Perumbavoor, Ernakulam, Kerala, India.
 - 2 Department of Computer Applications, MACFAST, Thiruvalla, Pathanamthitta, Kerala, India.

Abstract: In this paper we study properties of both Khalimsky topology and Slapal's topology and the relation between them.

Keywords: Khalimsky topology, Slapal's topology, quotient topology, Alexandroff topological space, 4-adjacent, 8-adjacent.

© JS Publication.

1. Introduction

An important problem of digital topology is to provide the digital plane Z^2 with a convenient structure for the study of geometric and topological properties of digital images. A basic criterion for such a convenience is the validity of an analogy of the Jordan curve theorem. It was in 1990 that a topology on Z^2 convenient for the study of digital images was introduced by Khalimsky. A drawback of the Khalimsky topology is that the Jordan curves with respect to it can never turn at an acute angle. To overcome this deficiency, another topology on Z^2 was introduced by Slapal.

Notationt 1.1 ([6]). Let $z = (x, y) \in \mathbb{Z}^2$. Put

$$H_2(z) = \{(x-1,y), (x+1,y)\}$$

$$V_2(z) = \{(x,y-1), (x,y+1)\}$$

$$D_4(z) = H_2(z) \cup \{(x-1,y-1), (x+1,y-1)\}$$

$$U_4(z) = H_2(z) \cup \{(x-1,y+1), (x+1,y+1)\}$$

$$L_4(z) = V_2(z) \cup \{(x-1,y-1), (x-1,y+1)\}$$

$$R_4(z) = V_2(z) \cup \{(x+1,y-1), (x+1,y+1)\}$$

Then we put

$$A_4(z) = H_2(z) \cup V_2(z)$$

 $A_8(z) = H_2(z) \cup L_4(z) \cup R_4(z)$

^{*} E-mail: shirlykmj@yahoo.co.in

$$= V_2(z) \cup D_4(z) \cup U_4(z)$$

and $A'_4(z) = A_8(z) - A_4(z)$. $A_4(z)$ and $A_8(z)$ are said to be 4-adjacent and 8-adjacent to z respectively.

$$H_2(z), V_2(z), D_4(z), V_4(z), L_4(z), R_4(z)$$

and $A'_4(z)$ are called horizontally 2-adjacent, vertically 2-adjacent, down 4-adjacent, up 4-adjacent, left 4-adjacent, right 4-adjacent and diagonally 4-adjacent to z respectively.

Definition 1.2. For any $z = (x, y) \in \mathbb{Z}^2$

$$V(z) = \begin{cases} \{z\} \cup A_8(z) & \text{if } x, y \text{ are even,} \\ \{z\} \cup H_2(z) & \text{if } x \text{ is even, and } y \text{ is odd} \\ \{z\} \cup V_2(z) & \text{if } x \text{ is odd and } y \text{ is even} \\ \{z\} & \text{otherwise} \end{cases}$$

The topological space (Z^2, V) is called the Khalimsky topological space.

Definition 1.3 ([5]). Let w be the Alexandroff $T_{1/2}$ topology on Z^2 defined as follows. For any point $z=(x,y)\in Z^2$

$$w(z) = \begin{cases} \{z\} \cup A_8(z) & \text{if } x = 4k, y = 4l, k, l \in \mathbb{Z} \\ \{z\} \cup A_4'(z) & \text{if } x = 2 + 4k, y = 2 + 4l, k, l \in \mathbb{Z} \\ \{z\} \cup D_4(z) & \text{if } x = 2 + 4k, y = 1 + 4l, k, l \in \mathbb{Z} \\ \{z\} \cup U_4(z) & \text{if } x = 2 + 4k, y = 3 + 4l, k, l \in \mathbb{Z} \\ \{z\} \cup L_4(z) & \text{if } x = 1 + 4k, y = 2 + 4l, k, l \in \mathbb{Z} \\ \{z\} \cup R_4(z) & \text{if } x = 3 + 4k, y = 2 + 4k, k, l \in \mathbb{Z} \\ \{z\} \cup H_2(z) & \text{if } x = 2 + 4k, y = 4l, k, l \in \mathbb{Z} \\ \{z\} \cup V_2(z) & \text{if } x = 4k, y = 2 + 4l, k, l \in \mathbb{Z} \\ \{z\} & \text{otherwise} \end{cases}$$

2. Quotient Topologies of w

Remark 2.1. Given a topological space (X,p), a set Y and a surjection $e: X \to Y$, a topology q on Y is said to be the quotient topology of p generated by e if q is the finest topology on Y for which $e: (X,p) \to (Y,q)$ is continuous. For Alexandroff topological spaces (X,p) and (Y,q), a map $c: (X,p) \to (Y,q)$ is continuous if and only if $e(p\{x\}) \subseteq q\{e(x)\}$ for every $x \in X$. We need the following lemma.

Lemma 2.2. Let (X, p), (Y, q) be Alexandroff topological spaces and let $e: X \to Y$ be a surjection. Then the following condition is sufficient for q to be the quotient topology of p generated by e. For any pair of points $x, y \in Y$, $x \in q(y)$ if and only if there are $a \in e^{-1}(x)$ and $b \in e^{-1}(y)$ such that $a \in p(b)$.

We require the following surjection for the forthcoming theorem.

Notationt 2.3. Let $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ be a surjection given as follows. For every $(x,y) \in \mathbb{Z}^2$

$$f(x,y) = \begin{cases} (2k,2l) & \text{if } (x,y) = (4k,4l) ,\\ (2k,2l+1) & \text{if } (x,y) \in A_4(4k,4l+2) ,\\ (2k+1,2l) & \text{if } (x,y) \in A_4(4k+2,4l) ,\\ (2k+1,2l+1) & \text{if } (x,y) \in A_4'(4k+2,4l+2) , \end{cases}$$

where $k, l \in \mathbb{Z}$.

Theorem 2.4. The Khalimsky topology t coincides with the quotient topology of w generated by f.

Proof. We can show that for any points $z_1, z_2 \in Z^2, z_1 \in t(z_2)$ if and only if there are points $a \in f^{-1}(z_1)$ and $b \in f^{-1}(z_2)$ such that $a \in w(b)$. This is true if $z_1 = z_2$. Therefore suppose that $z_1 \neq z_2$. Let $z_1 \in t(z_2)$. Then z_2 is not a closed point in (Z^2, t) , hence $z_2 = (x, y)$ where x or y is even. Thus we have the following three possibilities.

Case 1: $z_2 = (2k, 2l)$, for some $k, l \in \mathbb{Z}$ and $z_1 \in A_8(z_2) - \{z_2\}$. Then $f^{-1}(z_2) = (4k, 4l)$ and we get one of the following eight cases.

- (1). $z_1 = (2k+1, 2l)$ hence $f^{-1}(z) = A_4(4k+2, 4l)$, $(4k+1, 4l) \in f^{-1}(z_1)$ and we have $(4k+1, 4l) \in w\{4k, 4l\}$
- (2). $z_1 = (2k-1, 2l)$ hence $f^{-1}(z_1) = A_4(4k-2, 4l)$, $(4k-1, 4l) \in f^{-1}(z_1)$ and we have $(4k-1, 4l) \in w(4k, 4l)$
- (3). $z_1 = (2k, 2l+1)$ hence $f^{-1}(z_1) = A_4(4k, 4l+2)$, $(4k, 4l+1) \in f^{-1}(z_1)$ and we have $(4k, 4l+1) \in w\{(4k, 4l)\}$
- (4). $z_1 = (2k, 2l 1)$ hence $f^{-1}(z_1) = A_4(4k, 4l 2)$, $(4k, 4l 1) \in f^{-1}(z_1)$ and we have $(4k, 4l 1) \in w\{(4k, 4l)\}$
- (5). $z_1 = (2k+1, 2l+1)$ hence $f^{-1}(z_1) = A'_4(4k+2, 4l+2), (4k+1, 4l+1) \in f^{-1}(z_1)$ and we have $(4k+1, 4l+1) \in w\{(4k, 4l)\}$
- (6). $z_1 = (2k+1, 2l-1)$ hence $f^{-1}(z_1) = A'_4(4k+2, 4l-2), (4k+1, 4l-1) \in f^{-1}(z_1)$ and we have $(4k+1, 4l-1) \in w\{(4k, 4l)\}$
- (7). $z_1 = (2k-1, 2l+1)$ hence $f^{-1}(z_1) = A'_4(4k-2, 4l+2), (4k-1, 4l+1) \in f^{-1}(z_1)$ and we have $(4k-1, 4l+1) \in w\{(4k, 4l)\}$
- (8). $z_1 = (2k-1, 2l-1)$ hence $f^{-1}(z_1) = A'_4(4k-2, 4l-2), (4k-1, 4l+1) \in f^{-1}(z_1)$ and we have $(4k-1, 4l-1) \in w\{(4k, 4l)\}.$

Case 2: $z_2 = (2k, 2l + 1)$, for some $k, l \in Z$ and $z_1 \in H_2(z_2) - \{z_2\}$. Then

$$f^{-1}(z_2) = A_4(4k, 4l+2), \{(4k+1, 4l+2), (4k-1, 4l+2)\} \subset f^{-1}(z_2)$$

and we get one of the following two cases

- (1). $z_1 = (2k+1, 2l+1)$ hence $f^{-1}(z_1) = A'_4(4k+2, 4l+2)$, $(4k+1, 4l+1) \in f^{-1}(z_1)$ and we have $(4k+1, 4l+1) \in w\{4k+1, 4l+2\}$
- (2). $z_1 = (2k 1, 2l + 1)$ hence $f^{-1}(z_1) = A'_4(4k 2, 4l + 2)$, $(4k 1, 4l + 3) \in f^{-1}(z_1)$ and we have $(4k 1, 4l + 3) \in w\{(4k 1, 4l + 2)\}$

Case 3: $z_2 = (2k + 1, 2l)$, for some $k, l \in \mathbb{Z}$ and $z_1 \in V_2(z_2) - \{z_2\}$. Then

$$f^{-1}(z_2) = A_4(4k+2,4l), \{(4k+2,4l+2), (4k+2,4l-1)\} \subseteq f^{-1}(z_2)$$

and we get one of the following two cases

- (1). $z_1 = (2k+1, 2l+1)$ hence $f^{-1}(z_1) = A'_4(4k+2, 4l+2)$, $(4k+1, 4l+1) \in f^{-1}(z_1)$ and we have $(4k+1, 4l+1) \in w\{4k+2, 4l+2\}$
- (2). $z_1 = (2k+1, 2l-1)$ hence $f^{-1}(z_1) = A'_4(4k+2, 4l-2)$, $(4k+1, 4l-3) \in f^{-1}(z_1)$ and we have $(4k+1, 4l-1) \in w\{(4k+2, 4l-1)\}$ we have shown that whenever $z_1 \in t\{z_2\}$ there are points $a \in f^{-1}(z_1)$ and $b \in f^{-1}(z_2)$ such that $a \in w(b)$.

Conversely suppose that there are points $a \in f^{-1}(z_1)$ and $b \in (z_2)$ such that $a \in w(b)$. Then $f^{-1}(z_1)$ is not open in (Z^2, w) . Therefore we have the following three possibilities.

Case 1: $f^{-1}(z_1)A_4(4k, 4l+2)$ for some $k, l \in \mathbb{Z}$ hence $z_1 = (2k, 2l+1)$ and we get one of the following two cases

- (1). $z_2 = (2k, 2l + 2)$ because then $f^{-1}(z_2) = \{(4k, 4l + 4)\}, a \in (4k, 4l + 3) \in f^{-1}(z_1) \text{ and } b = (4k, 4l + 4) \in f^{-1}(z_2) \text{ then we have } z_1 \in t\{z_2\}$
- (2). $z_2 = (2k, 2l)$ because then $f^{-1}(z_2) = \{(4k, 4l)\}, a = (4k, 4l + 1) \in f^{-1}(z_1) \text{ and } b = (4k, 4l) \in f^{-1}(z_2).$ So $z_1 \in t\{z_2\}.$

Case 2: $f^{-1}(z_1) = A_4(4k+2,4l)$ for some $k,l \in \mathbb{Z}$ hence $z_1 = (2k+1,2l)$ and we get one of the following two cases

- (1). $z_2 = (2k+2, 2l)$ because then $f^{-1}(z_2) = \{(4k+4l, 4l)\}, a = (4k+3, 4l) \in f^{-1}(z_1)$ and $b = (4k+4, 4l) \in f^{-1}(z_2)$ so we have $z_1 \in t\{z_2\}$.
- (2). $z_2 = (2k, 2l)$ because then $f^{-1}(z_2) = \{(4k, 4l)\}, a = (4k + 1, 4l) \in f^{-1}(z_1)$ and $b = (4k, 4l) \in f^{-1}(z_2)$, then we have $z_1 \in t\{z_2\}$.

Case 3: $f^{-1}(z_1) = A'_4(4k+2,4l+2)$ for some $k, l \in \mathbb{Z}$ hence $z_1 = (2k+1,2l+1)$ and we get one of the following four cases

- (1). $z_2 = (2k+2, 2l+2)$ because then $f^{-1}(z_2) = \{(4k+4, 4l+4)\}, a = (4k+3, 4l+3) \in f^{-1}(z_1) \text{ and } b = (4k+4, 4l+4) \in f^{-1}(z_2)$ so we have $z_1 \in t\{z_2\}$
- (2). $z_2 = (2k, 2l + 2)$ because then $f^{-1}(z_2) = \{(4k, 4l + 4)\}, a = (4k + 1, 4l + 3) \in f^{-1}(z_1) \text{ and } b = (4k, 4l + 4) \in f^{-1}(z_2), z_1 \in t\{z_2\}$
- (3). $z_2 = (2k+2, 2l)$ because then $f^{-1}(z_2) = \{(4k+4, 4l)\}, a = (4k+3, 4l+1) \in f^{-1}(z_1)$ and $b = (4k+4, 4l) \in f^{-1}(z_2)$, so we have $z_1 \in t\{z_2\}$
- (4). $z_2 = (2k, 2l)$ because then $f^{-1}(z_2) = \{(4k, 4l)\}, a = (4k + 1, 4l + 1) \in f^{-1}(z_1)$ and $b = (4k, 4l) \in f^{-1}(z_2)$, so we have $z_1 \in t\{z_2\}$

We have shown that $a \in f^{-1}(z_1), b \in f^{-1}(z_2)$ and $a \in w(b)$ imply $z_1 \in t(z_2)$. By lemma 2.2, t is the quotient topology of w generalized by f.

Notationt 2.5. Let $g: \mathbb{Z}^2 \to \mathbb{Z}^2$ be the surjection as follows. For any $(x,y) \in \mathbb{Z}^2$

$$g(x,y) = \begin{cases} k+l, l-k & \text{if } (x,y) \in A_8(4k,4l), k, l \in \mathbb{Z} \\ (k+l+1, l-k) & \text{if } (x,y) = (4k+2, 4l+2), \\ & \text{for some } k, l \in \mathbb{Z} \text{ with } k+1 \text{ odd} \end{cases}$$

or $(x,y) \in A_{12}(4k+2,4l+2)$ for some $k,l \in \mathbb{Z}$ with k+l even, where $A_{12}(k,l) = \{(x,y) \in \mathbb{Z}^2, x = k \text{ and } |y-l| \leq 3 \text{ or } y = l \text{ and } |x-k| \leq 3\}$. Thus A_{12} consists of the point (k,l) and the 12 nearest points to (k,l) each of which has one co-ordinate common with (k,l).

References

- [1] Ulrich Echhardt and Longen J.Latecki, Topologies for the digital spaces Z^2 and Z^3 , Computer Vision and Image Understanding, 90(2003), 295-312.
- [2] Gabor T.Herman, Geometry of digital spaces, Birkhauser, (1998).
- [3] E.D.Khalimsky, R.Kopperman and P.R.Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36(1990), 1-17.
- [4] A.Rosenfeld, Digital topology, American Mathematical Monthly, 86(1979), 621-630.
- [5] J.Slapal, Closure operations for digital topology, Theor. Comp. Sci., 305(2003), 457-471.
- [6] J.Slapal, Digital Jordan curves, Topology Appl., 153(17)(2006), 3255-3264.