
Int. J. Math. And Appl., 6(1–D)(2018), 775–779

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Relation between Khalimsky Topology and Slapal’s

Topology

K. Annie Kurien1,∗ and M. S. Samuel2

1 Department of Mathematics, Mar Thoma College for Women, Perumbavoor, Ernakulam, Kerala, India.

2 Department of Computer Applications, MACFAST, Thiruvalla, Pathanamthitta, Kerala, India.

Abstract: In this paper we study properties of both Khalimsky topology and Slapal’s topology and the relation between them.

Keywords: Khalimsky topology, Slapal’s topology, quotient topology, Alexandroff topological space, 4-adjacent, 8-adjacent.

c© JS Publication.

1. Introduction

An important problem of digital topology is to provide the digital plane Z2 with a convenient structure for the study of

geometric and topological properties of digital images. A basic criterion for such a convenience is the validity of an analogy

of the Jordan curve theorem. It was in 1990 that a topology on Z2 convenient for the study of digital images was introduced

by Khalimsky. A drawback of the Khalimsky topology is that the Jordan curves with respect to it can never turn at an

acute angle. To overcome this deficiency, another topology on Z2 was introduced by Slapal.

Notationt 1.1 ([6]). Let z = (x, y) ∈ Z2. Put

H2(z) = {(x− 1, y), (x + 1, y)}

V2(z) = {(x, y − 1), (x, y + 1)}

D4(z) = H2(z) ∪ {(x− 1, y − 1), (x + 1, y − 1)}

U4(z) = H2(z) ∪ {(x− 1, y + 1), (x + 1, y + 1)}

L4(z) = V2(z) ∪ {(x− 1, y − 1), (x− 1, y + 1)}

R4(z) = V2(z) ∪ {(x + 1, y − 1), (x + 1, y + 1)}

Then we put

A4(z) = H2(z) ∪ V2(z)

A8(z) = H2(z) ∪ L4(z) ∪R4(z)
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= V2(z) ∪D4(z) ∪ U4(z)

and A′4(z) = A8(z)−A4(z). A4(z) and A8(z) are said to be 4-adjacent and 8-adjacent to z respectively.

H2(z), V2(z), D4(z), V4(z), L4(z), R4(z)

and A′4(z) are called horizontally 2-adjacent, vertically 2-adjacent, down 4-adjacent, up 4-adjacent, left 4-adjacent, right

4-adjacent and diagonally 4-adjacent to z respectively.

Definition 1.2. For any z = (x, y) ∈ Z2

V (z) =



{z} ∪A8(z) if x, y are even,

{z} ∪H2(z) if x is even, and y is odd

{z} ∪ V2(z) if x is odd and y is even

{z} otherwise

The topological space (Z2, V ) is called the Khalimsky topological space.

Definition 1.3 ([5]). Let w be the Alexandroff T1/2 topology on Z2 defined as follows. For any point z = (x, y) ∈ Z2

w(z) =



{z} ∪A8(z) if x = 4k, y = 4l, k, l ∈ Z

{z} ∪A′4(z) if x = 2 + 4k, y = 2 + 4l, k, l ∈ Z

{z} ∪D4(z) if x = 2 + 4k, y = 1 + 4l, k, l ∈ Z

{z} ∪ U4(z) if x = 2 + 4k, y = 3 + 4l, k, l ∈ Z

{z} ∪ L4(z) if x = 1 + 4k, y = 2 + 4l, k, l ∈ Z

{z} ∪R4(z) if x = 3 + 4k, y = 2 + 4k, k, l ∈ Z

{z} ∪H2(z) if x = 2 + 4k, y = 4l, k, l ∈ Z

{z} ∪ V2(z) if x = 4k, y = 2 + 4l, k, l ∈ Z

{z} otherwise

2. Quotient Topologies of w

Remark 2.1. Given a topological space (X, p), a set Y and a surjection e : X → Y , a topology q on Y is said to be

the quotient topology of p generated by e if q is the finest topology on Y for which e : (X, p) → (Y, q) is continuous. For

Alexandroff topological spaces (X, p) and (Y, q), a map c : (X, p)→ (Y, q) is continuous if and only if e(p{x}) ⊆ q{e(x)} for

every x ∈ X. We need the following lemma.

Lemma 2.2. Let (X, p), (Y, q) be Alexandroff topological spaces and let e : X → Y be a surjection. Then the following

condition is sufficient for q to be the quotient topology of p generated by e. For any pair of points x, y ∈ Y, x ∈ q(y) if and

only if there are a ∈ e−1(x) and b ∈ e−1(y) such that a ∈ p(b).

We require the following surjection for the forthcoming theorem.
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Notationt 2.3. Let f : Z2 → Z2 be a surjection given as follows. For every (x, y) ∈ Z2

f(x, y) =



(2k, 2l) if (x, y) = (4k, 4l) ,

(2k, 2l + 1) if (x, y) ∈ A4(4k, 4l + 2) ,

(2k + 1, 2l) if (x, y) ∈ A4(4k + 2, 4l) ,

(2k + 1, 2l + 1) if (x, y) ∈ A′4(4k + 2, 4l + 2) ,

where k, l ∈ Z.

Theorem 2.4. The Khalimsky topology t coincides with the quotient topology of w generated by f .

Proof. We can show that for any points z1, z2 ∈ Z2, z1 ∈ t(z2) if and only if there are points a ∈ f−1(z1) and b ∈ f−1(z2)

such that a ∈ w(b). This is true if z1 = z2. Therefore suppose that z1 6= z2. Let z1 ∈ t(z2). Then z2 is not a closed point in

(Z2, t), hence z2 = (x, y) where x or y is even. Thus we have the following three possibilities.

Case 1: z2 = (2k, 2l), for some k, l ∈ Z and z1 ∈ A8(z2) − {z2}. Then f−1(z2) = (4k, 4l) and we get one of the following

eight cases.

(1). z1 = (2k + 1, 2l) hence f−1(z) = A4(4k + 2, 4l), (4k + 1, 4l) ∈ f−1(z1) and we have (4k + 1, 4l) ∈ w{4k, 4l}

(2). z1 = (2k − 1, 2l) hence f−1(z1) = A4(4k − 2, 4l), (4k − 1, 4l) ∈ f−1(z1) and we have (4k − 1, 4l) ∈ w(4k, 4l)

(3). z1 = (2k, 2l + 1) hence f−1(z1) = A4(4k, 4l + 2), (4k, 4l + 1) ∈ f−1(z1) and we have (4k, 4l + 1) ∈ w{(4k, 4l)}

(4). z1 = (2k, 2l − 1) hence f−1(z1) = A4(4k, 4l − 2), (4k, 4l − 1) ∈ f−1(z1) and we have (4k, 4l − 1) ∈ w{(4k, 4l)}

(5). z1 = (2k+1, 2l+1) hence f−1(z1) = A′4(4k+2, 4l+2), (4k+1, 4l+1) ∈ f−1(z1) and we have (4k+1, 4l+1) ∈ w{(4k, 4l)}

(6). z1 = (2k+1, 2l−1) hence f−1(z1) = A′4(4k+2, 4l−2), (4k+1, 4l−1) ∈ f−1(z1) and we have (4k+1, 4l−1) ∈ w{(4k, 4l)}

(7). z1 = (2k−1, 2l+1) hence f−1(z1) = A′4(4k−2, 4l+2), (4k−1, 4l+1) ∈ f−1(z1) and we have (4k−1, 4l+1) ∈ w{(4k, 4l)}

(8). z1 = (2k−1, 2l−1) hence f−1(z1) = A′4(4k−2, 4l−2), (4k−1, 4l+1) ∈ f−1(z1) and we have (4k−1, 4l−1) ∈ w{(4k, 4l)}.

Case 2: z2 = (2k, 2l + 1), for some k, l ∈ Z and z1 ∈ H2(z2)− {z2}. Then

f−1(z2) = A4(4k, 4l + 2), {(4k + 1, 4l + 2), (4k − 1, 4l + 2)} ⊂ f−1(z2)

and we get one of the following two cases

(1). z1 = (2k + 1, 2l + 1) hence f−1(z1) = A′4(4k + 2, 4l + 2), (4k + 1, 4l + 1) ∈ f−1(z1) and we have (4k + 1, 4l + 1) ∈

w{4k + 1, 4l + 2}

(2). z1 = (2k − 1, 2l + 1) hence f−1(z1) = A′4(4k − 2, 4l + 2), (4k − 1, 4l + 3) ∈ f−1(z1) and we have (4k − 1, 4l + 3) ∈

w{(4k − 1, 4l + 2)}

Case 3: z2 = (2k + 1, 2l), for some k, l ∈ Z and z1 ∈ V2(z2)− {z2}. Then

f−1(z2) = A4(4k + 2, 4l), {(4k + 2, 4l + 2), (4k + 2, 4l − 1)} ⊆ f−1(z2)

and we get one of the following two cases
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(1). z1 = (2k + 1, 2l + 1) hence f−1(z1) = A′4(4k + 2, 4l + 2), (4k + 1, 4l + 1) ∈ f−1(z1) and we have (4k + 1, 4l + 1) ∈

w{4k + 2, 4l + 2}

(2). z1 = (2k + 1, 2l − 1) hence f−1(z1) = A′4(4k + 2, 4l − 2), (4k + 1, 4l − 3) ∈ f−1(z1) and we have (4k + 1, 4l − 1) ∈

w{(4k + 2, 4l − 1)} we have shown that whenever z1 ∈ t{z2} there are points a ∈ f−1(z1) and b ∈−1 (z2) such that

a ∈ w(b).

Conversely suppose that there are points a ∈ f−1(z1) and b ∈−1 (z2) such that a ∈ w(b). Then f−1(z1) is not open in

(Z2, w). Therefore we have the following three possibilities.

Case 1: f−1(z1)A4(4k, 4l + 2) for some k, l ∈ Z hence z1 = (2k, 2l + 1) and we get one of the following two cases

(1). z2 = (2k, 2l + 2) because then f−1(z2) = {(4k, 4l + 4)}, a ∈ (4k, 4l + 3) ∈ f−1(z1) and b = (4k, 4l + 4) ∈ f−1(z2) then

we have z1 ∈ t{z2}

(2). z2 = (2k, 2l) because then f−1(z2) = {(4k, 4l)}, a = (4k, 4l + 1) ∈ f−1(z1) and b = (4k, 4l) ∈ f−1(z2). So z1 ∈ t{z2}.

Case 2: f−1(z1) = A4(4k + 2, 4l) for some k, l ∈ Z hence z1 = (2k + 1, 2l) and we get one of the following two cases

(1). z2 = (2k + 2, 2l) because then f−1(z2) = {(4k + 4l, 4l)}, a = (4k + 3, 4l) ∈ f−1(z1) and b = (4k + 4, 4l) ∈ f−1(z2) so we

have z1 ∈ t{z2}.

(2). z2 = (2k, 2l) because then f−1(z2) = {(4k, 4l)}, a = (4k + 1, 4l) ∈ f−1(z1) and b = (4k, 4l) ∈ f−1(z2), then we have

z1 ∈ t{z2}.

Case 3: f−1(z1) = A′4(4k + 2, 4l+ 2) for some k, l ∈ Z hence z1 = (2k + 1, 2l+ 1) and we get one of the following four cases

(1). z2 = (2k+2, 2l+2) because then f−1(z2) = {(4k+4, 4l+4)}, a = (4k+3, 4l+3) ∈ f−1(z1) and b = (4k+4, 4l+4) ∈ f−1(z2)

so we have z1 ∈ t{z2}

(2). z2 = (2k, 2l+2) because then f−1(z2) = {(4k, 4l+4)}, a = (4k+1, 4l+3) ∈ f−1(z1) and b = (4k, 4l+4) ∈ f−1(z2), z1 ∈

t{z2}

(3). z2 = (2k + 2, 2l) because then f−1(z2) = {(4k + 4, 4l)}, a = (4k + 3, 4l + 1) ∈ f−1(z1) and b = (4k + 4, 4l) ∈ f−1(z2), so

we have z1 ∈ t{z2}

(4). z2 = (2k, 2l) because then f−1(z2) = {(4k, 4l)}, a = (4k + 1, 4l + 1) ∈ f−1(z1) and b = (4k, 4l) ∈ f−1(z2), so we have

z1 ∈ t{z2}

We have shown that a ∈ f−1(z1), b ∈ f−1(z2) and a ∈ w(b) imply z1 ∈ t(z2). By lemma 2.2, t is the quotient topology of w

generalized by f .

Notationt 2.5. Let g : Z2 → Z2 be the surjection as follows. For any (x, y) ∈ Z2

g(x, y) =


k + l, l − k if (x, y) ∈ A8(4k, 4l), k, l ∈ Z

(k + l + 1, l − k) if (x, y) = (4k + 2, 4l + 2),

for some k, l ∈ Z with k + 1 odd

or (x, y) ∈ A12(4k+ 2, 4l+ 2) for some k, l ∈ Z with k+ l even, where A12(k, l) = {(x, y) ∈ Z2, x = k and |y− l| ≤ 3 or y = l

and |x− k| ≤ 3}. Thus A12 consists of the point (k, l) and the 12 nearest points to (k, l) each of which has one co-ordinate

common with (k, l).
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