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1. Introduction

A.A.Ramadan [6] introduced the concept of smooth topology. Let Y be a non empty set, a function 7 : I¥ — I = [0,1]

satisfies the following properties:
(1). for all B € [0,1], 7(B) = 1.
(2). 7(C AD) > 7(C) AT(D) for each C, D € IV

. i > i 7;:' C Y.
(3) T(%/JC) _ié\JT(C)foreach {Ci:ieJ}C1I

Then we say that 7 is a smooth topology on Y and the pair (Y,7) is called a smooth topological space. The function
. IY — I, defined by 7*(C) = 7(C") for every C € IV, (where C' = 1 — C), measures the grade of fuzzy subsets of Y
being closed and the number 7*(C) is called the degree of closedness of C. The function 7* satisfies the properties similar
to 7 which are given in [8]. The definition of fuzzy bitopological spaces in Sostak’s sense was given in [7]. The following

functions 71 and 72 are the examples for smooth topologies on a non-empty set Y, which was explained in [8].

(1). 71 : IV — I defined by

(i). m1(0) = 1.

(ii). m(B) = 2B it B £ (.

sup(B)

(2). 72 : IY — I defined by
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(i). 72(0) = 1.

.. inf
(ii). =(B) = %sup((?) + %

Throughout this paper, the triple (Y, 71, 72) is called as smooth bitopological space (briefly, sbts), where 71 and 72 are any
two smooth topologies on Y. The notions of 7-smooth closure and 7-smooth interior were given in [8]. In this paper we
denote the 73-smooth closure of A as A; and the 75-smooth interior of A as A? for ¢ = 1,2. The concept of smooth compact

set was discussed in [8].

Definition 1.1 ([7]). A mapping [ : (X,71,72) = (Y,01,02) from a fuzzy bitopological space (X,T1,72) to another fuzzy
bitopological space (X, 01,02) is said to be fuzzy pairwise continuous (fpc, for short) if and only if 7:(f~ (1)) > oi(u) for

each pe IV andi=1,2.

In this paper fuzzy pairwise continuous is termed as pairwise smooth continuous

2. Pairwise Smooth-closure and Pairwise Smooth-interior

Definition 2.1. Let (X, 71, 72) be a sbts and A € I*. We define a function 12 : IX — I as 712(A) = maz{0, 71 (A) +
To(A) - 1}.

The mapping 71,2 : I — I measures the grade of fuzzy subsets of X being pairwise open and the number 71,2(A) is called
the degree of pairwise openness of A. The mapping 7 : I* — 1 defined by 71 2(A) = 11,2(A") for every AeTl™ | measures
the grade of fuzzy subsets of X being pairwise closed and the number 77 5(A) is called the degree of pairwise closedness of

A.
Remark 2.2.

(1). As there is no guarantee for each A # B € I, we would get that T12(A\ B) > 71.2(A) and 11,2(A\ B) > 712(B), 71,2

need not be a smooth topology on X.
(2). If either 71(A) =0 or 72(A) = 0 then 11,2(A) = 0.
(3). If 71,2(A) # 0 then 71(A) # 0 and 172(A) # 0. In this case 112(A) < 71(A) and 11,2(A) < 72(A).

Definition 2.3. Let (X, 71,72) be a sbts and A € IX, then We define pairwise smooth interior of A, denoted by A?,g as

follows:
(1). if T1(A) + 12(A) = 2 then AV, = A.
(2). if 1 (A) + 12(A) < 2 then Ay = V{K € I : 71(K) + m2(K) > 11(A) + m2(A), K < A}.

Definition 2.4. Let (X,71,72) be a sbts and A € IX, then we define pairwise smooth closure of A, denoted by Ao as

follows:

(1). if T (A) + 15 (A) =2 then A2 = A.

(2). if i (A) + 75 (A) < 2 then A1 o = N{K € I* : 71 (K) + 75 (K) > 17 (A) + 75 (A), A < K}.
Theorem 2.5. Let (X, 71,72) be a sbts and A, B € %, then

(a). tau] o(As ) < T2t (A1)
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1 (AQ Ybro (AD
(b). T1,2(AY5) < —1<A1’2)J2r 2(A1.2)

(c). A< B and 1 (A) + 75 (A) < 15(B) + 75(B) = Ay 5 < Bi s
(d). A< B and 71(B) + 12(B) < 11(A) + 2(A) = A}, < BY,
provided that 7;(A) # 0, where i € {1,2}.

Proof.

(a). If 71 (A) + 75 (A) = 2 then Ay > = A. Therefore
71*,2(AL2) = 7'1*,2(14) (1)
if 77 (A) + 75 (A) < 2 and A1 2 < A then by definition of
Arpweget] (Ar2) + 75 (A1,2) > 71 (A) + 75 (A) 2)

Also we know that 71 5(A4) < 77 (A) and 77 2(A) < 75(A), that is 27 5(A) < 77 (A) + 13 (A) < 71 (A1,2) + 75 (A1,2).

Therefore

. * A + * A
a(4) < L2 T A2) 3)

From (1) and (3) we get 755(A;z) < A A2t A12),

(b). If 71(A) + 72(A) = 2 then AY , = A. Therefore
T1.2(A12) = T1.2(A) (4)
if 71(A) + 72(A) < 2 and A 5 < A then by definition of A} , we get
(A7 2) + m2(AY 5) > T1(A) + T2(A) (5)
Also we know that 712(A) < 71(A4) and 112(A) < 72(A), that is 271 2(4A) < T1(A) + 12(A) < T](A(l)’Q) + TQ(A%Q).

Therefore

a(A) < T1(A?,2)—2FTz(A?,2) (©)

1 (A9 2)+72(AD )

From (4) and (6) we get 71,2(AY5) < 2

(c). A12=N\{K € X (K) + 75 (K) > T (A)+ 75 (A), A< K}. As A< B and 71 (A4) + 75 (4) < 7(B) + 75 (B), we get

Az S/\{KEIX:Tf(K)—FTZ*(K) >71(B)+7m(B)>mn(A)+7m(A);A<B<K}

= \{KeTI": 7 (K)+75(K)>7(B)+75(B),B<K}=Bi,

(d). Ay =V{K € I’ : 11(K) + 72(K) > 71(A) + 2(A), K < A}. As A < B and 71(B) + 72(B) < 71(A) + 12(A), we get

AV, <K € I i m(K) + 72(K) > 11(A) + 72(A) > m(B) + 72(B); K < A < B}

=\{K eI" : 7(K) + 72(K) > 71(B) + 2(B), K < B} = B ,
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One can easily obtain the following theorem.

Theorem 2.6. Let (X, 71,72) be a sbts and A € X, then
(a). (A12)" = (A)lz.

(b). A1z = ((A)15)".

(c). (ATs) = (A)12.

(d). AT = ((A)12)"-

Theorem 2.7. Let (X, 71, 7) be a sbts and A, B € I, then
(a). (0x)1,2=0x.

(b). A< A .

(c). A2 < (A12)1.2.
(d) ALQVBLQ S (AVB)LQ,ifTi*(A) = Ti*(B)wherei S {1,2}.
Proof. 'We prove (b) and (d) only.
(b). A1o=N{K € I* /1] (K)+75(K) > 71 (A) + 75 (A); A< K} > A. Therefore A < A 5.
(). (A\/B)2= N\{KeI*:r(K)+7(K)>m(A\/B) +7(A\/B);A\/ B< K}
= N € ¥ i () + 73 (K) > (57 (A) \ 77 (B)) + (75 (A) \ 73 (B)): A\/ B < K.

As 77 (A) = 77 (B) where i € {1,2}, we get

(A B)i2 > \{K € I : 7{(K) + 75 (K) > 71 (A) + 75 (A); A < K} = Auo.

That iS ALQ S (A\/B)l’z. Slmllarly we can get BLQ S (AVB)I,Q. Hence Al,g \/BLQ S (A B)LQ, lf Ti*

ie{1,2}.

Theorem 2.8. Let (X, 71,7) be a sbts and A, B € I*, then
(a). (1x)} 2 = 1x.

(b). A}, < A.

(c). (A32)2 < AD,.

(d). (ANB)Y, < A%,V BY s, if i(A) = 74(B), where i € {1,2}.
Proof.

(a). (1x)}2 = \{K € I /n(K) + 72(K) > 71 (1) + 72(1);1 < K}
= \{K eI /n(K)+n(K) > 21 < K}
As 7;(K) < 1 there is no K € I'* with 71 (K) + 72(K) > 2. Therefore (1x)7, = 1x.

(b). ATz = V{K € I /11(K) + 2(K) > 71(A) + m2(A); K < A} < A. Therefore A, < A.
(c). From (b), (A?,z)?,z < A(lj,2«
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(). (AAB).=\/{KeI":n(K)+m(K)>n(AA\B) +n(A\B);K <A\B}
= VK e I : 71(K) + m2(K) > (n(A) A 71 (B)) + (r2(A) A\ 2(B)); K < A \ B}.
<\VAK e I* 1 1i(K) + 72(K) > 71 (A) + 72(A); K < A}
or V{K € I* : n(K)+72(K) > 11(B)+72(B); K < B}{As 7;(A) = 7:(B) where i€ {1,2}} = A}, \/ BY 5. Therefore

(AAB) 2 < AV, V Bl O

The concept of fuzzy pairwise compact was given in [7]. In this paper we give a modified definition for fuzzy pairwise

compact which is termed as pairwise smooth compact.

Definition 2.9. Let (X, 71,7) be a sbts. A fuzzy set A € I is said to be pairwise smooth compact if for every collection

of fuzzy sets {Wa tacs with

(i). A<\ Wa.

(ZZ) Tl(A)+T2(A) <T1(Wa)+TQ(WQ) V « Zf OSTl(A)+TQ(A) <2
T1(A)+T2(A) STl(Wa)—FTQ(WQ) V « Zf 0§7’1(A)+7’2(A) =2

there exists a finite subset Jo of J such that A < \J Wa,.
acJg

Theorem 2.10. Let f : (X, 71, 72) — (Y,01,02) be a pairwise smooth continuous function. If A € I with 7;(A) < a:(f(A))

is pairwise smooth compact then f(A) is pairwise smooth compact.

Proof. Let A € I be a pairwise smooth compact set. Then

V{A(z)/f(z) =y}

0 if there is no = such that f(x)=1y

Let f(A) < \ W, such that
aeJ

a1(f(A)) + 02(f(A)) <a1(Wa) +02(Wa) V aif 01(f(A)) + 02(f(A4)) <2

a1(f(A)) + 02(f(A) = a1 (Wa) + 02(Wa) V aif 01(f(A)) + 02(f(A)) = 2

Therefore f(A)(y) < V Wal(y). Therefore to each z € X, A(z) < f(A)(y) < V f'(Wa)(z) where f(z) = y. That is
acJ aeJ

A<\ fH(Wa). As fis pairwise smooth continuous, for each a € J, we have 71 (f~*(Wa)) + 72 (f T (Wa)) > 01(Wa) +
az(WC;E)J> a1(f(A) + 02(f(A)) > 11(A) + m=2(A) if 0 < o1(f(A)) + 02(f(4)) < 2 and 1 (f7(Wa)) + 72(f 71 (Wa)) =
o1 (Wa) + 02(Wa) = 01(f(A)) + 02(f(A)) > 71(A) + 72(A) if 01 (f(A)) + 02(f(A)) = 2. As A is pairwise smooth compact,
A</ fH(Wa.) where Jo is a finite subset of J. That is f(A4) < V f(f~*(Wa)). That is f(4) < V Wa.

acJoCJ aedg acJy
[ f(f7Y(B)) < B for any fuzzy set B in Y] = f(A) is pairwise smooth compact. O

The next example asserts that a pairwise smooth compact set need not be a smooth compact set.

Example 2.11. Let (X, 71,72) be a sbts where 71 and T2 are the two smooth topologies given in the introductory section.

Consider the fuzzy set A on the real line R given by

0.5z +0.5; ifz€]0,1]

A 1 ifre{l1,1.1,1.2,1.3,...,1.9}
a: =

L ifre€{2,3,4,5...}

0; otherwise
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We show that A is pairwise smooth compact with respect to 71 and T2, but it is not smooth compact with respect to T1. Let

F ={Ua}acs be a collection of fuzzy sets with
(i). A<\ Us
(7). 11(A) + 12(A) < 11(Ua) + 12(Us) for all o € J.

Every element U of this collection is such that A(x) < U(z) for all but finitely many of the points x € {1,1.1,1.2,1.3,...,1.9}U
{2,3,4,5,...} [Clearly 72(U) # 0. If 71(U) > 0 then inf(U) # 0. Let inf(U) = a > 0. Then A(z) < U(x) for allz > 1. So
Then A(x) < U(z) for all but finitely many points of x € ({1,1.1,1.2,1.3,...,1.9}U{2,3,4,... })N[1, é))] Choose for each
y€{1,1.1,1.2,1.3,...,1.9} U {2,3,4,5,... } with A(y) £ U(y), an element Uy € F such that A(y) < Ua(y). Thus we get a

finite subcollection Jo C .F such that A < U\/{Ua}ac,- This implies that A is pairwise smooth compact. Let

0.5z +0.5; ifz€]0,1]

1. ifre{1,1.1,1.2,1.3,...,1.9}
Ug(z) =< °

L ifr€{2,3,4,...,k}

0; otherwise

Then A(z) < \/ Ui(x). But there is no m such that A(x) < \/ Ux(z). Therefore A is not smooth compact.
k=2 k=2

Definition 2.12. Let (X, 71,7) be a sbts. A fuzzy set A € I is said to be pairwise smooth nearly compact if for every

collection of fuzzy sets {Wa}acs with

(i). A<\ Wa

(i1). T1(A) +12(A) <T1(Wa) + ma(Wa)Vaif 0<7i(A)+7m(A4) <2
TI(A) + 72(A) < i (Wa) + 1o(Wa) V aif0 < 11 (A) + 72(A) =2

there exists a finite subset Jo of J such that A < \/ (Wa)°.
acJg

Definition 2.13. Let (X, 71,72) be a sbts. A fuzzy set A € I is said to be pairwise smooth almost compact if for every

collection of fuzzy sets {Wa}tacs with

(i). A<\ Wa

(i3). T1(A)+2(A) < Ti(Wa) + ma(Wa)Vaif 0 < m(A)+m(A) <2
T1(A) + 12(A) < Ti(Wa) + e(Wa) Vaif 0 < 1 (A) + 12(A) =2

there exists a finite subset Jo of J such that A < \/ Wa.
acdg

Theorem 2.14. Let (X, 71, 72) be a sbts, then a pairwise smooth nearly compact set A is pairwise smooth almost compact.
Proof. Let (X, 71,72) be a sbts.

(i). A<V Wa

(i)). T(A) +2(A) < T1(Wa) + 2o(Wa) Vaif 0 < 71i(A) +12(A) <2
T1(A) + 72(4A) K Ti(Wa) + e(Wa) Vaif 0 <1 (A) +12(A) =2
there exists a finite subset Jo of J such that A < \/ (W,)°. Since (W,)° < W, for each a € J, by Theorem 2.8,
A<V W) < V W, Thatis A< \ Wa. HeCrf::)A is pairwise smooth almost compact. O

a€cJy acJy a€cJy
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3. Conclusion

In this paper we have introduced the idea of smooth bitopological spaces in Sostak’s sense. We have investigated about

compactness in smooth bitopological spaces.
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