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1. Introduction

The idealized model of restricted three body problem is one of the most celebrated problems of celestial mechanics. The

restricted problem specifies the motion of a body of infinitesimal mass under K the gravitational attraction of two massive

bodies moving about their centre of mass in circular orbit. the developed nations our country has also undertaken space

research programme by launching artificial earth satellites for communications and weather forecasting purpose and registered

its name as a sixth member nation in the exclusive space club. Indian researchers are contributing their might to make the

space research programme successful with the limited resources available at their disposal.

2. Stability of Triangular Equilibrium Point
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Again differentiating (1) partially with respect to x, we get:
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Differentiating it partially w.r.t. x again, we get
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Differentiating (3) partially w.r.t. y, we obtain
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Differentiating (1) partially w.r.t. y, we obtain
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Differentiating it partially w.r.t. y
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3. Stability of Collinear Equilibrium Points

At the collinear points

y = 0

r21 = (x+ µ)2

and r22 = (x− 1 + µ)2

With the help of these relations, it is not difficult to obtain from (4), (5) and (6), the values

Ω◦
xx = 1 +

1

1 + 3A
2

{
2 (1 − µ) (1 − q)

r31
+

2µ

r32
+

6µA

r52

}
> 0

856



Kumari Vandana
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and Ω◦
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In view of the above equations, we have
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It is easy to note that the roots λi (i = 1, 2, 3, 4) of equation (7) are
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where,
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2
− 2
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xxΩ◦
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as Ω◦
yy < 0. It may be noted that λ1,2 are real while λ3,4 are pure imaginary. Hence, the collinear points are unstable. Thus

we find that the stability of collinear points remain unaffected by the perturbations under consideration.

4. Conclusion

Thus we conclude that the photo gravitational restricted three body problem in which smaller primary is an oblate spheroid

and the bigger one is a source of radiation possesses five equilibrium points-two triangular and three collinear. The triangular

equilibrium points form nearly equilateral triangles with the primaries and the collinear points lie on the line joining the

primaries. The triangular equilibrium points are linearly stable while the collinear points are unstable. The oblateness of

the smaller primary as well as the radiation of bigger one affect the location of triangular equilibrium points and introduce

a change in their coordinates compared to the classical case. They also reduce the value of critical mass and consequently

the range of stability of triangular equilibrium points reduces.
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