Cordial Labeling of Double Antenna One Point Union Graphs

Mukund V. Bapat ${ }^{1, *}$
1 Hindale, Devgad, Sindhudurg, Maharashtra, India.

Abstract

We discuss graphs of type $G^{(k)}$ i.e. one point union of k-copies of G for cordial labeling. We take G as double tail graph of C_{3}. i.e. $G=\operatorname{tail}\left(C_{3}, 2-P_{m}\right)$. In $\operatorname{tail}\left(C_{3}, 2-P_{m}\right)$ graph double paths are attached at same point of C_{3}. We restrict our attention to $m=2,3,4$. Further we consider all possible structures of $G^{(k)}$ by changing the common point on G and obtain non-isomorphic structures. We show all these structures as cordial graphs. This is called as invariance of different structures under cordial labeling.

MSC: 05C78.

Keywords: Cordial, labeling, tail graph, invariance, path, one point union.
(c) JS Publication.

1. Introduction and Preliminaries

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6], A dynamic survey of graph labeling by J.Gallian [8] and Douglas West. Cahit [9] introduced the concept of cordial labeling [5]. $f: V(G) \rightarrow\{0,1\}$ be a function. From this label of any edge (uv) is given by $|f(u)-f(v)|$. Further number of vertices labeled with 0 i.e $v_{f}(0)$ and the number of vertices labeled with 1 i.e. $v_{f}(1)$ differ at most by one. Similarly number of edges labeled with 0 i.e. $e_{f}(0)$ and number of edges labeled with 1 i.e. $e_{f}(1)$ differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; K_{n} is cordial if and only if $n \leq 3 ; K_{m, n}$ is cordial for all m and n ; the friendship graph $C_{3}^{(t)}$ (i.e., the one-point union of t copies of C_{3}) is cordial if and only if t is not congruent to $2(\bmod 4)$; all fans are cordial; the wheel W_{n} is cordial if and only if n is not congruent to $3(\bmod 4)$. A lot of work has been done in this type of labeling. One may refer dynamic survey by J.Gallian [8]. To obtain a antenna graph or a tail graph we attach one end of P_{m} to some vertex of G . We denote it by $\operatorname{tail}\left(G, P_{m}\right)$ or $\operatorname{ante}\left(G, P_{m}\right)$. If there are more paths say $p_{t 1}, p_{t 2}, \ldots, p_{t k}$ attached to same vertex of G we denote it by $\operatorname{tail}\left(G, p_{t 1}, p_{t 2}, \ldots, p_{t k}\right)$. If there are m paths of same length say t attached at the same point of G we denote it by $\left(G, m-p_{t}\right)$.

2. Main Results

Theorem 2.1. All non-isomorphic structures of one point union of tail ($\left.C_{3}, 2-P_{2}\right)$ graph are cordial.
Proof. $G=\operatorname{ante}\left(C_{3}, 2-P_{2}\right)$. Both P_{2} are attached at the same point on C_{3}. G has 5 edges and 5 vertices. Define $f: V(G) \rightarrow\{0,1\}$ as follows. We get different types of labeling units and we use them to obtain a labeled copy of $G^{(k)}$.

[^0]

Figure 1: $\operatorname{ante}\left(C_{3}, 2-P_{2}\right)$

Figure 3: $v_{f}(0,1)=(2,3), e_{f}(0,1)=(3,2)$

Figure 4: $v_{f}(0,1)=(2,3), e_{f}(0,1)=(3,2)$

All above A, B, C type units are cordial. There are three non-isomorphic structures possible on G by taking one point union at ' a ', ' b ' or ' c '. If we take one point union at vertex ' a ' we get structure 1.

In that case we fuse Type A label with type C label at point ' x ' on it . To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'b' we get structure 2 . In that case we fuse Type A label with type C label at point ' y^{\prime} on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'c' we get structure 3.

In that case we fuse Type A label with type B label at point ' z ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and B type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. In all three structures above the label number distribution is same and in the way given below. On vertices $v_{f}(0,1)=(2+2(k-1), 3+3(k-1)), k=1,2, \ldots$, and on edges if $k=2 x, x=1,2, \ldots$, we get $e_{f}(0,1)=(5 x, 5 x)$ and if k is of type $k=2 x+1$, we have $e_{f}(0,1)=(5 x+2,5 x+3)$ where $x=0,1,2, \ldots$ Thus the graph is cordial.

Theorem 2.2. All non-isomorphic structures of one point union of ante $\left(C_{3}, 2-P_{3}\right)$ graph are cordial.
Proof. $G=\operatorname{ante}\left(C_{3}, 2-P_{3}\right)$. Both P_{3} are attached at the same point on C_{3}. G has 7 edges and 7 vertices. Define $f: V(G) \rightarrow\{0,1\}$ as follows. We get different types of labeling units with cordial labeling and we use them to obtain a labeled copy of $G^{(k)}$.

Figure 5: ante $\left(C_{3}, 2-P_{2}\right)$

Figure 6: $v_{f}(0,1)=(3,4), e_{f}(0,1)=(3,4)$

Figure 7: $v_{f}(0,1)=(3,4), e_{f}(0,1)=(3,4)$

Figure 8: $v_{f}(0,1)=(3,4), e_{f}(0,1)=(4,3)$
at vertex ' d ' we get structure 1 .
In that case we fuse Type B label with type C label and fuse it at point 'x' on it. To obtain $G^{(k)}$ we use type B label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'c' we get structure $\mathbf{2}$. In that case we fuse Type B label with type C label at point ' y^{\prime} on it. To obtain $G^{(k)}$ we use type B label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'a' we get structure 3 .
In that case we fuse Type B label with type A label at point ' z ' on it. To obtain $G^{(k)}$ we use type B label if $i \equiv 1(\bmod 2)$ and A type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'b' we get structure 4.

In that case we fuse Type B label with type A label at point ' t ' on it. To obtain $G^{(k)}$ we use type B label if $i \equiv 1(\bmod 2)$ and A type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. In all four structures the label number distribution is same and in the way given below. On vertices $v_{f}(0,1)=(3+3(k-1), 4+3(k-1)), k=1,2, \ldots$, and on edges if $k=2 x, x=1,2, \ldots$, we get $e_{f}(0,1)=(7 x, 7 x)$ and if k is of type $k=2 x+1$, we have $e_{f}(0,1)=(7 x+4,7 x+3)$ where $x=0,1,2, \ldots$ Thus the graph is cordial.

Theorem 2.3. All non-isomorphic structures of one point union of ante $\left(C_{3}, 2-P_{4}\right)$ graph are cordial.

Proof. $G=$ ante $\left(C_{3}, 2-P_{3}\right)$. Both P_{3} are attached at the same point on C_{3}. G has 9 edges and 9 vertices. Define $f: V(G) \rightarrow\{0,1\}$ as follows. We get different types of labeling units and we use them to obtain a labeled copy of $G^{(k)}$.

Figure 11: $v_{f}(0,1)=(6,3), e_{f}(0,1)=(4,5)$

Figure 12: $v_{f}(0,1)=(4,5), e_{f}(0,1)=(4,5)$
Figure 10: $v_{f}(0,1)=(4,5), e_{f}(0,1)=(5,4)$

All above A, B, C type units are cordial. There are five non-isomorphic structures possible on G. If we take one point union at vertex ' e ' we get structure 1 .

In that case we fuse Type A label with type C label and fuse it at point ' x ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'd' we get structure $\mathbf{2}$.

In that case we fuse Type A label with type C label at point ' $\mathrm{y}^{\text {' }}$ on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'a' we get structure 3.

In that case we fuse Type A label with type C label at point ' z ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex ' c ' we get structure 4.

In that case we fuse Type A label with type C label at point ' t ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. In all four structures the label number distribution is same and in the way given below. On vertices $v_{f}(0,1)=(4+4(k-1), 5+4(k-1)), k=1,2, \ldots$, and on edges if $k=2 x, x=1,2, \ldots$, we get $e_{f}(0,1)=(9 x, 9 x)$ and if k is of type $k=2 x+1$, we have $e_{f}(0,1)=(5+9 x, 4+9 x)$ where $x=0,1,2, \ldots$ If we take one point union at vertex 'b' we get structure 5 .

In that case we fuse Type A label with type B label at point 's' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$
and B type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. The label numbers observed are as follows: On vertices $v_{f}(0,1)=(4+8 x, 5+8 x)$ for $k=2 x+1, x=0,1,2, \ldots$, and if k is of type $2 x$ we have $v_{f}(0,1)=(8 x+1,8 x)$. On edges if $k=2 x+1, x=0,1,2, \ldots$, we get $e_{f}(0,1)=(5+9 x, 4+9 x)$ and if k is of type $k=2 x$ we have $e_{f}(0,1)=(9 x, 9 x)$ where $x=1,2, \ldots$ Thus the graph is cordial.

Theorem 2.4. All non-isomorphic structures of one point union of tail $\left(C_{3}, 2-P_{5}\right)$ graph are cordial.

Proof. Let $G=\operatorname{ante}\left(C_{3}, 2-P_{5}\right)$. Both P_{5} are attached at the same point on C_{3}. G has 11 edges and 11 vertices. Define $f: V(G) \rightarrow\{0,1\}$ as follows. We get different three types of labeling units, all cordial and we use them to obtain a labeled copy of G.

Figure 13: ante $\left(C_{3}, 2-P_{2}\right)$

Figure 14: $v_{f}(0,1)=(6,5), e_{f}(0,1)=(6,5)$

Figure 15: $v_{f}(0,1)=(6,5), e_{f}(0,1)=(5,6)$

Figure 16: $v_{f}(0,1)=(6,5), e_{f}(0,1)=(5,6)$

All above A, B, C type units are cordial. There are six non-isomorphic structures possible on G . If we take one point union at vertex ' f ' we get structure 1 .

In that case we fuse Type A label with type C label at point ' x ' on it . To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'e' we get structure 2.
In that case we fuse Type A label with type C label at point ' y^{\prime} on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex ' d ' we get structure 3. In that case we fuse Type A label with type C label at point ' z ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'b' we get structure 4. In that case we fuse Type A label with type C label at point ' t ' on it . To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex ' c ' we get structure 5.

In that case we fuse Type A label with type C label at point ' w ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'a' we get structure 6.
In that case we fuse Type A label with type B label at point ' u ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and B type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. In all six structures above the label number distribution is same and in the way given below. On vertices $v_{f}(0,1)=(1+5 k, 5 k)$ for all k and for $k=2 x+1$ on edges we have $e_{f}(0,1)=(6+11 x, 5+11 x)$, $x=0,1,2, \ldots$ and $e_{f}(0,1)=(11 x, 11 x)$ for k is of type $k=2 x$ where $x=1,2, \ldots$ Thus the graph is cordial.

Theorem 2.5. All non-isomorphic structures of one point union of ante $\left(C_{3}, 2-P_{6}\right)$ graph are cordial.
Proof. Let $G=\operatorname{ante}\left(C_{3}, 2-P_{6}\right)$. Both P_{6} are attached at the same point on C_{3}. G has 13 edges and 13 vertices. Define $f: V(G) \rightarrow\{0,1\}$ as follows. We get different types of labeling units and we use them to obtain a labeled copy of G.

Figure 17: ante $\left(C_{3}, 2-P_{2}\right)$

Figure 18: $v_{f}(0,1)=(7,6), e_{f}(0,1)=(7,6)$

Figure 19: $v_{f}(0,1)=(5,8), e_{f}(0,1)=(6,7)$

Figure 20: $v_{f}(0,1)=(7,6), e_{f}(0,1)=(6,7)$

All above A, B, C type units are cordial. There are 7 non-isomorphic structures possible on $G^{(k)}$. If we take one point union at vertex ' g ' we get structure 1 .

In that case we fuse Type A label with type C label at point 'x' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex ' f ' we get structure 2. In that case we fuse Type A label with type C label at point ' y ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'e' we get structure 3.

In that case we fuse Type A label with type C label at point ' z ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex ' d ' we get structure 4. In that case we fuse Type A label with type C label at point ' t ' on it . To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'a' we get structure 5.
In that case we fuse Type A label with type C label at point ' w ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and C type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. If we take one point union at vertex 'b' we get structure 6.

In that case we fuse Type A label with type B label at point ' u ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and B type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. In all six structures above the label number distribution is same and in the way given below. The label number distribution is on vertices $v_{f}(0,1)=(7+12 x, 6+12 x)$ on edges we have $e_{f}(0,1)=(7+13 x, 6+13 x)$, when k is of type $k=2 x+1, x=0,1,2, \ldots$ and on vertices $v_{f}(0,1)=(12 x+1,12 x)$ on edges we have $e_{f}(0,1)=(13 x, 13 x)$ for k is of type $k=2 x$ where $x=1,2, \ldots$. If we take one point union at vertex ' c ' we get structure 7 .

In that case we fuse Type A label with type B label at point ' v ' on it. To obtain $G^{(k)}$ we use type A label if $i \equiv 1(\bmod 2)$ and B type if $i \equiv 0(\bmod 2), i=1,2, \ldots, k$. The label number distribution is on vertices $v_{f}(0,1)=(7+12 x, 6+12 x)$ on edges we have $e_{f}(0,1)=(7+13 x, 6+13 x)$, when m is of type $k=2 x+1, x=0,1,2, \ldots$ and on vertices $v_{f}(0,1)=(12 x, 1+12 x)$ on edges we have $e_{f}(0,1)=(13 x, 13 x)$ for k is of type $k=2 x$ where $x=1,2, \ldots$. Thus given graph is cordial.

3. Conclusion

We have shown that different structures on one point union of tail $\left(C_{3}, 2 P_{m}\right)$ (or ante $\left(G, 2 p_{m}\right)$ graph are cordial. We have taken $m=2,3,4,5$. It is necessary to investigate the cordiality for all m and k . We expect that all non-isomorphic structures of one point union on k-copies of $\operatorname{tail}\left(C_{3}, P_{m}\right)$ are cordial.

References

[1] M.Andar, S.Boxwala and N.Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53(2005), 117-154.
[2] M.Andar, S.Boxwala and N.Limaye, On the cordiality of the t-ply Pt(u,v), Ars Combin., 77(2005), 245-259.
[3] Bapat Mukund, Equitable and other types of graph labeling, Ph.D. thesis, submitted to university of Mumbai, India, (2004).
[4] V.Bapat Mukund, Some Path Unions Invariance Under Cordial labeling, IJSAM, (2018).
[5] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23(1987), 201-207.
[6] F.Harary, Graph Theory, Narosa publishing, New Delhi.
[7] I.Cahit and R.Yilmaz, E-cordial graphs, Ars Combinatoria, 46(1997), 251-256.
[8] J.A.Gallian, A dynamic survey of graph labellings, Electronic Journal of Combinatorics, 7(2015), \#DS6.
[9] D.West, Introduction to Graph Theory, Pearson Education Asia.

[^0]: * E-mail: mukundbapat@yahoo.com

