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1. Introduction

Paracetamol also known as acetaminophen or APAP is a medication used to treat pain and fever. It is typically used for

mild to moderate pain. Paracetamol is used to treat many conditions such as headache, muscle aches, arthritis, backache,

toothaches, colds and fevers. Paracetamol was discovered in 1877 [20]. It is on the World Health Organization’s List of

Essential Medicines, the most effective and safe medicines needed in a health system [23]. Paracetamol is available as a

generic medication with trade names including Tylenol and Panadol among others [17]. Paracetamol consists of a benzene

ring core, substituted by one hydroxyl group and the nitrogen atom of an amide group in the para (1, 4) pattern [3]. The

amide group is acetamide (ethanamide). It is an extensively conjugated system, as the lone pair on the hydroxyl oxygen,

the benzene pi cloud, the nitrogen lone pair, the p orbital on the carbonyl carbon, and the lone pair on the carbonyl oxygen

are all conjugated. The presence of two activating groups also make the benzene ring highly reactive toward electrophilic

aromatic substitution. It’s molecular formula is C8H9NO2

2. Energy of a Graph

Study on energy of graphs goes back to the year 1978, when I. Gutman [13] defined this while working with energies of

conjugated hydrocarbon containing carbon atoms. All graphs considered in this article are assumed to be simple without

loops and multiple edges. Let A = (aij) be the adjacency matrix of the graph G with its eigenvalues ρ1, ρ2, ρ3, · · · , ρn

assumed in decreasing order. Since A is real symmetric, the eigenvalues of G are real numbers whose sum equal to zero.

The sum of the absolute eigenvalues values of G is called the energy E(G) of G. i.e., E(G) =

n∑
i=1

|ρi|.
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Theories on the mathematical concepts of graph energy can be seen in the reviews [16], articles [6, 7, 15] and the references

cited there in. For various upper and lower bounds for energy of a graph can be found in articles [18, 21] and it was observed

that graph energy has chemical applications in the molecular orbital theory of conjugated molecules [12, 14].

Theorem 2.1. The energy of paracetamol E(C8H9NO2) = 13 · 22162

Proof. Consider a molecular graph of paracetamol C8H9NO2 as shown in the following figure−1. Here vertices are

numbered from v1 to v11.

Figure 1.

Adjacency matrix of paracetamol is

A(C8H9NO2) =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 0 1 0 0 0 0 0 0 0 0 0

v2 1 0 1 0 0 0 0 0 0 0 1

v3 0 1 0 1 0 0 0 0 0 0 0

v4 0 0 1 0 1 0 0 0 0 0 0

v5 0 0 0 1 0 1 0 0 0 1 0

v6 0 0 0 0 1 0 1 0 0 0 0

v7 0 0 0 0 0 1 0 1 1 0 0

v8 0 0 0 0 0 0 1 0 0 0 0

v9 0 0 0 0 0 0 1 0 0 0 0

v10 0 0 0 0 1 0 0 0 0 0 1

v11 0 1 0 0 0 0 0 0 0 1 0


Characteristic equation is

ρ11 − 11ρ9 + 41ρ7 − 61ρ5 + 32ρ3 − 2ρ = 0.

Eigenvalues are ρ1 ≈ 0, ρ2 ≈ −0.26811, ρ3 ≈ 0.26811, ρ4 ≈ −1.0, ρ5 ≈ 1.0000, ρ6 ≈ 1.3125, ρ7 ≈ −1.3125, ρ8 ≈ −1.8103,

ρ9 ≈ 1.8103, ρ10 ≈ 2.2199 and ρ11 ≈ −2.2199. The energy of paracetamol

E(C8H9NO2) =| 0 | + | −0.26811 | + | 0.26811 | + | −1.0 | + | 1.0 | + | 1.3125 | + | −1.3125 | + | −1.8103 | + | 1.8103 |

+ | 2.2199 | + | −2.2199 | .

The energy of paracetamol is, E(C8H9NO2) = 13 · 22162.
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3. Seidel Energy

Let G be a simple graph of order n with vertex set V = {v1, v2, ..., vn} and edge set E. The Seidel matrix of G is the n× n

matrix defined by S(G) := (sij), where

sij =


−1 if vivj ∈ E

1 if vivj /∈ E

0 if vi = vj

The characteristic polynomial of S(G) is denoted by fn(G, ρ) = det(ρI − S(G)). The Seidel eigenvalues of the graph G are

the eigenvalues of S(G). Since S(G) is real and symmetric, its eigenvalues are real numbers. The Seidel energy [24] of G

defined as

SE(G) =

n∑
i=1

|ρi|.

Theorem 3.1. The Seidal energy of paracetamol is, SE(C8H9NO2) = 29 · 22026.

Proof. Siedel matrix of paracetamol is

S(C8H9NO2) =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 0 −1 1 1 1 1 1 1 1 1 1

v2 −1 0 −1 1 1 1 1 1 1 1 −1

v3 1 −1 0 −1 1 1 1 1 1 1 1

v4 1 1 −1 0 −1 1 1 1 1 1 1

v5 1 1 1 −1 0 −1 1 1 1 −1 1

v6 1 1 1 1 −1 0 −1 1 1 1 1

v7 1 1 1 1 1 −1 0 −1 −1 1 1

v8 1 1 1 1 1 1 −1 0 1 1 1

v9 1 1 1 1 1 1 −1 1 0 1 1

v10 1 1 1 1 −1 1 1 1 1 0 −1

v11 1 −1 1 1 1 1 1 1 1 −1 0


Characteristic equation is

ρ11 − 55ρ9 − 46ρ8 + 850ρ7 + 824ρ6 − 4790ρ5 − 3988ρ4 + 9805ρ3 + 7224ρ2 − 5811ρ− 4014 = 0

Siedel eigenvalues are ρ1 ≈ −0.65486, ρ2 ≈ −1.0, ρ3 ≈ 1.0, ρ4 ≈ 1.6053, ρ5 ≈ −1.548, ρ6 ≈ −3.0, ρ7 ≈ 2.1284, ρ8 ≈ 3.4261,

ρ9 ≈ −3.7668, ρ10 ≈ −4.6405 and ρ11 ≈ 6.4503. The Seidal energy of paracetamol

SE(C8H9NO2) =| −0.65486 | + | −1.0 | + | 1.0 | + | 1.6053 | + | −1.5480 | + | −3.0 | + | 2.1284 | + | 3.4261 | + | −3.7668 |

+ | −4.6405 | + | 6.4503 |

The Seidal energy of paracetamol is, SE(C8H9NO2) = 29 · 22026.
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4. Distance Energy

On addressing problem for loop switching, R. L. Graham, H. O. Pollak [11] defined distance matrix of a graph. The concept

of distance energy was defined by G. Indulal et al. [19] in the year 2008. Let G be a simple graph of order n with vertex set

V = {v1, v2, ..., vn} and edge set E. Let dij be the distance between the vertices vi and vj then the n × n matrix D(G) =

(dij) is called the distance matrix of G. The characteristic polynomial of D(G) is denoted by f(G; ρ) = |ρI −D(G)|, where

I is the unit matrix of order n. The roots ρ1, ρ2, ..., ρn assumed in non increasing order are called the distance eigenvalues

of G. The distance energy of a graph G is defined as

DE(G) =

n∑
i=1

|ρi|.

Since D(G) is a real symmetric matrix with zero trace, these distance eigenvalues are real with sum equal to zero.

Theorem 4.1. The Distance energy of paracetamol is, DE(C8H9NO2) = 62 · 97956.

Proof. Distance matrix of paracetamol is,

D(C8H9NO2) =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 0 1 2 3 4 5 6 7 7 3 2

v2 1 0 1 2 3 4 5 6 6 2 1

v3 2 1 0 1 2 3 4 5 5 3 2

v4 3 2 1 0 1 2 3 4 4 2 3

v5 4 3 2 1 0 1 2 3 3 1 2

v6 5 4 3 2 1 0 1 2 2 2 3

v7 7 5 4 3 2 1 0 1 1 3 4

v8 8 6 5 4 3 2 1 0 2 4 5

v9 8 6 5 4 3 2 1 2 0 4 5

v10 3 2 3 2 1 2 3 4 4 0 1

v11 2 1 2 3 2 3 4 5 5 1 0


Characteristic equation is

ρ11 − 650ρ9 − 8560ρ8 − 46372ρ7 − 129604ρ6 − 200280ρ5 − 169680ρ4 − 69184ρ3 − 4800ρ2 + 4864ρ+ 1024 = 0

Distance eigenvalues are ρ1 ≈ 0.24867, ρ2 ≈ −0.33941, ρ3 ≈ −0.50519, ρ4 ≈ −0.88961, ρ5 ≈ −0.98978, ρ6 ≈ −1.3832,

ρ7 ≈ −2.0, ρ8 ≈ −4.1356, ρ9 ≈ −4.5781, ρ10 ≈ −16.669 and ρ11 ≈ 31.241. Distance energy of paracetamol is,

DE(C8H9NO2) =| 0.24867 | + | −0.33941 | + | −0.50519 | + | −0.88961 | + | −0.98978 | + | −1.3832 | + | −2.0 |

+ | −4.1356 | + | −4.5781 | + | −16.669 | + | 31.241 |

Distance energy of paracetamol DE(C8H9NO2) = 62 · 97956.
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5. Harary Energy

The concept of Harary energy was introduced by A. Dilek Güngör and A. Sinan Çevik [9]. The Harary matrix of G is the

square matrix of order n whose (i, j)-entry is
1

dij
where dij is the distance between the vertices vi and vj . Let ρ1, ρ2, . . . , ρn

be the eigenvalues of the Harary matrix of G. The Harary energy, HE(G) is defined by

HE(G) :=

n∑
i=1

|ρi|.

Further studies on Harary energy can be found in [25].

Theorem 5.1. The Harary energy of paracetamol HE(C8H9NO2) = 13 · 81697

Proof. Harary matrix of paracetamol is,

H(C8H9NO2) =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 0 1 1
2

1
3

1
4

1
5

1
6

1
7

1
7

1
3

1
2

v2 1 0 1 1
2

1
3

1
4

1
5

1
6

1
6

1
2

1

v3
1
2

1 0 1 1
2

1
3

1
4

1
5

1
5

1
3

1
2

v4
1
3

1
2

1 0 1 1
2

1
3

1
4

1
4

1
2

1
3

v5
1
4

1
3

1
2

1 0 1 1
2

1
3

1
3

1 1
2

v6
1
5

1
4

1
3

1
2

1 0 1 1
2

1
2

1
2

1
3

v7
1
7

1
5

1
4

1
3

1
2

1 0 1 1 1
3

1
4

v8
1
8

1
6

1
5

1
4

1
3

1
2

1 0 1
2

1
4

1
5

v9
1
8

1
6

1
5

1
4

1
3

1
2

1 1
2

0 1
4

1
5

v10
1
3

1
2

1
3

1
2

1 1
2

1
3

1
4

1
4

0 1

v11
1
2

1 1
2

1
3

1
2

1
3

1
4

1
5

1
5

1 0


Harary eigenvalues are ρ1 ≈ 0.16682, ρ2 ≈ −0.48665, ρ3 ≈ −0.50345, ρ4 ≈ 0.41482, ρ5 ≈ −0.73743, ρ6 ≈ −1.1666,

ρ7 ≈ −1.2388, ρ8 ≈ 1.5587, ρ9 ≈ −1.3514, ρ10 ≈ −1.4242 and ρ11 ≈ 4.7681. Harary energy of paracetamol

HE(C8H9NO2) =| 0.16682 | + | −0.48665 | + | −0.50345 | + | 0.41482 | + | −0.73743 | + | −1.1666 | + | −1.2388 |

+ | 1.5587 | + | −1.3514 | + | −1.4242 | + | 4.7681 |

The Harary energy of paracetamol HE(C8H9NO2) = 13 · 81697.

6. Maximum Degree Energy

In the year 2009 Prof.C. Adiga and M. Smitha [1] defined maximum degree energy of a graph. Let G be a simple graph of

order n with vertex set V = {v1, v2, .....vn} and edge set E. The maximum degree matrix of G is the n× n matrix defined

by AMD(G) = (aij), where

aij =

 max {d(vi), d(vj)} if vivj ∈ E

0 otherwise

The characteristic polynomial of AMD(G) is denoted by fn(G, ρ)= det(ρI −AMD(G)). The maximum degree eigenvalues of

the graph G are the eigenvalues of AMD(G). Since AMD(G) is real and symmetric, its eigenvalues are real numbers and we

label them in non-increasing order ρ1 > ρ2 > · · · > ρn. The maximum degree energy of G is defined as MDE(G) =
n∑
i=1

|ρi|.
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Theorem 6.1. The maximum degree energy of paracetamol is, MDE(C8H9NO2) = 36 · 52702

Proof. Maximum degree matrix of paracetamol is,

AMD(C8H9NO2) =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 0 3 0 0 0 0 0 0 0 0 0

v2 3 0 3 0 0 0 0 0 0 0 3

v3 0 3 0 2 0 0 0 0 0 0 0

v4 0 0 2 0 3 0 0 0 0 0 0

v5 0 0 0 3 0 3 0 0 0 3 0

v6 0 0 0 0 3 0 3 0 0 0 0

v7 0 0 0 0 0 3 0 3 3 0 0

v8 0 0 0 0 0 0 3 0 0 0 0

v9 0 0 0 0 0 0 3 0 0 0 0

v10 0 0 0 0 3 0 0 0 0 0 2

v11 0 0 0 0 0 0 0 0 0 2 0


Characteristic equation is

ρ11 − 89ρ9 + 2626ρ7 − 28584ρ5 + 83592ρ3 − 23328ρ = 0

Maximum degree eigenvalues are ρ1 = 0, ρ2 ≈ 0.55791, ρ3 ≈ −0.55791, ρ4 ≈ −2.0, ρ5 ≈ 2.0, ρ6 ≈ 4.0695, ρ7 ≈ −4.0695,

ρ8 ≈ −5.3555, ρ9 ≈ 5.3555, ρ10 ≈ 6.2806 and ρ11 ≈ −6.2806. The maximum degree energy of paracetamol is,

MDE(C8H9NO2) =| 0 | + | 0.55791 | + | −0.55791 | + | −2.0 | + | 2.0 | + | 4.0695 | + | −4.0695 | + | −5.3555 | + | 5.3555 |

+ | 6.2806 | + | −6.2806 |

Maximum degree energy of paracetamol MDE(C8H9NO2) = 36 · 52702.

7. Randić Energy

It was in the year 1975, Milan Randić invented a molecular structure descriptor called Randić index which is defined as [22]

R(G) =
∑

vivj ∈E(G)

1√
didj

Motivated by this S.B.Bozkurt et al.[4] defined Randić matrix and Randić energy as follows. Let G be graph of order n with

vertex set V = {v1, v2, ..., vn} and edge set E. Randić matrix of G is a n× n symmetric matrix defined by R(G) := (rij),

where rij =


1√
didj

if vivj ∈ E(G)

0 otherwise

The characteristic equation of R(G) is defined by fn(G, ρ)= det(ρI−R(G)) = 0. The roots of this equation is called Randić

eigenvalues of G. Since R(G) is real and symmetric, its eigenvalues are real numbers and we label them in decreasing order

ρ1 > ρ2 > · · · > ρn. Randić energy of G is defined as

RE(G) :=

n∑
i=1

|ρi|.

Further studies on Randić energy can be seen in the articles [5, 8, 10] and the references cited there in.
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Theorem 7.1. The Randić energy of paracetamol is, RE(C8H9NO2) = 6 · 41212

Proof. Randić matrix of paracetamol is,

R(C8H9NO2) =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 0 1√
3

0 0 0 0 0 0 0 0 0

v2
1√
3

0 1√
6

0 0 0 0 0 0 0 1√
6

v3 0 1√
6

0 1
2

0 0 0 0 0 0 0

v4 0 0 1
2

0 1√
6

0 0 0 0 0 0

v5 0 0 0 1√
6

0 1√
6

0 0 0 1√
6

0

v6 0 0 0 0 1√
6

0 1√
6

0 0 0 0

v7 0 0 0 0 0 1√
6

0 1√
3

1√
3

0 0

v8 0 0 0 0 0 0 1√
3

0 0 0 0

v9 0 0 0 0 0 0 1√
3

0 0 0 0

v10 0 0 0 0 1√
6

0 0 0 0 0 1
2

v11 0 1√
6

0 0 0 0 0 0 0 1
2

0


Characteristic equation is

432ρ11 − 1080ρ9 + 939ρ7 − 334ρ5 + 22ρ3 − ρ = 0

Randić eigenvalues are ρ1 = 0, ρ2 ≈ −0.16841, ρ3 ≈ 0.16841, ρ4 ≈ −0.5, ρ5 ≈ 0.5, ρ6 ≈ 0.62838, ρ7 ≈ −0.62838,

ρ8 ≈ −0.90927, ρ9 ≈ 0.90927, ρ10 ≈ 1.0 and ρ11 ≈ −1.0. Randić energy of paracetamol

RE(C8H9NO2) =| 0 | + | −0.16841 | + | 0.16841 | + | 0.5 | + | −0.5 | + | 0.62838 | + | −0.62838 | + | −0.90927 |

+ | 0.90927 | + | 1.0 | + | −1.0 |

Randić energy of paracetamol is, RE(C8H9NO2) = 6 · 41212.

8. Color Energy

Let G be a simple graph of order n with vertex set V = {v1, v2, ..., vn} and edge set E. The color matrix of G is the n× n

matrix defined by Ac(G) := (aij), where

aij =


1 if vi and vj are adjacent with c(vi) 6= c(vj)

−1 if vi and vj are non adjacent with c(vi) = c(vj)

0 otherwise

The characteristic polynomial of Ac(G) is denoted by fn(G, ρ) = det(ρI − Ac(G)). If the color used is minimum then the

adjacency matrix is denoted by Aχ(G). The eigenvalues of the graph G are the eigenvalues of Ac(G). Since Ac(G) is real

and symmetric, its eigenvalues are real numbers and we label them in non-increasing order ρ1 > ρ2 > · · · > ρn. The color

energy [2] of G is defined as

CE(G) :=

n∑
i=1

|ρi|.

If the color used is minimum then the energy is called chromatic energy and it is denoted by Eχ(G).
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Theorem 8.1. The Color energy of paracetamol is, CE(C8H9NO2) = 20 · 428

Proof. Color matrix of paracetamol is,

Ac(C8H9NO2) =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 0 1 −1 0 −1 0 −1 0 0 0 −1

v2 1 0 1 −1 0 −1 0 −1 −1 −1 1

v3 −1 1 0 1 −1 0 −1 0 0 0 −1

v4 0 −1 1 0 1 −1 0 −1 −1 −1 0

v5 −1 0 −1 1 0 1 −1 0 0 1 −1

v6 0 −1 0 −1 1 0 1 −1 −1 −1 0

v7 −1 0 −1 0 −1 1 0 1 1 0 −1

v8 0 −1 0 −1 0 −1 1 0 −1 −1 0

v9 0 −1 0 −1 0 −1 1 −1 0 −1 1

v10 0 −1 0 −1 1 −1 0 −1 −1 0 1

v11 −1 1 −1 0 −1 0 −1 0 0 1 0


Characteristic equation is

ρ11 − 36ρ9 + 88ρ8 + 125ρ7 − 636ρ6 + 600ρ5 + 118ρ4 − 348ρ3 + 40ρ2 + 48ρ = 0

Color eigenvalues are ρ1 = 0, ρ2 ≈ −0.3433, ρ3 ≈ −0.5907, ρ4 ≈ 0.8257, ρ5 ≈ 1.0, ρ6 ≈ 1.2366, ρ7 ≈ 2.3795, ρ8 ≈ 2.0,

ρ9 ≈ 2.7722, ρ10 ≈ −2.6505 and ρ11 ≈ −6.6295. Color energy of paracetamol

CE(C8H9NO2) =| 0 | + | −0.3433 | + | −0.5907 | + | 0.8257 | + | 1.0 | + | 1.2366 | + | 2.3795 | + | 2.0 | + | 2.7722 |

+ | −2.6505 | + | 6.4503 |

Therefore CE(C8H9NO2) = 20 · 428.

9. Conclusion

In this article, we compute Energy, Siedel energy, Distance energy, Harary energy, Maximum degree energy, Randić energy,

Color energy of Paracetamol.
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