ISSN: 2347-1557 Available Online: http://ijmaa.in/ # International Journal of Mathematics And its Applications # μ - α -Semi Generalized Open Sets in Generalized Topological Spaces #### C. Rajesh Kumar^{1,*} 1 Department of Mathematics, AJK College of Arts and Science, Coimbatore, Tamil Nadu, India. Abstract: In this paper, I introduce a new class of sets in generalized topological spaces called μ - α -semi generalized open sets. Also I investigate some of their basic properties. MSC: 54A05 Keywords: Generalized topology, μ - α - open sets, μ - α -semi generalized open sets. © JS Publication. ## 1. Introduction The concept of generalized topological spaces was introduced by A. Csaszar [1]. He also introduced many -open sets like μ -semi open sets, μ -pre open sets etc., in generalized topological spaces. In this paper, I introduce a new class of sets in generalized topological spaces called μ - α -semi generalized open sets. Also I investigate some of their basic properties. ### 2. Preliminaries **Definition 2.1** ([1]). Let X be a nonempty set. A collection μ of subsets of X is a generalized topology (or briefly GT) on X if it satisfies the following: (1). $\phi, X \in \mu$ and (2). If $\{M_i : i \in I\} \subseteq \mu$, then $\bigcup_{i \in I} M_i \in \mu$. If μ is a GT on X, then (X, μ) is called a generalized topological space (or briefly GTS) and the elements of μ are called μ - open sets and their complement are called μ - closed sets. **Definition 2.2** ([1]). Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ -closure of A, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A. **Definition 2.3** ([1]). Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ -interior of A, denoted by $i_{\mu}(A)$, is the union of all μ -open sets contained in A. ^{*} E-mail: rajavino9293@gmail.com **Definition 2.4** ([1]). Let (X, μ) be a GTS. A subset A of X is said to be - (1). μ -semi-open set if $A \subseteq c_{\mu}(i_{\mu}(A))$ - (2). μ -pre-open set if $A \subseteq i_{\mu}(c_{\mu}(A))$ - (3). μ - α -open set if $A \subseteq i_{\mu}(c_{\mu}(i_{\mu}(A)))$ - (4). μ - β -open set if $A \subseteq c_{\mu}(i_{\mu}(c_{\mu}(A)))$ - (5). μ -regular-open set if $A = i_{\mu}(c_{\mu}(A))$. **Definition 2.5** ([3]). Let (X, μ) be a GTS. A subset A of X is said to be - (1). μ -regular generalized open set if $i_{\mu}(A) \supseteq U$ whenever $A \supseteq U$, where U is μ -regular closed in X. - (2). μ -generalized open set if $i_{\mu}(A) \supseteq U$ whenever $A \supseteq U$, where U is μ -closed in X. - (3). μ -generalized- α -open set if $\alpha i_{\mu}(A) \supseteq U$ whenever $A \supseteq U$, where U is μ -closed in X. **Definition 2.6** ([4]). Let (X, μ) be a GTS. Then a non-empty subset A is said to be a μ - α -semi generalized closed set (briefly μ - α -SGCS) if $sc_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ - α -open in X. # 3. μ - α -Semi Generalized Open Sets In this section I investigate μ - α -semi generalized open sets in generalized topological spaces and studied some of their basic properties. **Definition 3.1.** The complement A^c of a μ - α -semi generalized closed set (briefly μ - α -SGCS) in a GTS (X, μ) is called μ - α -semi generalized open set (briefly μ - α -SGOS) in X. **Example 3.2.** Let $X = \{a, b, c\}$ and let $\mu = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then (X, μ) is a GTS. Now, $$\mu - \alpha O(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}.$$ Then $A = \{b, c\}$ is a μ - α -semi generalized open set in (X, μ) . **Theorem 3.3.** Every μ -open set in (X, μ) is a μ - α -semi generalized open set in (X, μ) but not conversely in general. *Proof.* Let A be a μ -open set in (X, μ) . Then its complement A^c is a μ -closed set in (X, μ) . Therefore A^c is a μ - α -semi generalized closed set in X and hence by Definition 3.1, A is a μ - α -semi generalized open set in (X, μ) . **Example 3.4.** Let $X = \{a, b, c, d\}$ and let $\mu = \{\phi, \{b\}, \{d\}, \{b, d\}, X\}$. Then (X, μ) is a GTS. Now, $$\mu - \alpha O(X) = \{\phi, \{b\}, \{d\}, \{b, d\}, X\}.$$ Then $A = \{a, c, d\}$ is a μ - α -semi generalized open set in (X, μ) . But, as $i_{\mu}(A) = i_{\mu}(\{a, c, d\}) = \{d\} = A$, A is not a μ -open set in (X, μ) . **Theorem 3.5.** Every μ -semi open set in (X, μ) is a μ - α -semi generalized open set in (X, μ) . *Proof.* Let A be a μ -semi open set in (X, μ) . Then its complement A^c is a μ -semi closed set in (X, μ) . Therefore A^c is a μ - α -semi generalized closed set in (X, μ) and hence by Definition 3.1, A is a μ - α -semi generalized open set in (X, μ) . Remark 3.6. Every μ - α -semi generalized open sets and μ -pre open sets in X are independent in general. **Example 3.7.** Let $X = \{a, b, c, \}$ and let $\mu = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then (X, μ) is a GTS. Now, $$\mu - \alpha O(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}.$$ Then $A = \{b, c\}$ is a μ - α -semi generalized open set in (X, μ) but not a μ -pre open set as $i_{\mu}(c_{\mu}(A)) = i_{\mu}(c_{\mu}(\{b, c\})) = \{b\}$ and $A \nsubseteq \{b\}$. **Example 3.8.** Let $X = \{a, b, c, \}$ and let $\mu = \{\phi, \{a, b\}, X\}$. Then (X, μ) is a GTS. Now, $$\mu - \alpha O(X) = \{\phi, \{a, b\}, X\}.$$ Now let $A = \{a\}$. Then $i_{\mu}(c_{\mu}(A)) = i_{\mu}(c_{\mu}(\{b,c\})) = X$ and $A \subseteq X$. Therefore A is a μ -pre open set, but A is not a μ - α -semi generalized open set as $A^c \subseteq U = \{b,c\}$, where U is a μ - α -open set but $sc_{\mu}(A^c) = X \nsubseteq \{b,c\} = U$. **Theorem 3.9.** Every μ - α -open set in (X, μ) is a μ - α -semi generalized open set in (X, μ) but not conversely in general. *Proof.* Let A be a μ - α -open set in (X, μ) . Then its complement A^c is a μ - α -closed set in (X, μ) . Therefore A^c is a μ - α -semi generalized closed set in X and hence by Definition 3.1, A is a μ - α -semi generalized open set in (X, μ) . **Example 3.10.** Let $X = \{a, b, c\}$ and let $\mu = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, X\}$. Then (X, μ) is a GTS. Now, $$\mu - \alpha O(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, X\}.$$ Then $A = \{a,b\}$ is a μ - α -semi generalized open set in (X,μ) . But A is not a μ - α -open set as $i_{\mu}(c_{\mu}(i_{\mu}(A))) = i_{\mu}(c_{\mu}(i_{\mu}(\{a,b\}))) = \{a\}$ and $A \nsubseteq \{a\}$. **Remark 3.11.** Every μ - β -open set is not a and μ - α -semi generalized open set in (X,μ) in general. **Example 3.12.** Let $X = \{a, b, c, \}$ and let $\mu = \{\phi, \{a, b\}, X\}$. Then (X, μ) is a GTS. Now, $$\mu - \alpha O(X) = {\phi, {a, b}, X}.$$ Now let $A = \{a\}$. Then, $c_{\mu}(i_{\mu}(c_{\mu}(A))) = c_{\mu}(i_{\mu}(c_{\mu}(\{a\}))) = X$ and $A \subseteq X$. Therefore A is a μ - β -open set in (X, μ) , but not a μ - α -semi generalized open set as $A^c \subseteq U = \{b, c\}$, where U is a μ - α -open set but $sc_{\mu}(A^c) = X \nsubseteq \{b, c\} = U$. **Theorem 3.13.** Every μ -regular-open set in (X, μ) is a μ - α -semi generalized open set in (X, μ) but not conversely in general. *Proof.* Let A be a μ -regular-open set in (X, μ) . As every μ -regular open set is μ -open, A is μ -open in (X, μ) . Then by Theorem 3.3, A is a μ - α -semi generalized open set in (X, μ) . **Example 3.14.** Let $X = \{a, b, c\}$ and let $\mu = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then (X, μ) is a GTS. Now, $$\mu - \alpha O(X) = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}.$$ Then $A = \{b, c\}$ is a μ - α -semi generalized open set but not a μ -regular open set as $i_{\mu}(c_{\mu}(A)) = i_{\mu}(c_{\mu}(\{b, c\})) = \{b\} \neq \{b, c\} = A$. **Theorem 3.15.** Every μ -regular-closed set in (X, μ) is a μ - α -semi generalized open set in (X, μ) . *Proof.* Let A be a μ -regular-closed set in (X, μ) . Then its complement A^c is a μ -regular-open set in (X, μ) . Therefore A^c is a μ - α -semi generalized closed set in X and hence by Definition 3.1, A is a μ - α -semi generalized open set in (X, μ) . In the following diagram, we have provided relations between various types of open sets. **Theorem 3.16.** A subset A of X is a μ - α -semi generalized open set iff $F \subseteq si_{\mu}(A)$ whenever $F \subseteq A$ and F is a μ - α -closed set in X. *Proof.* Necessity: Let A be a μ - α -semi generalized open set in X. Then A^c is a μ - α -semi generalized closed set in X. Let F be a μ - α -closed set and $F \subseteq A$. Then F^c is a μ - α -open set and $A^c \subseteq F^c$. Therefore $\mathrm{sc}_{\mu}(A^c) \subseteq F^c$ by hypothesis. This implies that $(\mathrm{si}_{\mu}(A))^c \subseteq F^c$. That is $F \subseteq si_{\mu}(A)$ as $sc_{\mu}(A^c) = (si_{\mu}(A))^c$. Sufficiency: Let $A^c \subseteq U$, where U is a μ - α -open set in (X, μ) . Then U^c is a μ - α -open set and $U^c \subseteq (A^c)^c = A$. Let $U^c = F$. Hence by hypothesis $F \subseteq si_{\mu}(A)$. This implies that $(si_{\mu}(A))^c \subseteq F^c$. That is $sc_{\mu}(A^c) \subseteq F^c = U$. Therefore A^c is a μ - α -semi generalized closed set and then A is a μ - α -semi generalized open set in X Remark 3.17. Intersection of any two μ - α -semi generalized open sets in (X, μ) need not be a μ - α -semi generalized open set in X. **Example 3.18.** Let $X = \{a, b, c\}$ and let $\mu = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Then (X, μ) is a GTS. Now, $$\mu - \alpha O(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}.$$ Then $A = \{b, c\}$ and $B = \{a, c\}$ are μ - α -semi generalized open sets in (X, μ) . But, $A \cap B = \{c\}$ is not a μ - α -semi generalized open set as $si_{\mu}(\{c\}) = \{c\} \cap c_{\mu}(i_{\mu}(\{c\})) = \{c\} \cap \phi = \phi \not\supseteq \{c\} = U$ and $A \cap B \supseteq U$. **Theorem 3.19.** If $si_{\mu}(A) \subseteq B \subseteq A$ and A is a μ - α -semi generalized open set, then B is also a μ - α -semi generalized open set in $\mu - \alpha$. Proof. Let $si_{\mu}(A) \subseteq B \subseteq A$ and A is a μ - α -semi generalized open set in X. Then $(si_{\mu}(A))^c \supseteq B^c \supseteq A^c$ and so $A^c \subseteq B^c \subseteq sc_{\mu}(A^c)^c assc_{\mu}(A^c) = (si_{\mu}(A))^c$. If A is a μ - α -semi generalized open set then A^c is a μ - α -semi generalized closed set [4], we have B^c is a μ - α -semi generalized closed set and hence B is a μ - α -semi generalized open set in (X, μ) . **Theorem 3.20.** If a subset A of a GTS (X, μ) is both a μ - α -semi generalized open set and a μ - α -closed set then A is a μ -semi open set in X. *Proof.* Let A be a μ - α -closed set and a μ - α -semi generalized open set in (X, μ) . Then, $si_{\mu}(A) \supseteq A$ as $A \supseteq A$. But always $A \supseteq si_{\mu}(A)$. Therefore, $A = si_{\mu}(A)$. Hence A is a μ -semi open set in (X, μ) . **Theorem 3.21.** If A is both a μ -pre closed set and a μ -semi open set in (X, μ) then, A is a μ - α -semi generalized open set in (X, μ) . *Proof.* Assume that A is a μ -pre closed set and a μ -semi open set in (X, μ) . Then $c_{\mu}(i_{\mu}(A)) \subseteq A$ and $A \subseteq c_{\mu}(i_{\mu}(A))$. Therefore $A = c_{\mu}(i_{\mu}(A))$. This implies A is a μ -regular closed set. Hence by Theorem 3.15, A is a μ - α -semi generalized open set in X. **Theorem 3.22.** Every subset of X is a μ - α -semi generalized open set in X iff every μ - α -closed set is a μ -semi open set in X. *Proof.* Necessity: Let A be a μ - α -closed set in X, and by hypothesis, A is a μ - α -semi generalized open set in X. Hence by Theorem 3.20, A is a μ -semi open set in X. Sufficiency: Let $A \supseteq U$ where U is a μ - α -closed set in X. Then by hypothesis, U is a μ -semi open set. This implies $si_{\mu}(U) = U$ and $si_{\mu}(A) \supseteq si_{\mu}(U) = U$. Hence $si_{\mu}(A) \supseteq U$. Thus A is a μ - α -semi generalized open set in X, by Theorem 3.16. **Theorem 3.23.** Let A and B be μ - α - semi generalized open sets in (X,μ) such that $i_{\mu}(A) = si_{\mu}(A)$ and $i_{\mu}(B) = si_{\mu}(B)$, then $A \cap B$ is a μ - α -semi generalized open set in X. Proof. Let $A \cap B \supseteq U$, where U is a μ - α -closed set in X. Then $A \supseteq U$ and $B \supseteq U$. Since A and B are μ - α -semi generalized open sets, $si_{\mu}(A) \supseteq U$ and $si_{\mu}(B) \supseteq U$. Now $si_{\mu}(A \cap B) \supseteq i_{\mu}(A \cap B) = i_{\mu}(A) \cap i_{\mu}(B) = si_{\mu}(A) \cap si_{\mu}(B) \supseteq U \cap U = U$. This implies $si_{\mu}(A \cap B) \supseteq U$. Hence by Theorem 3.16, $A \cap B$ is a μ - α -semi generalized open set in X. #### References - [1] A.Csaszar, Generalized open sets in generalized topologies, Acta Mathematica Hungaria., 96(2002), 351-357. - [2] A.Csaszar, Generalized open sets in generalized topologies, Acta Mathematica Hungaria., 106(2005), 53-66. - [3] Fritzie Mae Vasquez Valenzuela and Helen Moso Rara, μ -rgb-sets in a generalized topological spaces, International Journal of Mathematical Analysis, 8(2014), 1791-1797. - [4] M.Saranya, μ - α -Semi generalized closed sets in generalized topological spaces, (submitted).