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Abstract: The main object of this paper is to construct a interpolatory polynomial with hermite conditions at end points of interval

[-1,1] based on the zeros of the polynomials P
(k)
n (x) and P

(k+1)
n−1 (x) where P

(k)
n (x) is the ultraspherical polynomial of degree

n .In this paper, we prove existence ,explicit representation and order of convergence of the interpolatory polynomials.
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1. Introduction

In 2001, Lenard [4] introduced a P̀al-type interpolation polynomials with boundary conditions at end points of interval. She

considered two system of real numbers {xi}n−1
i=1 and {x∗i }ni=1 which are the zeros of P

(k+1)
n−1 (x) and P

(k)
n (x) respectively, then

there exists a unique polynomial Qm(x) of degree at most m=2n+2k+1 satisfying the interpolation conditions.

Qm(xi) = yi, (i = 1, 2, . . . , n− 1) (1)

Q′m(x∗i ) = y′i, (i = 1, 2, . . . , n) (2)

with (Hermite) boundary conditions.

Q(l)
m (1) = αj , (j = 0, 1, . . . , k) (3)

Q(l)
m (−1) = βj , (l = 0, 1, . . . , k + 1) (4)

where yi, y
′
i, αj and βj are arbitrary real numbers, k is a fixed non-negative integer. Later on many authors have considered

with above method of interpolation. In Joo and Szili [2] have considered weighted (0,2) interpolation on the roots of

Jacobi polynomials. Pal L.G [5] has discussed a general lacunary (0;0,1) interpolation process. In other paper [6] and [7]

have discussed pal-type interpolation on the roots of Hermite polynomials. In this paper we study the following (0;0,1)

interpolation problem on the interval [−1, 1]. Let the set of knots be given by

− 1 = x∗n < xn < x∗n−1 < xn−1 < · · · < x∗1 < x1 < x∗0 = 1, n ≥ 1 (5)
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Where {xi}ni=1 and {x∗i }n−1
i=1 are the roots of Ultraspherical polynomials P

(k)
n (x) and P

(k+1)
n−1 (x) respectively. On the knots

(5) there exist a unique polynomial Rm(x) of degree at most m = 3n+ 2k satisfying the interpolatory conditions.

Rm(xi) = yi, (i = 1, 2, . . . , n) (6)

Rm(x∗i ) = y∗i , (i = 1, 2, . . . , n− 1) (7)

R′m(x∗i ) = y∗i
′
, (i = 1, 2, . . . , n− 1) (8)

with (Hermite) boundary conditions.

R(l)
m (1) = y

(l)
1 , (l = 0, 1, . . . , k) (9)

R(l)
m (−1) = y

(l)
−1, (l = 0, 1, . . . , k + 1) (10)

where yi ,y∗i , y∗i
′, yl1 and yl−1 are arbitrary real numbers and k is a fixed non-negative integer. Here P

(k)
n (x) denotes the

Ultraspherical polynomial of degree n with the parameter k.The convergence of this interpolation process was studied by

Xie [9] if f ∈ Cr[−1, 1] for x ∈ [−1, 1], then

|f(x)−R2n+1(x; f)| = O
(
n−r+1)w(f (r);

1

n

)
(11)

For k ≥ 1, Lenard [3] proved that if f ∈ Cr[−1, 1] for x ∈ [−1, 1], then

|f(x)−Rm(x; f)| = O
(
nk−r+

1
2

)
w

(
f (r);

1

n

)
(12)

For k ≥ 0, Lenard [4] proved that if f ∈ Cr[−1, 1] for x ∈ [−1, 1], then

|f ′(x)−R′m(x; f)| = w

(
f (r);

1

n

)
O

nk−r+5

2

 (13)

where w(f (r), .) denotes the modulus of continuity of the rth derivative of the function f(x). If f ∈ Ck+2[−1, 1] , fk+2 ∈ Lipα,

α >
1

2
, then Rm(x; f) and R′m(x; f) uniformly converges to f(x) and f ′(x) respectively on [-1,1].

2. Preliminaries

We shall use the some well known properties and results [8] of the Ultraspherical polynomials.

(1− x2)P (k)
n

′′
(x)− 2x(k + 1)P (k)

n

′
(x) + n(n+ 2k + 1)P (k)

n (x) = 0 (14)

P (k)
n

′
(x) =

n+ 2k + 1

2
P

(k+1)
n−1 (x) (15)

|P (k)
n (x)| = O(nk), x ∈ [−1, 1] (16)

(1− x2)
k
2
+ 1

4 |P (k)
n (x)| = O

(
1√
n

)
(17)

The fundamental polynomials of Lagrange interpolation are given by

lj(x) =
P

(k)
n (x)

P
(k)
n

′
(xj)(x− xj)

(18)
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l∗j (x) =
P

(k+1)
n−1 (x)

P
(k+1)
n−1

′
(x∗j )(x− x∗j )

(19)

lj(x) =
P

(k)
n (x)

P
(k)
n

′
(xj)(x− xj)

=
h̃
(k)
n

(1− x2j )[P
(k)
n

′
(xj)]2

n−1∑
ν=0

1

h
(k)
ν

P (k)
ν (xj)P

(k)
ν (x) (20)

Where

h̃(k)
n =

22kΓ (2(n+ k + 1))

Γ (n+ 1) Γ (n+ 2k + 1)
∼ C1 (21)

h(k)
ν =

22k+1

2ν + 2k + 1

Γ (2(ν + k + 1))

Γ (ν + 1) Γ (ν + 2k + 1)

 ∼ 1
ν

(ν > 0)

= C2 (ν = 0)
(22)

where the constants C1, C2 depends only α. If x1 > x2 > · · · > xn are the roots of P
(k)
n (x), then the following relations

hold [8].

(1− x2j ) ∼


j2

n2 (xj ≥ 0)

(n−j)2
n2 (xj < 0)

(23)

|P (k)
n

′
(xj)| ∼


nk+2

j
k+3

2
(xj ≥ 0)

nk+2

(n−j)k+3
2

(xj < 0)
(24)

3. Explicit Representation of Interpolatory Polynomials

We shall write Rm(x) satisfying (6), (7), (8), (9) and (10) as

Rm(x) =

n∑
j=1

Aj(x)yj +

n−1∑
j=1

Bj(x)y∗j +

n−1∑
j=1

Cj(x)y∗j
′
+

k∑
j=0

Dj(x)y
(l)
1 +

k+1∑
j=0

Ej(x)y
(l)
−1 (25)

Where Aj(x) and Bj(x) are the fundamental polynomials of first kind and Cj(x) is the fundamental polynomial of second

kind. Dj(x) and Ej(x) are the fundamental polynomials which correspond to the boundary conditions each of degree

≤ 3n+ 2k, uniquely determined by the following conditions.

For j = 1, 2, . . . , n 

Aj(xi) = δji, (i = 1, 2, . . . , n)

Aj(x
∗
i ) = 0, (i = 1, 2, . . . , n− 1)

Aj
′(x∗i ) = 0, (i = 1, 2 . . . , n− 1)

Aj
l(1) = 0, (l = 0, 1, . . . , k)

Aj
l(−1) = 0, (l = 0, 1, . . . , k + 1)

(26)

For j = 1, 2, . . . , n− 1 

Bj(xi) = 0, (i = 1, 2, . . . , n)

Bj(x
∗
i ) = δji, (i = 1, 2, . . . , n− 1)

Bj
′(x∗i ) = 0, (i = 1, 2 . . . , n− 1)

Bj
l(1) = 0, (l = 0, 1, . . . , k)

Bj
l(−1) = 0, (l = 0, 1, . . . , k + 1)

(27)
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For j = 1, 2, . . . , n− 1 

Cj(xi) = 0, (i = 1, 2, . . . , n)

Cj(x
∗
i ) = 0, (i = 1, 2, . . . , n− 1)

Cj
′(x∗i ) = δji, (i = 1, 2 . . . , n− 1)

Cj
l(1) = 0, (l = 0, 1, . . . , k)

Cj
l(−1) = 0, (l = 0, 1, . . . , k + 1)

(28)

For j = 0, 1, . . . , k 

Dj(xi) = 0, (i = 1, 2, . . . , n)

Dj(x
∗
i ) = 0, (i = 1, 2, . . . , n− 1)

Dj
′(x∗i ) = 0, (i = 1, 2 . . . , n− 1)

Dj
l(1) = δjl, (l = 0, 1, . . . , k)

Dj
l(−1) = 0, (l = 0, 1, . . . , k + 1)

(29)

For j = 0, 1, . . . , k + 1 

Ej(xi) = 0, (i = 1, 2, . . . , n)

Ej(x
∗
i ) = 0, (i = 1, 2, . . . , n− 1)

Ej
′(x∗i ) = 0, (i = 1, 2 . . . , n− 1)

Ej
l(1) = 0, (l = 0, 1, . . . , k)

Ej
l(−1) = δjl, (l = 0, 1, . . . , k + 1)

(30)

We proved the Explicit forms which are given in the following Lemmas.

Lemma 3.1. The fundamental polynomial Cj(x), for j = 1, 2, . . . , n − 1 satisfying the interpolatory conditions (28) are

given by

Cj(x) =
(1 + x)(1− x2)k+1P

(k)
n (x)P

(k+1)
n−1 (x)l∗j (x)

(1 + x∗j )(1− x∗j 2)k+1P
(k)
n (x∗j )P

(k+1)
n−1

′
(x∗j )

(31)

Lemma 3.2. The fundamental polynomial Bj(x), for j = 1, 2, . . . , n − 1 satisfying the interpolatory conditions (27) are

given by

Bj(x) =
(1 + x)(1− x2)k+1P

(k)
n (x){l∗j (x)}2

(1 + x∗j )(1− x∗j 2)k+1P
(k)
n (x∗j )

− 2{l∗j
′
(x∗j )−

x∗j (k + 1)

(1− x∗j 2)
}Cj(x) (32)

Lemma 3.3. The fundamental polynomial Aj(x), for j = 1, 2, . . . , n satisfying the interpolatory conditions (26) are given

by

Aj(x) =
(1− x2)k+1[P

(k+1)
n−1 (x)]2lj(x)(1 + x)

(1− x2j )k+1[P
(k+1)
n−1 (xj)]2(1 + xj)

(33)

Lemma 3.4. The fundamental polynomial which correspond to the boundary condition Dj(x) , for j = 0, 1, . . . , k satisfying

the interpolatory conditions (29) are given by

Dj(x) =(1− x)j(1 + x)k+2{P (k)
n (x)}2P (k)

n

′
(x)pj(x)

+ (1 + x)(1− x2)k+1P (k)
n

′
(x)P (k)

n (x)×

{
P

(k)
n

′
(x)qj(x)− P (k)

n (x)pj(x)

(1− x)k+1−j

} (34)

where degree pj(x) ≤ k − j − 1 and degree qj(x) ≤ k − j.

Lemma 3.5. The fundamental polynomial which correspond to the boundary condition Ej(x), for j = 0, 1, . . . , k+1 satisfying

the interpolatory conditions (30) are given by
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For j = 0, 1 . . . , k

Ej(x) =(1− x)k+1(1 + x)j{P (k)
n (x)}2P (k)

n

′
(x)p̃j(x)

+ (1− x2)k+1P (k)
n

′
(x)P (k)

n (x)×

{
P

(k+1)
n−1 (x)q̃j(x)− P (k)

n (x)p̃j(x)

(1 + x)k+1−j

} (35)

where degree p̃j(x) ≤ k − j and degree q̃j(x) ≤ k − j + 1.

For j = k + 1

Ek+1(x) =
(1− x2)k+1P

(k)
n (x){P (k+1)

n−1 (x)}2

(k + 1)!2k+1P
(k)
n (−1){P (k+1)

n−1 (−1)}2
(36)

By Lemma 3.1, Lemma 3.2, Lemma 3.3, Lemma 3.4 and Lemma 3.5 the polynomial Rm(x) is satisfies the conditions (26)-(30)

hence the existence part of theorem is proved.

4. Order of Convergence of the Fundamental Polynomials

Theorem 4.1. If k > 0 , n ≥ 2 , for the first derivative of the second kind fundamental polynomials on [-1,1] holds.

n−1∑
j=1

|C′j(x)| = O
(
nk+

9
2

)
(37)

Proof. Differentiating (31), we get
n−1∑
j=1

|C′j(x)| = η1 + η2 + η3

where

η1 =

n−1∑
j=1

{(1− x2)k+1 + 2x(k + 1)(1 + x)(1− x2)k}|P (k)
n (x)||P (k+1)

n−1 (x)||l∗j (x)|

(1 + x∗j )(1− x∗j 2)k+1|P (k)
n (x∗j )||P

(k+1)
n−1

′
(x∗j )|

We use the decomposition (19) for l∗j (x)

η1 ≤
n−1∑
j=1

{(1− x2)k+1 + 2x(k + 1)(1 + x)(1− x2)k}|P (k)
n (x)||P (k+1)

n−1 (x)|

(1 + x∗j )(1− x∗j 2)
3k
2

+ 9
4 |P (k)

n (x∗j )||P
(k+1)
n−1

′
(x∗j )|

3 × h̃(k+1)
n−1

×

{
γ1 +

n−2∑
ν=1

1

hk+1
ν

(1− x∗j
2
)
k
2
+ 1

4 |P (k+1)
ν (x∗j )||P (k+1)

ν (x)|

}

where γ1 is a constant independent of x. By using (23) and (24), we get

1

(1− x∗j 2)
3k
2

+ 9
4 |P (k+1)

n−1

′
(x∗j )|

3 = O (n− 1)
−3
2 (38)

Using (16), (17), (22), (23) and (38), we obtain

η1 = O(nk+
5
2 )

η2 =

n−1∑
j=1

(1 + x)(1− x2)k+1{|P (k)
n

′
(x)||P (k+1)

n−1 (x)|+ |P (k)
n (x)||P (k+1)

n−1

′
(x)|}|l∗j (x)|

(1 + x∗j )(1− x∗j 2)k+1|P (k)
n (x∗j )||P

(k+1)
n−1

′
(x∗j )|

η2 ≤
n−1∑
j=1

(1 + x)(1− x2)k+1{ (n+2k+1)
2

|P (k+1)
n−1 (x)|2 + (n+2k+2)

2
|P (k)
n (x)||P (k+2)

n−2 (x)|}

(1 + x∗j )(1− x∗j 2)
3k
2

+ 9
4 |P (k+1)

n−1

′
(x∗j )|3|P

(k)
n (x∗j )|

× h̃(k+1)
n−1

×

{
γ2 +

n−2∑
ν=1

1

hk+1
ν

(1− x∗j
2
)
k
2
+ 1

4 |P (k+1)
ν (x∗j )||P (k+1)

ν (x)|

}

where γ2 is a constant independent of x. Using (16), (17), (22), (23) and (38), we get

η2 = O
(
nk+

9
2

)
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η3 =

n−1∑
j=1

(1 + x)(1− x2)k+1|P (k)
n (x)||P (k+1)

n−1 (x)||l∗j ′(x)|

(1 + x∗j )(1− x∗j 2)k+1|P (k)
n (x∗j )||P

(k+1)
n−1

′
(x∗j )|

(39)

η3 ≤
n−1∑
j=1

(1 + x)(1− x2)k+1|P (k)
n (x)||P (k+1)

n−1 (x)|

(1 + x∗j )(1− x∗j 2)
3k
2

+ 9
4 |P (k+1)

n−1

′
(x∗j )|3|P

(k)
n (x∗j )|

× h̃(k+1)
n−1

×

{
γ3 +

n−2∑
ν=1

1

hk+1
ν

(1− x∗j
2
)
k
2
+ 1

4 |P (k+1)
ν (x∗j )||P (k+1)

ν

′
(x)|

}
(40)

where γ3 is a constant independent of x. Using (15), (16), (17), (22), (23) and (38), we obtain

η3 = O
(
nk+

7
2

)

Hence the theorem is proved.

Theorem 4.2. If k > 0, n ≥ 2, for the first derivative of the first kind fundamental polynomials on [-1,1] holds.

n−1∑
j=1

(1− x∗j
2
)|B′j(x)| = O

(
n2k+7

)
(41)

Proof. Differentiating (32), we get
n−1∑
j=1

(1− x∗j
2
)|B′j(x)| = ζ1 + ζ2 + ζ3 (42)

where

ζ1 =

n−1∑
j=1

[(1 + x)(1− x2)|P (k)
n

′
(x)|+ {2x(k + 1)(1 + x) + (1− x2)}|P (k)

n (x)|](1− x2)k

(1 + x∗j )(1− x∗j 2)k|P (k)
n (x∗j )|

× |l∗j (x)|2 (43)

We use the decomposition (20) for l∗j (x) and using (15) then we get

ζ1 ≤
n−1∑
j=1

[(1 + x)(1− x2) (n+2k+1)
2

|P (k+1)
n−1 (x)|+ {2x(k + 1)(1 + x) + (1− x2)}|P (k)

n (x)|](1− x2)k

(1 + x∗j )(1− x∗j 2)
3k
2

+ 9
4 |P (k+1)

n−1

′
(x∗j )|4|P

(k)
n (x∗j )|

× {h̃(k+1)
n−1 }

2

{
γ4 +

n−2∑
ν=1

n−2∑
ν=1

1

{h(k+1)
ν }2

(1− x∗j
2
)
k
2
+ 1

4 |P (k+1)
ν (x∗j )|2|P (k+1)

ν (x)|2
}

where γ4 is a constant independent of x. By using (23) and (24) then it holds

1

(1− x∗j 2)
3k
2

+ 9
4 |P (k+1)

n−1

′
(x∗j )|

4 = O (n− 1)−2 (44)

Using (16), (17), (22), (23) and (44), we have

ζ1 = O
(
n2k+6

)
ζ2 =

n−1∑
j=1

2(1 + x)(1− x2)k+1|P (k)
n (x)||l∗j (x)||l∗j ′(x)|

(1 + x∗j )(1− x∗j 2)k|P (k)
n (x∗j )|

ζ2 ≤
n−1∑
j=1

2(1 + x)(1− x2)k+1|P (k)
n (x)| × {h̃(k+1)

n−1 }2

(1 + x∗j )(1− x∗j 2)
3k
2

+ 9
4 |P (k+1)

n−1

′
(x∗j )|4|P

(k)
n (x∗j )|

×

{
γ5 +

n−2∑
ν=1

n−2∑
ν=1

1

{h(k+1)
ν }2

(1− x∗j
2
)
k
2
+ 1

4 |P (k+1)
ν (x∗j )|2|P (k+1)

ν (x)||P (k+1)
ν

′
(x)|

}

where γ5 is a constant independent of x. Using (15), (16), (17), (22), (23) and (44), we get

ζ2 = O
(
n2k+7

)
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ζ3 =

n−1∑
j=1

2{|l∗j
′
(x∗j )|(1− x∗j

2
) + x∗j (k + 1)}|Cj ′(x)|

Differentiating (19), it holds

l∗j
′
(x∗j ) =

P
(k+1)
n−1

′′
(x∗j )

2P
(k+1)
n−1

′
(x∗j )

(45)

By using (15), (16) and (45), we get

|l∗j
′
(x∗j )| = O(n2) (46)

Using (23), (37) and (46), we obtain

ζ3 = O
(
nk+

13
2

)
Hence the theorem is proved.

Theorem 4.3. If k > 0, n ≥ 2, for the first derivative of the first kind fundamental polynomials on [-1,1] holds.

n∑
j=1

(1− xj2)|A′j(x)| = O
(
n2k+5

)
(47)

Proof. Differentiating (33), we get
n∑
j=1

(1− xj2)|A′j(x)| = ξ1 + ξ2 + ξ3 (48)

where

ξ1 =

n∑
j=1

(1 + x)(1− x2)k+1{P (k+1)
n−1 (x)}2|lj ′(x)|

(1− xj2)k(1 + xj)|P (k+1)
n−1 (xj)|2

We use the decomposition (20) for lj(x)

ξ1 ≤
n∑
j=1

(1− x2)k+1|P (k+1)
n−1 (x)|2(n+ 2k + 1)2(1 + x)× h̃(k)

n

4(1 + xj){(1− x2j )
k
2
+ 1

4 |P (k)
n

′
(xj)|}4

×

{
γ6 +

n−1∑
ν=1

1

h
(k)
ν

(1− x2j )k|P (k)
ν (xj)||P (k)

ν

′
(x)|

}

where γ6 is a constant independent of x. Using (23), (24), it holds

1

{(1− x2j )
k
2
+ 1

4 |P (k)
n

′
(xj)|}4

= O

(
1

n2

)
(49)

By using (16), (17), (22), (23) and (49), we get

ξ1 = O(n2k+5)

ξ2 =
n∑
j=1

2(1 + x)(1− x2)k+1|P (k+1)
n−1 (x)||P (k+1)

n−1

′
(x)||lj(x)|

(1− xj2)k(1 + xj)|P (k+1)
n−1 (xj)|2

ξ2 ≤
n∑
j=1

2(1 + x)(n+ 2k + 1)2(1− x2)k+1|P (k+1)
n−1 (x)||P (k+1)

n−1

′
(x)| × h̃(k)

n

4(1 + xj){(1− x2j )
k
2
+ 1

4 |P (k)
n

′
(xj)|}4

×

{
γ7 +

n−1∑
ν=1

1

h
(k)
ν

(1− x2j )k|P (k)
ν (xj)||P (k)

ν (x)|

}

where γ7 is a constant independent of x. Using (15) and (16) then it holds

|P (k+1)
n−1

′
(x)| = O(nk+3) (50)
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By using (16), (17), (22), (23), (49) and (50), we get

ξ2 = O(n2k+5)

ξ3 =

n∑
j=1

{(1− x2)k+1 + 2x(k + 1)(1 + x)(1− x2)k}|P (k+1)
n−1 (x)|2|lj(x)|

(1− xj2)k(1 + xj)|P (k+1)
n−1 (xj)|2

ξ3 ≤
n∑
j=1

(n+ 2k + 1)2{(1− x2)k+1 + 2x(k + 1)(1 + x)(1− x2)k}|P (k+1)
n−1 (x)|2

4(1 + xj){(1− x2j )
k
2
+ 1

4 |P (k)
n

′
(xj)|}4

× h̃(k)
n

×

{
γ8 +

n−1∑
ν=1

1

h
(k)
ν

(1− x2j )k|P (k)
ν (xj)||P (k)

ν (x)|

}

where γ8 is a constant independent of x. By using (16), (17), (22), (23) and (49) then we obtain

ξ3 = O(n2k+3)

Hence the theorem is proved.

Theorem 4.4. Let k ≥ 0 be a fixed integer m=3n+2k and let {xi}ni=1 and {x∗i }n−1
i=1 be the roots of the Ultraspherical

polynomials P
(k)
n (x) and P

(k+1)
n−1 (x) respectively if f ∈ Cr[−1, 1] (r ≥ k + 1, n ≥ 2r − k + 2) then the interpolational

polynomial

Rm(x; f) =

n∑
i=1

f(xi)Ai(x) +

n−1∑
i=1

f(x∗i )Bi(x) +

n−1∑
i=1

f ′(x∗i )Ci(x) +

k∑
j=0

f (j)(1)Dj(x) +

k+1∑
j=0

f (j)(−1)Ej(x)

with the fundamental polynomials given in (31)-(36) satisfies for x ∈ [−1, 1]

|f ′ (x)−R′m (x; f) | = w

(
f (r);

1

n

)
O
(
n2k−r+7

)
(51)

Proof. For k = 0 we refer to (11), proved by Xie and Zhou [9]. Let f ∈ Cr[−1, 1], by the theorem of Gopengauz [1] for

every m ≥ 4r + 5 there exists a polynomial pm(x) of degree at most m such that for j = 0, . . . , r

|f (j) (x)− p(j)m (x) | ≤Mr,j

(√
1− x2
m

)r−j
w

(
f (r);

√
1− x2
m

)

where w(f (r); .) denotes the modulus of continuity of the function f (r)(x) and the constants Mr,j depend only on r and j.

Furthermore,

f (j)(±1) = p(j)m (±1) (j = 0, . . . , r)

By the uniqueness of the interpolational polynomials Rm(x; f) it is clear that Rm(x; pm) = pm(x). Hence for x ∈ [−1, 1]

|f ′ (x)−R′m (x; f) | ≤ |f ′ (x)− p′m (x) |+ |R′m (x; pm)−R′m (x; f) |

≤ |f ′ (x)− p′m (x) |+
n∑
j=1

|f (xj)− pm (xj) ||A′j (x) |+
n−1∑
j=1

|f
(
x∗j
)
− pm

(
x∗j
)
||B′j (x) |

+

n−1∑
j=1

|f ′
(
x∗j
)
− p′m

(
x∗j
)
||C′j (x) |

≤Mr,0
1

nr
w

(
f (r);

1

n

) n∑
j=1

(
1− x2j

)
|A′j (x) |+Mr,0

1

nr
w

(
f (r);

1

n

) n−1∑
j=1

(
1− x∗j

2
)
|B′j (x) |

+Mr,1
1

nr−1
w

(
f (r);

1

n

)
{1 +

n−1∑
j=1

|C′j (x) |}
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Now applying the estimates (37), (41) and (47) we have

|f ′ (x)−R′m (x; f) | ≤ O (1)
1

nr
w

(
f (r);

1

n

)
n2k+5 +O (1)

1

nr
w

(
f (r);

1

n

)
n2k+7 +O (1)

1

nr−1
w

(
f (r);

1

n

)(
1 + nk+

9
2

)
= O (1)n2k−r+7w

(
f (r);

1

n

)

which is the statement of the theorem.

By using Main Theorem and (12) we can state the following convergence theorem.

Theorem 4.5. Let k ≥ 0 be a fixed integer, m = 3n + 2k, n ≥ k + 4, let {xi}ni=1 and {x∗i }n−1
i=1 be the roots of the

ultraspherical polynomials P
(k)
n (x) and P k+1

n−1 (x) respectively. If f ∈ Ck+2[−1, 1], fk+2 ∈ Lipα, α > 1
2

, then Rm(x; f) and

R′m(x; f) uniformly converge to f(x) and f ′(x), respectively on [-1,1] as n→∞.
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