ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Generalized k-Quasi-Hyponormal Composition Operators On Weighted Hardy Space

D. Senthilkumar¹ and J. Meena^{1,*}

1 Department of Mathematics, Government Arts College (Autonomous), Coimbatore, Tamilnadu, India.

Abstract: In this paper we discuss the conditions for a composition operator and a weighted composition operator to be generalized

k-quasi-hyponormal operator and also the characterization of generalized k-quasi-hyponormal composition operators on

weighted Hardy space.

MSC: 47B38,47B37,47B35

 $\textbf{Keywords:} \ \ \textbf{Generalized} \ \ \textbf{k-quasi-hyponormal operator, composition operator, weighted Hardy space.}$

© JS Publication.

1. Introduction

Let H be an infinite dimensional complex Hilbert and B(H) denote the algebra of all bounded linear operators acting on H. Recall that an operator $T \in B(H)$ is positive, $T \geq 0$, if $\langle Tx, x \rangle \geq 0$ for all $x \in H$. An operator $T \in B(H)$ is said to be hyponormal if $T^*T \geq TT^*$. Hyponormal operators have been studied by many authors and its known that hyponormal operators have many interesting properties similar to those of normal operators. An operator T is said to be p-hyponormal if $(T^*T)^p \geq (TT^*)^p$ for $p \in (0,1]$ and an operator T is said to be log-hyponormal if T is invertible and $\log |T| \geq \log |T^*|$. P-hyponormal and log-hyponormal operators are defined as extension of hyponormal operator. An operator T on a Hilbert space T is called k-quasi-hyponormal, if $T^{*k}(TT^*)T^k \leq T^{*(k+1)}T^{(k+1)}$, where T is a positive integer. An operator T on a Hilbert space T is called a generalized k-quasi-hyponormal operator if for positive integer T is such that T is an T in a Hilbert space T is called a generalized k-quasi-hyponormal operator if for positive integer T is such that T is an T in a Hilbert space T is called a generalized k-quasi-hyponormal operator if for positive integer T is such that T is an T in a Hilbert space T in this paper, we are interested in generalized k-quasi-hyponormal composition operators.

1.1. Preliminaries

Let f be an analytic map on the open disk D given by the Taylor's series $f(z) = a_0 + a_1 z + a_2 z^2 + \dots$ Let $\beta = \{\beta_n\}_{n=0}^{\infty}$ be a sequence of positive numbers with $\beta_0 = 1$ and $\frac{\beta_{n+1}}{\beta_n} \to 1$ as $n \to \infty$. The set $H^2(\beta)$ of formal complex power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ such that $||f||_{\beta}^2 = \sum_{n=0}^{\infty} |a_n|^2 \beta_n^2 < \infty$ is a Hilbert space of functions analytic in the unit disc with the inner product $\langle f, g \rangle_{\beta} = \sum_{n=0}^{\infty} a_n \bar{b_n} \beta_n^2$ for f as above and $g(z) = \sum_{n=0}^{\infty} b_n z^n$. Let D be the open unit disc in the complex plane

^{*} E-mail: mariammal9080@gmail.com

and $T: D \to D$ be an analytic self-map of the unit disc and consider the corresponding composition operator C_T acting on $H^2(\beta)$, i.e., $C_T(f) = f \circ T$, $f \in H^2(\beta)$. Let w be a point on the open disk. Define

$$k_w^{\beta}(z) = \sum_{n=0}^{\infty} \frac{Z^n w^{-n}}{\beta_n^2}$$

Then the function k_w^{β} is a point evalution for $H^2(\beta)$. Then k_w^{β} is in $H^2(\beta)$ and $||k_w^{\beta}||^2 = \sum_{n=0}^{\infty} \frac{|w|^{2n}}{\beta_n^2}$. Thus, $||k_w||$ is an increasing function of |w|. If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ then

$$\left\langle f, k_w^{\beta} \right\rangle_{\beta} = \sum_{n=0}^{\infty} \frac{a_n w^n \beta_n^2}{\beta_n^2} = f(w).$$

Therefore, $\langle f, k_w^\beta \rangle_\beta = f(w)$ for all f and k_w^β is known as the point evaluation kernal at w. It can be easily shown that $C_T^*k_w^\beta = k_{T(w)}^\beta$ and $k_0^\beta = 1$ (the function identically equal to 1).

2. On Generalized k-Quasi-Hyponormal Composition Operators

Let $L^2 = L^2(\Omega, A, \mu)$ denote the space of all complex-valued measurable function for which $\int_{\Omega} |f|^2 \leq \infty$. A composition operator on L^2 , induced by a non-singular measurable transformation T, is denoted by C_T and is given by $C_T f = f \circ T$ for each $f \in L^2$. Then for $f \in L^2$ and for any positive integer k, $C_T^k f = f \circ T^k$ and $C_T^{*k} f = h_k . E(f) \circ T^{-k}$, where $h_k = d\mu T^{-k}/d\mu$. In this chapter, some basic properties of generalized k-quasi-hyponormal Composition operators are discussed.

Theorem 2.1. Let $C_T \in B(L^2)$. Then the following are equivalent:

(i). C_T is generalized k-quasi-hyponormal.

(ii).
$$\left\|\sqrt{h_k.h \circ T^{-(k-1)}}.f\right\| \le M^{\frac{k+1}{2}} \left\|\sqrt{h_k.E(h) \circ T^{-k}}.f\right\|$$
 for each $f \in L^2$.

(iii).
$$h_k \cdot h \circ T^{-(k-1)} \leq M^{k+1} h_k \cdot E(h) \circ T^{-k}$$
, where $h_k = d\mu T^{-k} / d\mu$.

(iv).
$$h_{k-1}.(h \circ T^{-(k-1)})^2 \le M^{k+1}h_{k-1}.h \circ T^{-(k-1)}E(h) \circ T^{-k}$$
.

(v).
$$h_{k-1} \circ T^{-1} \cdot h \circ T^{-(k-1)} \leq M^{k+1} h_{k-1} \circ T^{-1} \cdot E(h) \circ T^{-k}$$
.

Proof. To Prove: $(i) \equiv (ii)$. Assume that C_T is generalized k-quasi-hyponormal.

Consider,

$$C_T^{*k}(C_T C_T^*) C_T^k f = C_T^{*k}(h \circ T.E(f \circ T^k))$$

$$C_T^{*k}(C_T C_T^*) C_T^k f = h_k.h \circ T^{-(k-1)}.f$$
(2)

Then,

$$C_T^{*(k+1)}C_T^{k+1}f = C_T^{*k}(h.f \circ T^k)$$

$$C_T^{*(k+1)}C_T^{k+1}f = h_k.E(h) \circ T^{-k}f$$
(3)

Substitute (2) and (3) in (1),

$$h_k.h \circ T^{-(k-1)} f \le M^{k+1} h_k.E(h) \circ T^{-k} f$$

$$\left\| \sqrt{h_k.h \circ T^{-(k-1)}}.f \right\| \le M^{\frac{k+1}{2}} \left\| \sqrt{h_k.E(h) \circ T^{-k}}.f \right\|$$

Hence $(i) \equiv (ii)$.

To Prove: (ii) \equiv (iii). Assume that $\left\|\sqrt{h_k.h\circ T^{-(k-1)}}.f\right\|\leq M^{\frac{k+1}{2}}\left\|\sqrt{h_k.E(h)\circ T^{-k}}.f\right\|$ for each $f\in L^2$.

$$h_k.h \circ T^{-(k-1)} f \le M^{k+1} h_k.E(h) \circ T^{-k} f$$

$$h_k.h \circ T^{-(k-1)} \le M^{k+1}h_k.E(h) \circ T^{-k}$$

Hence $(ii) \equiv (iii)$.

To Prove: $(iii) \equiv (iv)$. Assume that $h_k \cdot h \circ T^{-(k-1)} \leq M^{k+1} h_k \cdot E(h) \circ T^{-k}$, where $h_k = d\mu T^{-k}/d\mu$.

$$h_k \cdot h \circ T^{-(k-1)} \le M^{k+1} h_k \cdot E(h) \circ T^{-k}$$
 (4)

$$h_k = \mu T^{-k}(B) \tag{5}$$

We have,

$$\mu T^{-k}(B) = \mu T^{-1}(T^{-(k-1)}(B))$$

$$= \int_{T^{-(k-1)}(B)} h d\mu$$

$$\mu T^{-k}(B) = \int_{B} h_{k-1} \cdot h \circ T^{-(k-1)} d\mu$$
(6)

Substitute (6) in (5),

$$h_k = h_{k-1} h \circ T^{-(k-1)}$$

From (4),

$$h_{k-1}.(h \circ T^{-(k-1)})^2 \le M^{k+1}h_{k-1}h \circ T^{-(k-1)}.E(h) \circ T^{-k}$$

Hence $(iii) \equiv (iv)$.

To Prove: (iii) \equiv (v). Assume that $h_k.h \circ T^{-(k-1)} \leq M^{k+1}h_k.E(h) \circ T^{-k}$, where $h_k = d\mu T^{-k}/d\mu$.

$$h_k \cdot h \circ T^{-(k-1)} \le M^{k+1} h_k \cdot E(h) \circ T^{-k}$$
 (7)

$$h_k = \mu T^{-k}(B) \tag{8}$$

We have,

$$\mu T^{-k}(B) = \int_{T^{-1}(B)} h_{k-1} d\mu$$

$$\mu T^{-k}(B) = \int_{B} h \cdot h_{k-1} \circ T^{-1} d\mu$$
(9)

Substitute (9) in (8),

$$h_k = h.h_{k-1} \circ T^{-1} d\mu$$

From (7),

$$h_{k-1} \circ T^{-1} \cdot h \circ T^{-(k-1)} \le M^{k+1} h_{k-1} \circ T^{-1} \cdot E(h) \circ T^{-k}$$
.

Hence $(iii) \equiv (v)$. Hence the proof.

Theorem 2.2. If $T^{-1}(A) = A$ then C_T is generalized k-quasi-hyponormal if and only if $h_k.h \circ T^{-(k-1)} \leq M^{k+1}h_k.h \circ T^{-k}$.

Proof.

Case 1: Assume that C_T is generalized k-quasi-hyponormal.

$$C_T^{*k}(C_T C_T^*) C_T^k \le M^{k+1} C_T^{*(k+1)} C_T^{k+1} \tag{10}$$

$$\left\langle (C_T^{*k}(C_T C_T^*) C_T^k) f, f \right\rangle \le M^{k+1} \left\langle C_T^{*(k+1)} C_T^{k+1} f, f \right\rangle \quad \text{for each } f \in L^2.$$
 (11)

Substitute (2) and (3) in (11),

$$h_k.h \circ T^{-(k-1)} \le M^{k+1}h_k.E(h) \circ T^{-k}$$

$$h_k.h \circ T^{-(k-1)} \le M^{k+1}h_k.h \circ T^{-k}$$

Case 2: Assume that

$$h_k.h \circ T^{-(k-1)} \le M^{k+1}h_k.h \circ T^{-k}$$

$$h_k.h \circ T^{-(k-1)} \le M^{k+1}h_k.E(h) \circ T^{-k}$$
.

Therefore, we have

$$C_T^{*k}(C_T C_T^*)C_T^k \le M^{k+1}C_T^{*(k+1)}C_T^{k+1}$$

Hence C_T is generalized k-quasi-hyponormal. Hence the proof.

Theorem 2.3. If C_T^* is generalized k-quasi-hyponormal then $f \in L^2$,

$$\langle h \circ T^k.h_k \circ T^k.E(f), f \rangle \leq M^{k+1} \langle h_{k+1} \circ T^{k+1}.E(f), f \rangle.$$

Proof.

Case 1: Assume that C_T^* is generalized k-quasi-hyponormal.

$$C_T^k(C_T^*C_T)C_T^{*k} \le M^{k+1}C_T^{(k+1)}C_T^{*(k+1)} \tag{12}$$

$$\left\langle \left(C_T^k(C_T^*C_T)C_T^{*k}\right)f, f\right\rangle \le M^{k+1} \left\langle C_T^{(k+1)}C_T^{*(k+1)}f, f\right\rangle \text{ for each } f \in L^2.$$

$$\tag{13}$$

Consider,

$$(C_T^k(C_T^*C_T)C_T^{*k})f = C_T^k(h.h_k.E(f) \circ T^{-k})$$
(14)

$$(C_T^k(C_T^*C_T)C_T^{*k})f = h \circ T^k.h_k \circ T^k.E(f).$$
(15)

Then,

$$C_T^{(k+1)}C_T^{*(k+1)}f = C_T^{(k+1)}(h_{k+1}.E(f) \circ T^{-(k+1)})$$
(16)

$$C_T^{(k+1)}C_T^{*(k+1)}f = h_{k+1} \circ T^{(k+1)}E(f). \tag{17}$$

Substitute (15) and (17) in (13),

$$\langle h \circ T^k . h_k \circ T^k . E(f), f \rangle \leq M^{k+1} \langle h_{k+1} \circ T^{(k+1)} E(f), f \rangle$$
 for each $f \in L^2$.

Case 2: Assume that

$$\langle h \circ T^k . h_k \circ T^k . E(f), f \rangle \le M^{k+1} \langle h_{k+1} \circ T^{k+1} . E(f), f \rangle$$
 (18)

$$h \circ T^k . h_k \circ T^k . E(f) \le M^{k+1} h_{k+1} \circ T^{k+1} . E(f).$$
 (19)

Consider,

$$h \circ T^{k} \cdot h_{k} \circ T^{k} \cdot E(f) = C_{T}^{k} (h \cdot h_{k} \cdot E(f) \circ T^{-k})$$

$$= C_{T}^{k} (C_{T}^{*} C_{T}) (h_{k} \cdot E(f) \circ T^{-k})$$

$$h \circ T^{k} \cdot h_{k} \circ T^{k} \cdot E(f) = C_{T}^{k} (C_{T}^{*} C_{T}) C_{T}^{*k} f$$
(20)

Then,

$$h_{k+1} \circ T^{(k+1)} \cdot E(f) = C_T^{(k+1)} (h_{k+1} \cdot E(f) \circ T^{-(k+1)})$$

$$h_{k+1} \circ T^{(k+1)} \cdot E(f) = C_T^{(k+1)} C_T^{*(k+1)} f$$
(21)

Substitute (20) and (21) in (19),

$$C_T^k(C_T^*C_T^)C_T^{*k} \leq M^{k+1}C_T^{(k+1)}C_T^{*(k+1)}$$

Hence C_T^* is generalized k-quasi-hyponormal.

Theorem 2.4. If $T^{-1}(A) = A$ then C_T^* is generalized k-quasi-hyponormal if and only if

$$\left\|\sqrt{h\circ T^k.h_k\circ T^k}f\right\|\leq M^{\frac{k+1}{2}}\left\|\sqrt{h_{k+1}\circ T^{(k+1)}}f\right\|\quad \textit{for each }f\in L^2.$$

Proof.

Case 1: Assume that C_T^* is generalized k-quasi-hyponormal.

$$\begin{split} C_T^k(C_T^*C_T)C_T^{*k} &\leq M^{k+1}C_T^{(k+1)}C_T^{*(k+1)} \\ &\left< (C_T^k(C_T^*C_T)C_T^{*k})f,f \right> \leq M^{k+1}\left< C_T^{(k+1)}C_T^{*(k+1)}f,f \right> \quad \text{for each } f \in L^2. \end{split}$$

Therefore, we have

$$\begin{split} h \circ T^k.h_k \circ T^k.E(f) &\leq M^{k+1}h_{k+1} \circ T^{(k+1)}E(f) \ \text{ for each } f \in L^2. \\ h \circ T^k.h_k \circ T^kf &\leq M^{k+1}h_{k+1} \circ T^{(k+1)}f \\ \left\| \sqrt{h \circ T^k.h_k \circ T^k}f \right\| &\leq M^{\frac{k+1}{2}} \left\| \sqrt{h_{k+1} \circ T^{(k+1)}}f \right\| \ \text{ for each } f \in L^2. \end{split}$$

Case 2: Assume that

$$\left\| \sqrt{h \circ T^k \cdot h_k \circ T^k} f \right\| \le M^{\frac{k+1}{2}} \left\| \sqrt{h_{k+1} \circ T^{(k+1)}} f \right\| \text{ for each } f \in L^2.$$

$$h \circ T^k \cdot h_k \circ T^k \cdot E(f) \le M^{k+1} h_{k+1} \circ T^{(k+1)} E(f) \text{ for each } f \in L^2.$$

Therefore, we have

$$C_T^k(C_T^*C_T)C_T^{*k} \le M^{k+1}C_T^{(k+1)}C_T^{*(k+1)}$$

Hence C_T^* is generalized k-quasi-hyponormal.

3. On Generalized k-Quasi-Hyponormal Weighted Composition Operators

The new class of operator, k-quasi-hyponormal Weighed Composition operator has been introduced by G.Datt [1]. Quasi-hyponormal operator is an extension of hyponormal operator, quasiposinormal operator, quasiposinormal Composition operator and quasiposinormal Weighted Composition operator. Now we deal with the weighted composition operator $W = W_{(u,T)} \in B(L^2)$, $(f \mapsto u.f \circ T)$ induced by the complex-valued measurable mapping u on Ω and the measurable transformation $T: \Omega \longmapsto \Omega$. It is known that W^* is given by

$$W^* f = h.E(u.f) \circ T^{-1}$$
, for each $f \in L^2$.

For a positive integer k, we put $u_k = u.(u \circ T).(u \circ T^2)...(u.T^{(k.1)})$ and $\widehat{u}_k = (u \circ T^{-1}).(u \circ T^{-2})...(u \circ T^{-k})$. Then, $u_k \circ T^{-k} = \widehat{u}_k$. For k = 0, we denote $u_k = \widehat{u}_k = 1$ and $W^k = I$. However, h_k is used to denote the Radon Nikodym derivative of μT^{-k} with respect to μ and $h_1 = h$. For $f \in L^2$, $W^k f = u_k . f \circ T^k$ so that $W^{*k} f = h_k . E(u_k . f) \circ T^{-k}$. The following simple computations,

$$W^*W^k f = h.E(u^2).T^{-1}.W^{(k-1)}$$

$$W^{*(k+1)}f = h_{k+1}.E(u_{(k+1)}.f) \circ T^{-(k+1)} = h_{k+1}.E(u.f) \circ T^{-(k+1)}.\widehat{u}_k^2$$

$$W^{*k}(WW^*)W^k f = h_k.h \circ T^{-(k+1)}.(E(u^2) \circ T^{-k})^2.\widehat{u}_{k-1}^2.f$$

$$W^{*(k+1)}W^{(k+1)}f = h_{k+1}.E(u_{k+1}^2) \circ T^{-(k+1)}.f$$

help us to conclude the following.

Theorem 3.1. Let $W \in B(L^2)$. Then W^* is generalized k-quasi-hyponormal if and only if

$$\left\| u.h_k \circ T.E(u_k.f) \circ T^{-(k-1)} \right\| \le M^{\frac{k+1}{2}} \left\| h_{k+1}.E(u_{(k+1)}.f) \circ T^{-(k+1)} \right\| \text{ for each } f \in L^2.$$

Proof.

Case 1: Assume that W^* is generalized k-quasi-hyponormal.

$$W^{k}(W^{*}W)W^{*k} \leq M^{k+1}W^{(k+1)}W^{*(k+1)}$$
$$\|WW^{*k}f\|^{2} \leq M^{k+1}\|W^{*(k+1)}f\|^{2}$$
(22)

Consider,

$$WW^{*k}f = u.h_k \circ T^k.E(u_k.f)$$

$$WW^{*k}f = u.h_k \circ T.E(u_k.f) \circ T^{-(k-1)}$$
(23)

Then,

$$W^{*(k+1)}f = h_{k+1}.E(u_{(k+1)}.f) \circ T^{-(k+1)}$$
(24)

Substitute (23) and (24) in (22),

$$\|uh_k \circ T.E(u_k.f) \circ T^{-(k-1)}\| \le M^{\frac{k+1}{2}} \|h_{k+1}.E(u_{(k+1)}.f) \circ T^{-(k+1)}\|$$

Case 2: Assume that

$$\left\| u.h_{k} \circ T.E(u_{k}.f) \circ T^{-(k-1)} \right\| \leq M^{\frac{k+1}{2}} \left\| h_{k+1}.E(u_{(k+1)}.f) \circ T^{-(k+1)} \right\|$$

$$\left\| uh_{k} \circ T.E(u_{k}.f) \circ T^{-(k-1)} \right\|^{2} \leq M^{k+1} \left\| h_{k+1}.E(u_{(k+1)}.f) \circ T^{-(k+1)} \right\|^{2}$$
(25)

Consider

$$h_{k+1}.E(u_{(k+1)}.f) \circ T^{-(k+1)} = W^{*(k+1)}f$$
 (26)

Then,

$$u.h_k \circ T.E(u_k.f) \circ T^{-(k-1)} = u.h_k \circ T^k.E(u_k.f)$$

 $u.h_k \circ T.E(u_k.f) \circ T^{-(k-1)} = WW^{*k}f$ (27)

Substitute (26) and (27) in (25),

$$W^{k}(W^{*}W)W^{*k} \leq M^{k+1}W^{(k+1)}W^{*(k+1)}$$

Hence W^* is generalized k-quasi-hyponormal.

Theorem 3.2. Let $W \in B(L^2)$. Then the following are equivalent:

(i). W is generalized k-quasi-hyponormal.

$$(ii). \ \left\| h.E(u^2) \circ T^{-1}.W^{(k-1)}f \right\| \leq M^{\frac{k+1}{2}} \left\| u_{k+1}.f \circ T^{(k+1)} \right\| \ for \ each \ f \in L^2.$$

(iii).
$$\left\| \sqrt{h_{k-1}} \cdot h \circ T^{-(k-1)} \cdot \widehat{u}_{k-1} \cdot E(u^2) \circ T^{-k} f \right\| \le M^{\frac{k+1}{2}} \left\| \sqrt{h_{k+1}} \cdot \widehat{u}_{k+1} \cdot f \right\| \text{ for each } f \in L^2.$$

(iv).
$$h_k \cdot h \circ T^{-(k-1)} \cdot (E(u^2) \circ T^{-k})^2 \cdot \widehat{u}_{k-1}^2 \le M^{k+1} h_{k+1} \cdot E(u^2) \circ T^{-(k+1)} \cdot \widehat{u}_k^2$$

$$= M^{k+1} h_k \cdot \widetilde{h}_k \cdot \widehat{u}_k^2 \cdot E(u^2) \circ T^{-(k+1)},$$

where $\widetilde{h}_k = d\mu T^{-(k+1)}/d\mu T^{-k}$.

Proof. To Prove: $(i) \equiv (iv)$. Assume that W is generalized k-quasi-hyponormal.

$$W^{*k}(WW^*)W^k \le M^{k+1}W^{*(k+1)}W^{(k+1)}$$
(28)

Consider

$$W^{*k}(WW^*)W^k = h_k \cdot h \circ T^{-(k-1)} \cdot (E(u^2) \circ T^{-k})^2 \cdot \widehat{u}_{k-1}^2$$
(29)

Then,

$$W^{*(k+1)}W^{(k+1)}f = h_{k+1}.E(u_{k+1}^2) \circ T^{-(k+1)}f$$
(30)

Substitute (29) and (30) in (28),

$$h_k.h \circ T^{-(k-1)}.(E(u^2) \circ T^{-k})^2.\widehat{u}_{k-1}^2 \le M^{k+1}h_{k+1}.E(u_{k+1}^2) \circ T^{-(k+1)}f$$

 $h_k.h \circ T^{-(k-1)}.(E(u^2) \circ T^{-k})^2.\widehat{u}_{k-1}^2 \le M^{k+1}h_k.\widetilde{h}_k.\widehat{u}_k^2.E(u^2) \circ T^{-(k+1)}$

Hence $(i) \equiv (iv)$. To Prove: $(iv) \equiv (iii)$. Assume that

$$h_k.h \circ T^{-(k-1)}.(E(u^2) \circ T^{-k})^2.\widehat{u}_{k-1}^2 < M^{k+1}h_{k+1}.E(u^2) \circ T^{-(k+1)}.\widehat{u}_k^2$$

$$= M^{k+1} h_k . \widetilde{h}_k . \widehat{u}_k^2 . E(u^2) \circ T^{-(k+1)}$$

$$h_k . h \circ T^{-(k-1)} . (E(u^2) \circ T^{-k})^2 . \widehat{u}_{k-1}^2 f \le M^{k+1} h_{k+1} . E(u_{k+1}^2) \circ T^{-(k+1)} f$$

$$h_{k-1} . h \circ T^{-(k-1)} . (E(u^2) \circ T^{-k})^2 . \widehat{u}_{k-1}^2 f \le M^{k+1} h_{k+1} . \widehat{u}_{k+1}^2 f$$

$$\left\| \sqrt{h_{k-1}} . h \circ T^{-(k-1)} . \widehat{u}_{k-1} . E(u^2) \circ T^{-k} f \right\| \le M^{\frac{k+1}{2}} \left\| \sqrt{h_{k+1}} . \widehat{u}_{k+1} . f \right\|$$

Hence $(iv) \equiv (iii)$.

To Prove: $(iv) \equiv (ii)$. Assume that

$$h_{k}.h \circ T^{-(k-1)}.(E(u^{2}) \circ T^{-k})^{2}.\widehat{u}_{k-1}^{2} \leq M^{k+1}h_{k+1}.E(u^{2}) \circ T^{-(k+1)}.\widehat{u}_{k}^{2}$$

$$= c^{2}h_{k}.\widetilde{h}_{k}.\widehat{u}_{k}^{2}.E(u^{2}) \circ T^{-(k+1)}$$

$$h_{k}.h \circ T^{-(k-1)}.(E(u^{2}) \circ T^{-k})^{2}.\widehat{u}_{k-1}^{2}f \leq M^{k+1}h_{k+1}.E(u_{k+1}^{2}) \circ T^{-(k+1)}f$$

$$(31)$$

Consider,

$$h_k \cdot h \circ T^{-(k-1)} \cdot (E(u^2) \circ T^{-k})^2 \cdot \widehat{u}_{k-1}^2 f = h_{k+1} \cdot h^2 \cdot (E(u^2) \circ T^{-1})^2 \cdot W^{2(k-1)} f$$
 (32)

Then,

$$h_{k+1}.E(u_{k+1}^2) \circ T^{-(k+1)} f = h_{k+1}.u_{k+1}^2 \circ T^{2(k+1)} f$$
 (33)

Substitute (32) and (33) in (31),

$$\left\|h.E(u^2) \circ T^{-1}.W^{(k-1)}f\right\| \le M^{\frac{k+1}{2}} \left\|u_{k+1} \circ T^{(k+1)}f\right\|$$

Hence the proof. \Box

Theorem 3.3. Let W is generalized k-quasi-hyponormal if and only if $\left\|h.E(u^2)\circ T^{-1}.W^{(k-1)}f\right\| \leq M^{\frac{k+1}{2}}\left\|u_{k+1}.f\circ T^{(k+1)}\right\|$ for each $f\in L^2$.

Proof.

Case 1: Assume that W is generalized k-quasi-hyponormal.

$$W^{*k}(WW^*)W^k \le M^{k+1}W^{*(k+1)}W^{(k+1)}$$
$$\|W^*W^kf\|^2 \le M^{k+1}\|W^{(k+1)}f\|^2$$
(34)

Consider,

$$W^*W^k f = h.E(u^2).T^{-1}.W^{(k+1)}$$
(35)

Then,

$$W^{(k+1)}f = (u_{k+1}.f) \circ T^{(k+1)}$$
(36)

Substitute (35) and (36) in (34),

$$\left\|h.E(u^2).T^{-1}.W^{(k+1)}\right\| \le M^{\frac{k+1}{2}} \left\|(u_{k+1}.f) \circ T^{(k+1)}\right\|$$

Case 2: Assume that

$$\|h.E(u^2) \circ T^{-1}.W^{(k-1)}f\| \le M^{\frac{k+1}{2}} \|u_{k+1}.f \circ T^{(k+1)}\|$$
 for each $f \in L^2$. (37)

$$\left\|h.E(u^2).T^{-1}.W^{(k+1)}\right\|^2 \le M^{k+1} \left\|(u_{k+1}.f) \circ T^{(k+1)}\right\|^2 \tag{38}$$

Consider,

$$h.E(u^2).T^{-1}.W^{(k+1)} = W^*W^k f (39)$$

Then,

$$(u_{k+1}.f) \circ T^{(k+1)} = W^{(k+1)}f \tag{40}$$

Substitute (39) and (40) in (38),

$$\left\| W^* W^k f \right\|^2 \le M^{k+1} \left\| W^{(k+1)} f \right\|^2$$

$$W^{*k} (WW^*) W^k \le M^{k+1} W^{*(k+1)} W^{(k+1)}$$

Hence W is generalized k-quasi-hyponormal.

4. Generalized k-Quasi-Hyponormal Operators on Weighted Hardy Space

The operator C_T are not necessarily defined on all of $H^2(\beta)$. They are ever where defined in some special cases in the classical Hardy space H^2 . Let w be a point on the disk. Define $k_{w(z)}^{\beta} = \sum_{n=0}^{\infty} \frac{z^n \overline{w}^n}{\beta_n^2}$. Then the function k_w^{β} is a point evalution for $H^2(\beta)$. Then k_w^{β} is in $H^2(\beta)$ and $\|k_w^{\beta}\|^2 = \sum_{n=0}^{\infty} \frac{|w|^{2n}}{\beta_n^2}$. Thus, $\|k_w\|$ is an increasing function of |w|. If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ then $\langle f, k_w^{\beta} \rangle_{\beta} = f(w)$ for all f and k_w^{β} is known as the point evalution kernal at w. It can be easily shown that $C_T^* k_w^{\beta} = k_{T(w)}^{\beta}$ and $k_0^{\beta} = 1$.

Theorem 4.1. If C_T is generalized k-quasi-hyponormal operator on $H^2(\beta)$ then $\left\|k_{T(0)}^{\beta}\right\|_{\beta} \leq M^{k+1}$.

Proof. Assume that C_T is generalized k-quasi-hyponormal operator on $H^2(\beta)$.

$$M^{k+1}C_T^{*(k+1)}C_T^{k+1} - C_T^{*k}C_TC_T^*C_T^k \ge 0$$
$$M^{k+1} \left\| C_T^{k+1} f \right\|^2 - \left\| C_T^*C_T^k f \right\|^2 \ge 0$$

Let $f = k_0^{\beta}$

$$\begin{split} M^{k+1} & \left\| C_T^k C_T k_0^\beta \right\|_\beta^2 - \left\| C_T^* C_T^k k_0^\beta \right\|_\beta^2 \geq 0 \\ M^{k+1} & \left\| C_T^k k_0^\beta \right\|_\beta^2 - \left\| C_T^* C_T^k k_0^\beta \right\|_\beta^2 \geq 0 \\ M^{k+1} & \left\| k_0^\beta \right\|_\beta^2 - \left\| C_T^* k_0^\beta \right\|_\beta^2 \geq 0 \\ M^{k+1} & \left\| k_0^\beta \right\|_\beta^2 - \left\| k_{T(0)}^\beta \right\|_\beta^2 \geq 0 \\ M^{k+1} & \left\| k_0^\beta \right\|_\beta^2 - \left\| k_{T(0)}^\beta \right\|_\beta^2 \geq 0 \\ M^{k+1} & - \left\| k_{T(0)}^\beta \right\|_\beta^2 \geq 0 \\ & \left\| k_{T(0)}^\beta \right\|_\beta^2 \leq M^{k+1} \end{split}$$

Hence the proof.

Theorem 4.2. If C_T^* is generalized k-quasi-hyponormal operator on $H^2(\beta)$ then $M^{k+1} \geq 1$.

Proof. Assume that C_T^* is generalized k-quasi-hyponormal operator on $H^2(\beta)$.

$$M^{k+1}C_T^{k+1}C_T^{*(k+1)} - C_T^kC_T^*C_TC_T^{*k} \ge 0$$
$$M^{k+1} \left\| C_T^{*(k+1)} f \right\|^2 - \left\| C_T C_T^{*k} f \right\|^2 \ge 0$$

Let $f = k_0^{\beta}$

$$\begin{split} M^{k+1} \left\| C_T^{*(k+1)} k_0^\beta \right\|_\beta^2 - \left\| C_T C_T^{*k} k_0^\beta \right\|_\beta^2 &\geq 0 \\ M^{k+1} \left\| k_0^\beta \right\|_\beta^2 - \left\| C_T k_0^\beta \right\|_\beta^2 &\geq 0 \\ M^{k+1} \left\| k_0^\beta \right\|_\beta^2 - \left\| k_0^\beta \right\|_\beta^2 &\geq 0 \\ M^{k+1} (1) - 1 &\geq 0 \\ M^{k+1} - 1 &\geq 0 \\ M^{k+1} &\geq 1 \end{split}$$

Hence the proof. \Box

References

- [1] G.Datt, On k-quasiposiponormal weighted composition operators, Thai J.Maths., 11(1)(2013), 131-142.
- [2] R.G.Douglas, On Majoriation, factorization and range inclusion of operators on Hilbert spaces, Proc. Amer. Math. Soc., 173(1996), 413-415.
- [3] P.R.Halmos, A Hilbert space problem book, van Nostrand, Princeton, New Jersey, (1967).
- [4] D.Harrington and R.Whitley, seminormal Composition opertaors, J. Operator Theory, 11(1984), 125-135.
- [5] M.Y.Lee and S.H.Lee, On (p,k)-quasiposinormal operators, J. Appl. Math and Computing, 19(1)(2005), 573-378.
- [6] S.Panayyappan, D.Senthilkumar and R.Mohanraj, M-quasihyponormal composition operators on weighted hardy spaces,
 Int. Journal of Math. Analysis, 2(24)(2008), 1163-1170.
- [7] S.Panayyappan, Non-Hyponormal weighted Composition operators, Indian. J. Pure. Appl. Math., 27(10)(1996), 979-983.
- [8] S.Panayyapan and D.Senthil kumar, k-Hyponormal Composition Operators, Acta Ciencia Indica, 4(2002), 607-610.
- [9] S.Panayyappan and D.Senthilkumar, Class A Composition OPertaors, Bull. Cal. Math. Soc., 96(1)(2004), 33-36.
- [10] M.H.M Rashid, On a Class of Operators Related to generalized Paranormal Operators, Electronic Journal of Mathematical Analysis and Applications, 3(1)(2015), 24-36.
- [11] H.C.Rhaly, Posinormal Operators, J. Math. Soc. Japan, 46(1994), 587-605.
- [12] D.Senthilkumar, P.M.Naik and R.Santhi, Weighted Composition of k-quasi-paranormal operators, Int. J. Math. Arc, 3(2)(2012), 739-746.
- [13] N.Zorboska, Hyponormal Composition Operators on Weighted Hardy spaces, Acta Sci. Math., 55(1991), 399-402.