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Abstract: The performance of an estimator is generally judged on the basis of relative variance, relative standard error or standard

error. These measures are generally unknown since they are the function of the population parameter, thus estimated on

the basis of sample information. The expressions of relative bias and relative variance of these estimators are obtained
when sampling is done from a finite population and the sample size is large. It is also examined that which of these

estimators be adopted as a reasonable criterion for judging the performance of an estimator. The results are verified in
case of simple random sampling without replacement.
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1. Introduction

In survey sampling the performance of an estimator of the population parameter is generally judged on the basis of the bias

and variance of this estimator. The standard error of the estimator i.e. the square root of the variance is then used to obtain

the efficiency of the estimator. The bias and standard error, however, give idea about the absolute error incurred in using

the estimator in question. An alternative set of the measures which provide the idea about the relative error are given by

the relative bias and relative variance or relative standard error of the estimator. If m is the estimator of the parameter M,

then m−M
M

is the relative error and the E(m)−M
M

and

√
V (m)

M
are called the relative bias and relative standard error of the

estimator respectively.

Note that the relative bias, standard error or the relative standard error depend on the population parameter and hence are

unknown in practice. In order to have some idea about the magnitude of error, we estimate these quantities from the sample

information. Thus, from estimating the efficiency of the estimator, we may employ variance or relative variance, standard

error or relative standard error. Which of these should be preferred in practice is a crucial question which we would attempt

to answer in the present article when sampling is done from a finite population and the sample size is large.

Let Y be the characteristic in question taking value yi, i = 1, 2, . . . , N on the unit with lable i in the population of N units.

Let a simple random sample of n units be drawn from this population without replacement. If M is the parameter to the

estimated and m is a proposed unbiased estimator, then the relative variance (RV ) and the relative standard error (RSE)

of the estimator m are given by

RV (m) = θ =
V (m)

M2
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RSE(m) = θ
1
2 =

SE(m)

M

where V (m) = E(m−M)2, SE(m) = {V (m)}
1
2 . The sample estimates of RV (m) = θ and RSE(m) = θ

1
2 are given by

R̂V (m) = θ̂ =
V̂ (m)

m2
(1)

R̂SE(m) = θ̂
1
2 =

ŜE(m)

m
(2)

Note that θ is a measure of efficiency of the estimator m of M and θ̂ is its sample estimate which is not necessarily unbiased.

Then the performance of the estimator θ is judged on the basis of relative bias, RB(θ̂) and the relative standard error of

θ̂, RSE(θ̂) which are given by

RB(θ̂) =
E(θ̂)− θ

θ

RSE(θ̂) =
SE(θ̂)

θ

2. Relative Bias of the Estimators

Let Y and Z are two random variables with finite means, E(Y ) < ∞, E(Z) < ∞ and variance and covariance of Y and Z

be of order n−r, r > 0, usually r is equal to unity. Thus, these variables converge to their respective means in probability.

Let f(Y,Z) be some function for which the Taylor’s expansion is valid. Then we have the following result:

Lemma 2.1. For large n, the relative bias of f(Y,Z) as an estimator of f0 = f(E(Y ), E(Z)) is given by

RB[f(Y,Z)] =
1

2f0

[
V (Y )f ′′Y + V (Z)f ′′Z + 2 cov(Y,Z)f ′′Y Z

]
(3)

where

f ′′Y =
∂2f(Y,Z)

∂Y 2
, f ′′Z =

∂2f(Y,Z)

∂Z2
, f ′′Y Z =

∂2f(Y,Z)

∂Z∂Y

Proof. Expanding the function f(Y,Z) by Taylor’s series around (E(Y ), E(Z)) and retaining the terms up to second order

partial derivatives, we have

f(Y,Z) = f0 + (Y −E(Y ))f ′Y + (Z−E(Z))f ′Z +
1

2

{
(Y − E(Y ))2f ′′Y + 2(Y − E(Y ))(Z − E(Z))f ′′Y Z + (Z − E(Z))2f ′′Z

}
(4)

where f ′Y and f ′z are the first order derivatives of f(Y,Z) with respect to Y and Z respectively, evaluated at (E(Y ), E(Z)).

Taking expectation throughout (4) yields

E[f(Y,Z)] = f0 +
1

2

{
V (Y )f ′′Y + V (Z)f ′′Z + 2 cov(Y,Z)f ′′Y Z

}
(5)

Thus, the relative bias is given by

RB[f(Y,Z)] =
E[f(Y,Z)]− f0

f0
=

1

2f0

[
V (Y )f ′′Y + V (Z)f ′′z + 2 cov(Y,Z)f ′′Y Z

]
Hence, the lemma.

In what follows, we shall prove a result concerning the relative bias of the sample estimate of the relative variance i.e.

θ̂ = R̂V (m).

848



Manoj Kumar Srivastava and Namita Srivastava

Theorem 2.2. If sample size n is large so that the terms of order higher than n could be ignored, then the relative bias of

R̂V (m) is given by

RB(R̂V (m)) = 3RV (m)− 2 cov(m, V̂ (m))

M.V (m)
(6)

where, E(V̂ (m)) = V (m).

Proof. Consider the function f in Lemma 2.1 by

f(Y,Z) =
Y

Z2

Y = V̂ m

and Z = m. We have E(Y ) = V (m) and E(Z) = M. Further, we have f ′′Y = 0, f ′′Z = 6V (m)

M4 , f ′′Y Z = − 2
M3 , f0 = V (m)

M2 .

Using Lemma 2.1, we get

RB(R̂V (m)) =
M2

2V (m)

[
6{V (m)}2

M4
− 4 cov(V̂ (m),m)

M2

]

=
3V (m)

M2
− 2 cov(V̂ (m),m)

M · V (m)

= 3CV (m)− 2 cov(∇(m),m)

M · V (3)

Hence, the theorem.

In the following theorem, we calculate the relative bias of R̂SE(m).

Theorem 2.3. Under the condition of Theorem 2.1, the relative bias of R̂SE(m) is given by

RB[RŜE(m)] = RV (m)− RV (V̂ (m))

8
− cov(V̂ (m),m)

2M.V (m)
(7)

Proof. Consider the function f in Lemma 2.1 by

f(Y,Z) =
Y

1
2

m
= R̂SE(m)

Y = V̂ m

and z = m. We have

4M
(
V (m)

3
2

)
, f ′′Z =

2(V (m))
1
2

M3
, 2

(
V (m)

1
2M2

)
, f0 =

(V (m))
1
2

M

Using these values in Lemma 2.1 gives

RB[R̂SE(m)] =
M

2(V (m))
1
2

[
− 1

4M(V (m))
3
2

V (V̂ (m)) +
2(V (m))

1
2

M3
V (m)− cov(V̂ (m),m)

(V̂ (m))
1
2M2

]

=
V (m)

M2
− V (V̂ (m))

8(V (m))2
− cov(V̂ (m),m)

2M · V (m)

= RV (m)− RV (V̂ (m))

8
− cov(V̂ (m),m)

2M · V (m)

Hence, the theorem.

Theorem 2.4. For large n, we have

RB[ŜE(m)] = −1

8
RV [V̂ (m)] (8)
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Proof. Let g(y) be a continuous function of a random variable Y for which the conditions of Taylor’s expansion g(y)

around E(Y ) and retaining terms up to second order derivative, we have

g(Y ) = g0 + (Y − E(Y ))g′ +
1

2
(Y − E(Y ))2g′′ (9)

where,

g0 = g(E(Y )) g′ =

(
∂

∂Y

)
g(Y )

∣∣∣∣
Y=E(Y )

, g′′ =

(
∂2

∂Y 2

)
g(y)

∣∣∣∣
Y=E(Y )

Taking expectation in (9) throughout, we have

E[g(Y )] = g0 +
1

2
V (Y )g′′ (10)

Now, as we assumed earlier that is large so that the second term of (10) could be ignored. Consequently E[g(Y )] = g0.

Thus, for large n, g(Y ) can be used as an unbiased estimator of g0. The relative bias of g(Y ) as an estimator of g0 is given

by

RB[g(Y )] =
E[g(Y )]− g0

g0
=

1

2g0
V (Y )g′′ (11)

Take the function g as g(Y ) = Y
1
2 , where Y = V̂ (m), so that E[V̂ (m)] = V (m) g′′ = − 1

4
(V (m))−

3
2 and g0 = (V (m))

1
2 .

Substituting g0 and g′′ in (11), we obtain

RB[ŜE(m)] = − V [V̂ (m)]

8(V (m))2
= −1

8
RV [V̂ (m)]

R̂V (m), R̂SE(m) and ŜE(m) give us an idea about the error incurred in using an estimator m of M. We can compare these

measures in terms of their relative biases.

Theorem 2.5. For symmetric distributions

RB[ŜE(m)] ≤ RB[R̂SE(m)] ≤ RB[R̂V (m)] (12)

Proof. From (6)and (7), we get

RB[R̂V (m)]−RB[R̂SE(m)] = 2RV (m) +
RV [V̂ (m)]

8
− 3 cov(V̂ (m),m)

2M.V (m)

and from (7) and (8), we get

RB[R̂SE(m)]−RB[ŜE(m)] = RV (m)− cov(V̂ (m),m)

2M.V (m)

For symmetric distributions cov(V̂ (m),m) vanishes (Kendall and Stuart 1972) yields the required inequality (12). In view

of the expression involved, it is highly unlikely that the inequality (12) are violated even for non-symmetrical populations.
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3. The Relative Variance of the Estimators

In order to study the sampling fluctuations in the estimators of measures of sampling error, we consider the relative variances

of R̂V (m), R̂SE(m) and ŜE(m). Following theorem plays on important role:

Theorem 3.1. Ignoring the terms of order higher than n−r, we have

RV [R̂V (m)] = 4.RV [R̂SE(m)] (13)

Proof. Assume that g(Y ) is continuous and is a function for which Taylor’s series expansion holds. It is easy to verify

V [g(Y )] = V (Y )g′2 (14)

where g′ is the first derivative of g(Y ) with respect to Y evaluated at Y = E(Y ). We have

RV
(
Y

1
2

)
= V

 Y
1
2

E
(
Y

1
2

)
 = V

 Y
1
2(

E(Y )− V
(
Y

1
2

)) 1
2



=

V

(
Y

1
2

)
E(Y )

1−
V

(
Y

1
2

)
E(Y )

(15)

Using (14), it could be easily seen that

V
(
Y

1
2

)
=

V (Y )

4E(Y )
(16)

Substituting this value of V
(
Y

1
2

)
in (15), we obtain

RV
(
Y

1
2

)
=

RV (Y )

4−RV (Y )
(17)

RV (Y ) will be of order n−r whenever V (Y ) is of order n−r. Under the assumption that RV (Y )
4

< 1, which will normally be

true, RV
(
Y

1
2

)
in (17) could be approximated by RV (Y )

4
This gives

RV (Y ) = 4RV
(
Y

1
2

)
(18)

On taking Y = R̂V (m), we have

RV (R̂V (m)) = 4RV (R̂SE(m))

Hence, the theorem.

Theorem 3.2. If we retain terms up to the order n−r, we have

RV [R̂SE(m)] = RV [ŜE(m)] +RV (m)
cov(V̂ (m),m)

M.V (m)
(19)

Proof. From (4) and (5), retaining terms of order up to n−r, we can easily show that

RV [f(Y,Z)] =
1

f2
0

[
V (Y )f ′Y + V (Z)f ′Z + 2 cov(Y,Z).f ′Y f

′
Z

]
(20)
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Now, let f(Y,Z) = Y
1
2

z
where, Y = V̂ (m), z = m. It is easy to check

f ′Y
∣∣
(V (m),M)

=
1

2M(V (m))
1
2

; f ′Z
∣∣
(V (m),M)

= − (V (m))
1
2

2M2
, f0 =

(V (m))
1
2

M

Substituting these values in (20) and simplifying

RV [R̂SE(m)] =
V (V̂ (m))

4(V (m))2
+
V (m)

M2
− cov(V̂ (m),m)

MV (m)

=
1

4
RV (V̄ (m)) +RV (m)− cov(V̄ (m),m)

MV (m)

From (18), we obtain

RV [R̂SE(m)] = RV (ŜE(m)) +RV (m)− cov(V̂ (m),m)

MV (m)

Hence the theorem.

Theorem 3.3. For symmetrical populations, i.e cov(V̂ (m),m) = 0, we obtain

RV [ŜE(m)] < RV [R̂SE(m)] < RV [R̂V (m)] (21)

Note that the last part of the inequality also holds for asymmetrical population.

4. Illustration

Let y1, y2, . . . , yn be the observations obtained from a simple random sample drawn from a population consisting of N units.

Suppose we are interested in estimating population mean ȳ. The unbiased estimator of population mean is given by sample

mean i.e. ȳs. The relative variance of ȳs is given by

RV (ȳs) =
N − n
Nn

S2

ȳ2

' 1

n

S2

ȳ2
(22)

If fpc is ignored. Moreover, the variance of ȳs, ignoring fpc, is given by

V (ȳs) =
S2

n

The unbiased estimator of V (ȳs) is obtained as

V̂ (ȳs) =
S2

n

where s2 is the sample variance. This gives

V
(
V̂ (ȳs)

)
=

1

n2
V
(
s2
)

=
S4

n2

[
β2 − 1

n
+

2

n(n− 1)

]

where β2 = µ4
S4 . This gives

RV
(
V̂ (ȳs)

)
=
V
(
s2

n

)
S4

n2

=

[
β2 − 1

n
+

2

n(n− 1)

]
(23)
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Further, the covariance between ȳs and s2

n
, if fpc is ignored and N is large, using equation 14 on page 239 in Sukhatme

et.al. (1984), is given by

cov

(
ȳs,

s2

n

)
=
µ30

n2

where

µ30 =
1

N

N∑
i=1

(yi − ȳ)3

This gives

cov
(
ȳs,

s2

n

)
ȳV (ȳs)

=
µ30

nȳS2
(24)

Using (22), (23) and (24) in Theorems 2.1, 2.2, 2.3, we obtain

RB
[
R̂V (ȳs)

]
=

3S2

nȳ2
− µ30

nȳS2

RB
[
R̂SE (ȳs)

]
=

S2

ny2
− 1

8

[
β2 − 1

n
+

2

n(n− 1)

]
− µ30

2nȳS2
and

RB
[
ŜE (ȳs)

]
= −1

8

[
β2 − 1

n
+

2

n(n− 1)

]

For symmetrical population µ30 will be zero, we can easily verify the inequality given in Theorem 2.4. Similarly, on using

the results in (22), (23), and (24) in Theorems 3.1, 3.2 we get

RV
[
R̂SE (ȳs)

]
=

S2

nȳ2
− 1

4

[
β2 − 1

n
+

2

n(n− 1)

]
− µ30

nȳS2

RV
[
R̂V (ȳs)

]
= 4RV

[
R̂SE (ȳs)

]
and

RV
[
ŜE (ȳs)

]
=

1

4

[
β2 − 1

n
+

2

n(n− 1)

]

Thus, for symmetrical populations, µ30 = 0, we can easily verify the inequality show in the Theorem 3.3.
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