International Journal of Mathematics Atud its Applications

An Analysis of Interpolatory polynomials on finite interval

Rekha Srivastava ${ }^{1}$ and Yamini Singh ${ }^{1, *}$
1 Department of Mathematics and Astronomy, Lucknow University, Lucknow, Uttar Pradesh, India.

Abstract

The main object of this paper is to construct a interpolatory polynomial with hermite conditions at end points of interval $[-1,1]$ based on the zeros of the polynomials $P_{n}^{(k)}(x)$ and $P_{n-1}^{(k+1)}(x)$ where $P_{n}^{(k)}(x)$ is the ultraspherical polynomial of degree n .In this paper, we prove existence ,explicit representation and order of convergence of the interpolatory polynomials. MSC: $\quad 41 \mathrm{~A} 10,97 \mathrm{~N} 50$

Keywords: Pál-type interpolation; Ultraspherical polynomial; Explicit form; Order of convergence (C) JS Publication.

1. Introduction

In 2001, Lenard [4] introduced a \grave{P} al-type interpolation polynomials with boundary conditions at end points of interval. She considered two system of real numbers $\left\{x_{i}\right\}_{i=1}^{n-1}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n}$ which are the zeros of $P_{n-1}^{(k+1)}(x)$ and $P_{n}^{(k)}(x)$ respectively, then there exists a unique polynomial $Q_{m}(x)$ of degree at most $\mathrm{m}=2 \mathrm{n}+2 \mathrm{k}+1$ satisfying the interpolation conditions.

$$
\begin{align*}
& Q_{m}\left(x_{i}\right)=y_{i}, \quad(i=1,2, \ldots, n-1) \tag{1}\\
& Q_{m}^{\prime}\left(x_{i}^{*}\right)=y_{i}^{\prime}, \quad(i=1,2, \ldots, n) \tag{2}
\end{align*}
$$

with (Hermite) boundary conditions.

$$
\begin{align*}
Q_{m}^{(l)}(1) & =\alpha_{j}, \quad(j=0,1, \ldots, k) \tag{3}\\
Q_{m}^{(l)}(-1) & =\beta_{j}, \quad(l=0,1, \ldots, k+1) \tag{4}
\end{align*}
$$

where $y_{i}, y_{i}^{\prime}, \alpha_{j}$ and β_{j} are arbitrary real numbers, k is a fixed non-negative integer. Later on many authors have considered with above method of interpolation. In Joo and Szili [2] have considered weighted $(0,2)$ interpolation on the roots of Jacobi polynomials. Pal L.G [5] has discussed a general lacunary ($0 ; 0,1$) interpolation process. In other paper [6] and [7] have discussed pal-type interpolation on the roots of Hermite polynomials. In this paper we study the following ($0 ; 0,1$) interpolation problem on the interval $[-1,1]$. Let the set of knots be given by

$$
\begin{equation*}
-1=x_{n}^{*}<x_{n}<x_{n-1}^{*}<x_{n-1}<\cdots<x_{1}^{*}<x_{1}<x_{0}^{*}=1, \quad n \geq 1 \tag{5}
\end{equation*}
$$

[^0]Where $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n-1}$ are the roots of Ultraspherical polynomials $P_{n}^{(k)}(x)$ and $P_{n-1}^{(k+1)}(x)$ respectively. On the knots (5) there exist a unique polynomial $R_{m}(x)$ of degree at most $m=3 n+2 k$ satisfying the interpolatory conditions.

$$
\begin{align*}
& R_{m}\left(x_{i}\right)=y_{i}, \quad(i=1,2, \ldots, n) \tag{6}\\
& R_{m}\left(x_{i}^{*}\right)=y_{i}^{*}, \quad(i=1,2, \ldots, n-1) \tag{7}\\
& R_{m}^{\prime}\left(x_{i}^{*}\right)=y_{i}^{* \prime}, \quad(i=1,2, \ldots, n-1) \tag{8}
\end{align*}
$$

with (Hermite) boundary conditions.

$$
\begin{align*}
R_{m}^{(l)}(1) & =y_{1}^{(l)}, \quad(l=0,1, \ldots, k) \tag{9}\\
R_{m}^{(l)}(-1) & =y_{-1}^{(l)}, \quad(l=0,1, \ldots, k+1) \tag{10}
\end{align*}
$$

where $y_{i}, y_{i}^{*}, y_{i}^{* \prime}, y_{1}^{l}$ and y_{-1}^{l} are arbitrary real numbers and k is a fixed non-negative integer. Here $P_{n}^{(k)}(x)$ denotes the Ultraspherical polynomial of degree n with the parameter k . The convergence of this interpolation process was studied by Xie [9] if $f \in C^{r}[-1,1]$ for $x \in[-1,1]$, then

$$
\begin{equation*}
\left|f(x)-R_{2 n+1}(x ; f)\right|=O\left(n^{-r+1}\right) w\left(f^{(r)} ; \frac{1}{n}\right) \tag{11}
\end{equation*}
$$

For $k \geq 1$, Lenard [3] proved that if $f \in C^{r}[-1,1]$ for $x \in[-1,1]$, then

$$
\begin{equation*}
\left|f(x)-R_{m}(x ; f)\right|=O\left(n^{k-r+\frac{1}{2}}\right) w\left(f^{(r)} ; \frac{1}{n}\right) \tag{12}
\end{equation*}
$$

For $k \geq 0$, Lenard [4] proved that if $f \in C^{r}[-1,1]$ for $x \in[-1,1]$, then

$$
\begin{equation*}
\left|f^{\prime}(x)-R_{m}^{\prime}(x ; f)\right|=w\left(f^{(r)} ; \frac{1}{n}\right) O\left(n^{k-r+\frac{5}{2}}\right) \tag{13}
\end{equation*}
$$

where $w\left(f^{(r)},.\right)$ denotes the modulus of continuity of the $r^{t h}$ derivative of the function $f(x)$. If $f \in C^{k+2}[-1,1], f^{k+2} \in \operatorname{Lip\alpha }$, $\alpha>\frac{1}{2}$, then $R_{m}(x ; f)$ and $R_{m}^{\prime}(x ; f)$ uniformly converges to $f(x)$ and $f^{\prime}(x)$ respectively on $[-1,1]$.

2. Preliminaries

We shall use the some well known properties and results [8] of the Ultraspherical polynomials.

$$
\begin{align*}
\left(1-x^{2}\right) P_{n}^{(k) \prime \prime}(x)-2 x(k+1) P_{n}^{(k)^{\prime}}(x)+n(n+2 k+1) P_{n}^{(k)}(x) & =0 \tag{14}\\
P_{n}^{(k)}(x) & =\frac{n+2 k+1}{2} P_{n-1}^{(k+1)}(x) \tag{15}\\
\left|P_{n}^{(k)}(x)\right| & =O\left(n^{k}\right), \quad x \in[-1,1] \tag{16}\\
\left(1-x^{2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{n}^{(k)}(x)\right| & =O\left(\frac{1}{\sqrt{n}}\right) \tag{17}
\end{align*}
$$

The fundamental polynomials of Lagrange interpolation are given by

$$
\begin{equation*}
l_{j}(x)=\frac{P_{n}^{(k)}(x)}{P_{n}^{(k)^{\prime}}\left(x_{j}\right)\left(x-x_{j}\right)} \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& l_{j}^{*}(x)=\frac{P_{n-1}^{(k+1)}(x)}{P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\left(x-x_{j}^{*}\right)} \tag{19}\\
& l_{j}(x)=\frac{P_{n}^{(k)}(x)}{P_{n}^{(k)^{\prime}}\left(x_{j}\right)\left(x-x_{j}\right)}=\frac{\tilde{h}_{n}^{(k)}}{\left(1-x_{j}^{2}\right)\left[P_{n}^{(k)^{\prime}}\left(x_{j}\right)\right]^{2}} \sum_{\nu=0}^{n-1} \frac{1}{h_{\nu}^{(k)}} P_{\nu}^{(k)}\left(x_{j}\right) P_{\nu}^{(k)}(x) \tag{20}
\end{align*}
$$

Where

$$
\begin{align*}
& \tilde{h}_{n}^{(k)}=\frac{2^{2 k} \Gamma(2(n+k+1))}{\Gamma(n+1) \Gamma(n+2 k+1)} \sim C_{1} \tag{21}\\
& h_{\nu}^{(k)}=\frac{2^{2 k+1}}{2 \nu+2 k+1} \frac{\Gamma(2(\nu+k+1))}{\Gamma(\nu+1) \Gamma(\nu+2 k+1)}\left\{\begin{aligned}
\sim \frac{1}{\nu} & (\nu>0) \\
=C_{2} & (\nu=0)
\end{aligned}\right. \tag{22}
\end{align*}
$$

where the constants C_{1}, C_{2} depends only α. If $x_{1}>x_{2}>\cdots>x_{n}$ are the roots of $P_{n}^{(k)}(x)$, then the following relations hold [8].

$$
\begin{align*}
\left(1-x_{j}^{2}\right) & \sim\left\{\begin{aligned}
\frac{j^{2}}{n^{2}} & \left(x_{j} \geq 0\right) \\
\frac{(n-j)^{2}}{n^{2}} & \left(x_{j}<0\right)
\end{aligned}\right. \tag{23}\\
\left|P_{n}^{(k)^{\prime}}\left(x_{j}\right)\right| & \sim\left\{\begin{aligned}
\frac{n^{k+2}}{j^{k+\frac{3}{2}}} & \left(x_{j} \geq 0\right) \\
\frac{n^{k+2}}{(n-j)^{k+\frac{3}{2}}} & \left(x_{j}<0\right)
\end{aligned}\right. \tag{24}
\end{align*}
$$

3. Explicit Representation of Interpolatory Polynomials

We shall write $R_{m}(x)$ satisfying (6), (7), (8), (9) and (10) as

$$
\begin{equation*}
R_{m}(x)=\sum_{j=1}^{n} A_{j}(x) y_{j}+\sum_{j=1}^{n-1} B_{j}(x) y_{j}^{*}+\sum_{j=1}^{n-1} C_{j}(x) y_{j}^{* \prime}+\sum_{j=0}^{k} D_{j}(x) y_{1}^{(l)}+\sum_{j=0}^{k+1} E_{j}(x) y_{-1}^{(l)} \tag{25}
\end{equation*}
$$

Where $A_{j}(x)$ and $B_{j}(x)$ are the fundamental polynomials of first kind and $C_{j}(x)$ is the fundamental polynomial of second kind. $D_{j}(x)$ and $E_{j}(x)$ are the fundamental polynomials which correspond to the boundary conditions each of degree $\leq 3 n+2 k$, uniquely determined by the following conditions.

For $j=1,2, \ldots, n$

$$
\left\{\begin{array}{c}
A_{j}\left(x_{i}\right)=\delta_{j i}, \quad(i=1,2, \ldots, n) \tag{26}\\
A_{j}\left(x_{i}^{*}\right)=0, \quad(i=1,2, \ldots, n-1) \\
A_{j}^{\prime}\left(x_{i}^{*}\right)=0, \quad(i=1,2 \ldots, n-1) \\
A_{j}^{l}(1)=0, \quad(l=0,1, \ldots, k) \\
A_{j}^{l}(-1)=0, \quad(l=0,1, \ldots, k+1)
\end{array}\right.
$$

For $j=1,2, \ldots, n-1$

$$
\left\{\begin{array}{c}
B_{j}\left(x_{i}\right)=0, \quad(i=1,2, \ldots, n) \tag{27}\\
B_{j}\left(x_{i}^{*}\right)=\delta_{j i}, \quad(i=1,2, \ldots, n-1) \\
B_{j}{ }^{\prime}\left(x_{i}^{*}\right)=0, \quad(i=1,2 \ldots, n-1) \\
B_{j}{ }^{l}(1)=0, \quad(l=0,1, \ldots, k) \\
B_{j}{ }^{l}(-1)=0, \quad(l=0,1, \ldots, k+1)
\end{array}\right.
$$

For $j=1,2, \ldots, n-1$

$$
\left\{\begin{array}{c}
C_{j}\left(x_{i}\right)=0, \quad(i=1,2, \ldots, n) \tag{28}\\
C_{j}\left(x_{i}^{*}\right)=0, \quad(i=1,2, \ldots, n-1) \\
C_{j}^{\prime}\left(x_{i}^{*}\right)=\delta_{j i}, \quad(i=1,2 \ldots, n-1) \\
C_{j}^{l}(1)=0, \quad(l=0,1, \ldots, k) \\
C_{j}^{l}(-1)=0, \quad(l=0,1, \ldots, k+1)
\end{array}\right.
$$

For $j=0,1, \ldots, k$

$$
\left\{\begin{array}{cc}
D_{j}\left(x_{i}\right)=0, & (i=1,2, \ldots, n) \tag{29}\\
D_{j}\left(x_{i}^{*}\right)=0, & (i=1,2, \ldots, n-1) \\
D_{j}^{\prime}\left(x_{i}^{*}\right)=0, & (i=1,2 \ldots, n-1) \\
D_{j}^{l}(1)=\delta_{j l}, & (l=0,1, \ldots, k) \\
D_{j}^{l}(-1)=0, & (l=0,1, \ldots, k+1)
\end{array}\right.
$$

For $j=0,1, \ldots, k+1$

$$
\left\{\begin{array}{c}
E_{j}\left(x_{i}\right)=0, \quad(i=1,2, \ldots, n) \tag{30}\\
E_{j}\left(x_{i}^{*}\right)=0, \quad(i=1,2, \ldots, n-1) \\
E_{j}^{\prime}\left(x_{i}^{*}\right)=0, \quad(i=1,2 \ldots, n-1) \\
E_{j}^{l}(1)=0, \quad(l=0,1, \ldots, k) \\
E_{j}^{l}(-1)=\delta_{j l}, \quad(l=0,1, \ldots, k+1)
\end{array}\right.
$$

We proved the Explicit forms which are given in the following Lemmas.

Lemma 3.1. The fundamental polynomial $C_{j}(x)$, for $j=1,2, \ldots, n-1$ satisfying the interpolatory conditions (28) are given by

$$
\begin{equation*}
C_{j}(x)=\frac{(1+x)\left(1-x^{2}\right)^{k+1} P_{n}^{(k)}(x) P_{n-1}^{(k+1)}(x) l_{j}^{*}(x)}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{k+1} P_{n}^{(k)}\left(x_{j}^{*}\right) P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)} \tag{31}
\end{equation*}
$$

Lemma 3.2. The fundamental polynomial $B_{j}(x)$, for $j=1,2, \ldots, n-1$ satisfying the interpolatory conditions (27) are given by

$$
\begin{equation*}
B_{j}(x)=\frac{(1+x)\left(1-x^{2}\right)^{k+1} P_{n}^{(k)}(x)\left\{l_{j}^{*}(x)\right\}^{2}}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{k+1} P_{n}^{(k)}\left(x_{j}^{*}\right)}-2\left\{l_{j}^{* \prime}\left(x_{j}^{*}\right)-\frac{x_{j}^{*}(k+1)}{\left(1-x_{j}^{* 2}\right)}\right\} C_{j}(x) \tag{32}
\end{equation*}
$$

Lemma 3.3. The fundamental polynomial $A_{j}(x)$, for $j=1,2, \ldots, n$ satisfying the interpolatory conditions (26) are given $b y$

$$
\begin{equation*}
A_{j}(x)=\frac{\left(1-x^{2}\right)^{k+1}\left[P_{n-1}^{(k+1)}(x)\right]^{2} l_{j}(x)(1+x)}{\left(1-x_{j}^{2}\right)^{k+1}\left[P_{n-1}^{(k+1)}\left(x_{j}\right)\right]^{2}\left(1+x_{j}\right)} \tag{33}
\end{equation*}
$$

Lemma 3.4. The fundamental polynomial which correspond to the boundary condition $D_{j}(x)$, for $j=0,1, \ldots, k$ satisfying the interpolatory conditions (29) are given by

$$
\begin{align*}
D_{j}(x)= & (1-x)^{j}(1+x)^{k+2}\left\{P_{n}^{(k)}(x)\right\}^{2} P_{n}^{(k)^{\prime}}(x) p_{j}(x) \\
& +(1+x)\left(1-x^{2}\right)^{k+1} P_{n}^{(k)^{\prime}}(x) P_{n}^{(k)}(x) \times\left\{\frac{P_{n}^{(k)^{\prime}}(x) q_{j}(x)-P_{n}^{(k)}(x) p_{j}(x)}{(1-x)^{k+1-j}}\right\} \tag{34}
\end{align*}
$$

where degree $p_{j}(x) \leq k-j-1$ and degree $q_{j}(x) \leq k-j$.

Lemma 3.5. The fundamental polynomial which correspond to the boundary condition $E_{j}(x)$, for $j=0,1, \ldots, k+1$ satisfying the interpolatory conditions (30) are given by

For $j=0,1 \ldots, k$

$$
\begin{align*}
E_{j}(x)= & (1-x)^{k+1}(1+x)^{j}\left\{P_{n}^{(k)}(x)\right\}^{2} P_{n}^{(k)^{\prime}}(x) \tilde{p_{j}}(x) \\
& +\left(1-x^{2}\right)^{k+1} P_{n}^{(k)^{\prime}}(x) P_{n}^{(k)}(x) \times\left\{\frac{P_{n-1}^{(k+1)}(x) \tilde{q_{j}}(x)-P_{n}^{(k)}(x) \tilde{p_{j}}(x)}{(1+x)^{k+1-j}}\right\} \tag{35}
\end{align*}
$$

where degree $\tilde{p_{j}}(x) \leq k-j$ and degree $\tilde{q_{j}}(x) \leq k-j+1$.
For $j=k+1$

$$
\begin{equation*}
E_{k+1}(x)=\frac{\left(1-x^{2}\right)^{k+1} P_{n}^{(k)}(x)\left\{P_{n-1}^{(k+1)}(x)\right\}^{2}}{(k+1)!2^{k+1} P_{n}^{(k)}(-1)\left\{P_{n-1}^{(k+1)}(-1)\right\}^{2}} \tag{36}
\end{equation*}
$$

By Lemma 3.1, Lemma 3.2, Lemma 3.3, Lemma 3.4 and Lemma 3.5 the polynomial $R_{m}(x)$ is satisfies the conditions (26)-(30) hence the existence part of theorem is proved.

4. Order of Convergence of the Fundamental Polynomials

Theorem 4.1. If $k>0, n \geq 2$, for the first derivative of the second kind fundamental polynomials on $[-1,1]$ holds.

$$
\begin{equation*}
\sum_{j=1}^{n-1}\left|C_{j}^{\prime}(x)\right|=O\left(n^{k+\frac{9}{2}}\right) \tag{37}
\end{equation*}
$$

Proof. Differentiating (31), we get

$$
\sum_{j=1}^{n-1}\left|C_{j}^{\prime}(x)\right|=\eta_{1}+\eta_{2}+\eta_{3}
$$

where

$$
\eta_{1}=\sum_{j=1}^{n-1} \frac{\left\{\left(1-x^{2}\right)^{k+1}+2 x(k+1)(1+x)\left(1-x^{2}\right)^{k}\right\}\left|P_{n}^{(k)}(x) \| P_{n-1}^{(k+1)}(x)\right|\left|l_{j}^{*}(x)\right|}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{k+1}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|}
$$

We use the decomposition (19) for $l_{j}^{*}(x)$

$$
\begin{aligned}
\eta_{1} \leq & \sum_{j=1}^{n-1} \frac{\left\{\left(1-x^{2}\right)^{k+1}+2 x(k+1)(1+x)\left(1-x^{2}\right)^{k}\right\}\left|P_{n}^{(k)}(x)\right|\left|P_{n-1}^{(k+1)}(x)\right|}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{\frac{3 k}{2}+\frac{9}{4}}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|^{3}} \times \tilde{h}_{n-1}^{(k+1)} \\
& \times\left\{\gamma_{1}+\sum_{\nu=1}^{n-2} \frac{1}{h_{\nu}^{k+1}}\left(1-x_{j}^{* 2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{\nu}^{(k+1)}\left(x_{j}^{*}\right)\right|\left|P_{\nu}^{(k+1)}(x)\right|\right\}
\end{aligned}
$$

where γ_{1} is a constant independent of x . By using (23) and (24), we get

$$
\begin{equation*}
\frac{1}{\left(1-x_{j}^{* 2}\right)^{\frac{3 k}{2}+\frac{9}{4}}\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|^{3}}=O(n-1)^{\frac{-3}{2}} \tag{38}
\end{equation*}
$$

Using (16), (17), (22), (23) and (38), we obtain

$$
\begin{aligned}
\eta_{1} & =O\left(n^{k+\frac{5}{2}}\right) \\
\eta_{2} & =\sum_{j=1}^{n-1} \frac{(1+x)\left(1-x^{2}\right)^{k+1}\left\{\left|P_{n}^{(k)^{\prime}}(x)\right|\left|P_{n-1}^{(k+1)}(x)\right|+\left|P_{n}^{(k)}(x)\right|\left|P_{n-1}^{(k+1)^{\prime}}(x)\right|\right\}\left|l_{j}^{*}(x)\right|}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{k+1}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|} \\
\eta_{2} & \leq \sum_{j=1}^{n-1} \frac{(1+x)\left(1-x^{2}\right)^{k+1}\left\{\frac{(n+2 k+1)}{2}\left|P_{n-1}^{(k+1)}(x)\right|^{2}+\frac{(n+2 k+2)}{2}\left|P_{n}^{(k)}(x)\right|\left|P_{n-2}^{(k+2)}(x)\right|\right\}}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{\frac{3 k}{2}+\frac{9}{4}}\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|^{3}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|} \times \tilde{h}_{n-1}^{(k+1)} \\
& \times\left\{\gamma_{2}+\sum_{\nu=1}^{n-2} \frac{1}{\left.h_{\nu}^{k+1}\left(1-x_{j}^{* 2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{\nu}^{(k+1)}\left(x_{j}^{*}\right)\right|\left|P_{\nu}^{(k+1)}(x)\right|\right\}}\right.
\end{aligned}
$$

where γ_{2} is a constant independent of x . Using (16), (17), (22), (23) and (38), we get

$$
\eta_{2}=O\left(n^{k+\frac{9}{2}}\right)
$$

$$
\begin{align*}
\eta_{3} & =\sum_{j=1}^{n-1} \frac{(1+x)\left(1-x^{2}\right)^{k+1}\left|P_{n}^{(k)}(x)\right|\left|P_{n-1}^{(k+1)}(x)\right|\left|l_{j}^{* \prime}(x)\right|}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{k+1}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|} \tag{39}\\
\eta_{3} & \leq \sum_{j=1}^{n-1} \frac{(1+x)\left(1-x^{2}\right)^{k+1}\left|P_{n}^{(k)}(x)\right|\left|P_{n-1}^{(k+1)}(x)\right|}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{\frac{3 k}{2}+\frac{9}{4}}\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|^{3}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|} \times \tilde{h}_{n-1}^{(k+1)} \\
& \times\left\{\gamma_{3}+\sum_{\nu=1}^{n-2} \frac{1}{h_{\nu}^{k+1}}\left(1-x_{j}^{* 2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{\nu}^{(k+1)}\left(x_{j}^{*}\right)\right|\left|P_{\nu}^{(k+1)^{\prime}}(x)\right|\right\} \tag{40}
\end{align*}
$$

where γ_{3} is a constant independent of x . Using (15), (16), (17), (22), (23) and (38), we obtain

$$
\eta_{3}=O\left(n^{k+\frac{7}{2}}\right)
$$

Hence the theorem is proved.

Theorem 4.2. If $k>0, n \geq 2$, for the first derivative of the first kind fundamental polynomials on $[-1,1]$ holds.

$$
\begin{equation*}
\sum_{j=1}^{n-1}\left(1-x_{j}^{* 2}\right)\left|B_{j}^{\prime}(x)\right|=O\left(n^{2 k+7}\right) \tag{41}
\end{equation*}
$$

Proof. Differentiating (32), we get

$$
\begin{equation*}
\sum_{j=1}^{n-1}\left(1-x_{j}^{* 2}\right)\left|B_{j}^{\prime}(x)\right|=\zeta_{1}+\zeta_{2}+\zeta_{3} \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta_{1}=\sum_{j=1}^{n-1} \frac{\left[(1+x)\left(1-x^{2}\right)\left|P_{n}^{(k)^{\prime}}(x)\right|+\left\{2 x(k+1)(1+x)+\left(1-x^{2}\right)\right\}\left|P_{n}^{(k)}(x)\right|\right]\left(1-x^{2}\right)^{k}}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{k}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|} \times\left|l_{j}^{*}(x)\right|^{2} \tag{43}
\end{equation*}
$$

We use the decomposition (20) for $l_{j}^{*}(x)$ and using (15) then we get

$$
\begin{aligned}
\zeta_{1} & \leq \sum_{j=1}^{n-1} \frac{\left[(1+x)\left(1-x^{2}\right) \frac{(n+2 k+1)}{2}\left|P_{n-1}^{(k+1)}(x)\right|+\left\{2 x(k+1)(1+x)+\left(1-x^{2}\right)\right\}\left|P_{n}^{(k)}(x)\right|\right]\left(1-x^{2}\right)^{k}}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{\frac{3 k}{2}+\frac{9}{4}}\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|^{4}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|} \\
& \times\left\{\tilde{h}_{n-1}^{(k+1)}\right\}^{2}\left\{\gamma_{4}+\sum_{\nu=1}^{n-2} \sum_{\nu=1}^{n-2} \frac{1}{\left\{h_{\nu}^{(k+1)}\right\}^{2}}\left(1-x_{j}^{* 2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{\nu}^{(k+1)}\left(x_{j}^{*}\right)\right|^{2}\left|P_{\nu}^{(k+1)}(x)\right|^{2}\right\}
\end{aligned}
$$

where γ_{4} is a constant independent of x . By using (23) and (24) then it holds

$$
\begin{equation*}
\frac{1}{\left(1-x_{j}^{* 2}\right)^{\frac{3 k}{2}+\frac{9}{4}}\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|^{4}}=O(n-1)^{-2} \tag{44}
\end{equation*}
$$

Using (16), (17), (22), (23) and (44), we have

$$
\begin{aligned}
\zeta_{1} & =O\left(n^{2 k+6}\right) \\
\zeta_{2} & =\sum_{j=1}^{n-1} \frac{2(1+x)\left(1-x^{2}\right)^{k+1}\left|P_{n}^{(k)}(x)\right|\left|l_{j}^{*}(x)\right|\left|l_{j}^{* \prime}(x)\right|}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{k}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|} \\
\zeta_{2} & \leq \sum_{j=1}^{n-1} \frac{2(1+x)\left(1-x^{2}\right)^{k+1}\left|P_{n}^{(k)}(x)\right| \times\left\{\tilde{h}_{n-1}^{(k+1)}\right\}^{2}}{\left(1+x_{j}^{*}\right)\left(1-x_{j}^{* 2}\right)^{\frac{3 k}{2}+\frac{9}{4}}\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)\right|^{4}\left|P_{n}^{(k)}\left(x_{j}^{*}\right)\right|} \\
& \times\left\{\gamma_{5}+\sum_{\nu=1}^{n-2} \sum_{\nu=1}^{n-2} \frac{1}{\left\{h_{\nu}^{(k+1)}\right\}^{2}}\left(1-x_{j}^{* 2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{\nu}^{(k+1)}\left(x_{j}^{*}\right)\right|^{2}\left|P_{\nu}^{(k+1)}(x)\right|\left|P_{\nu}^{(k+1)^{\prime}}(x)\right|\right\}
\end{aligned}
$$

where γ_{5} is a constant independent of x . Using (15), (16), (17), (22), (23) and (44), we get

$$
\zeta_{2}=O\left(n^{2 k+7}\right)
$$

$$
\zeta_{3}=\sum_{j=1}^{n-1} 2\left\{\left|l_{j}^{* \prime}\left(x_{j}^{*}\right)\right|\left(1-x_{j}^{* 2}\right)+x_{j}^{*}(k+1)\right\}\left|C_{j}^{\prime}(x)\right|
$$

Differentiating (19), it holds

$$
\begin{equation*}
l_{j}^{* \prime}\left(x_{j}^{*}\right)=\frac{P_{n-1}^{(k+1)^{\prime \prime}}\left(x_{j}^{*}\right)}{2 P_{n-1}^{(k+1)^{\prime}}\left(x_{j}^{*}\right)} \tag{45}
\end{equation*}
$$

By using (15), (16) and (45), we get

$$
\begin{equation*}
\left|l_{j}^{* \prime}\left(x_{j}^{*}\right)\right|=O\left(n^{2}\right) \tag{46}
\end{equation*}
$$

Using (23), (37) and (46), we obtain

$$
\zeta_{3}=O\left(n^{k+\frac{13}{2}}\right)
$$

Hence the theorem is proved.

Theorem 4.3. If $k>0, n \geq 2$, for the first derivative of the first kind fundamental polynomials on $[-1,1]$ holds.

$$
\begin{equation*}
\sum_{j=1}^{n}\left(1-x_{j}^{2}\right)\left|A_{j}^{\prime}(x)\right|=O\left(n^{2 k+5}\right) \tag{47}
\end{equation*}
$$

Proof. Differentiating (33), we get

$$
\begin{equation*}
\sum_{j=1}^{n}\left(1-x_{j}^{2}\right)\left|A_{j}^{\prime}(x)\right|=\xi_{1}+\xi_{2}+\xi_{3} \tag{48}
\end{equation*}
$$

where

$$
\xi_{1}=\sum_{j=1}^{n} \frac{(1+x)\left(1-x^{2}\right)^{k+1}\left\{P_{n-1}^{(k+1)}(x)\right\}^{2}\left|l_{j}{ }^{\prime}(x)\right|}{\left(1-x_{j}^{2}\right)^{k}\left(1+x_{j}\right)\left|P_{n-1}^{(k+1)}\left(x_{j}\right)\right|^{2}}
$$

We use the decomposition (20) for $l_{j}(x)$

$$
\xi_{1} \leq \sum_{j=1}^{n} \frac{\left(1-x^{2}\right)^{k+1}\left|P_{n-1}^{(k+1)}(x)\right|^{2}(n+2 k+1)^{2}(1+x) \times \tilde{h}_{n}^{(k)}}{4\left(1+x_{j}\right)\left\{\left(1-x_{j}^{2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{n}^{(k)^{\prime}}\left(x_{j}\right)\right|\right\}^{4}} \times\left\{\gamma_{6}+\sum_{\nu=1}^{n-1} \frac{1}{h_{\nu}^{(k)}}\left(1-x_{j}^{2}\right)^{k}\left|P_{\nu}^{(k)}\left(x_{j}\right)\right|\left|P_{\nu}^{(k)^{\prime}}(x)\right|\right\}
$$

where γ_{6} is a constant independent of x . Using (23), (24), it holds

$$
\begin{equation*}
\frac{1}{\left\{\left(1-x_{j}^{2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{n}^{(k)^{\prime}}\left(x_{j}\right)\right|\right\}^{4}}=O\left(\frac{1}{n^{2}}\right) \tag{49}
\end{equation*}
$$

By using (16), (17), (22), (23) and (49), we get

$$
\begin{aligned}
\xi_{1} & =O\left(n^{2 k+5}\right) \\
\xi_{2} & =\sum_{j=1}^{n} \frac{2(1+x)\left(1-x^{2}\right)^{k+1}\left|P_{n-1}^{(k+1)}(x)\right|\left|P_{n-1}^{(k+1)^{\prime}}(x)\right|\left|l_{j}(x)\right|}{\left(1-x_{j}^{2}\right)^{k}\left(1+x_{j}\right)\left|P_{n-1}^{(k+1)}\left(x_{j}\right)\right|^{2}} \\
\xi_{2} & \leq \sum_{j=1}^{n} \frac{2(1+x)(n+2 k+1)^{2}\left(1-x^{2}\right)^{k+1}\left|P_{n-1}^{(k+1)}(x)\right|\left|P_{n-1}^{(k+1)^{\prime}}(x)\right| \times \tilde{h}_{n}^{(k)}}{4\left(1+x_{j}\right)\left\{\left(1-x_{j}^{2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{n}^{(k)^{\prime}}\left(x_{j}\right)\right|\right\}^{4}} \\
& \times\left\{\gamma_{7}+\sum_{\nu=1}^{n-1} \frac{1}{h_{\nu}^{(k)}}\left(1-x_{j}^{2}\right)^{k}\left|P_{\nu}^{(k)}\left(x_{j}\right) \| P_{\nu}^{(k)}(x)\right|\right\}
\end{aligned}
$$

where γ_{7} is a constant independent of x . Using (15) and (16) then it holds

$$
\begin{equation*}
\left|P_{n-1}^{(k+1)^{\prime}}(x)\right|=O\left(n^{k+3}\right) \tag{50}
\end{equation*}
$$

By using (16), (17), (22), (23), (49) and (50), we get

$$
\begin{aligned}
\xi_{2} & =O\left(n^{2 k+5}\right) \\
\xi_{3} & =\sum_{j=1}^{n} \frac{\left\{\left(1-x^{2}\right)^{k+1}+2 x(k+1)(1+x)\left(1-x^{2}\right)^{k}\right\}\left|P_{n-1}^{(k+1)}(x)\right|^{2}\left|l_{j}(x)\right|}{\left(1-x_{j}{ }^{2}\right)^{k}\left(1+x_{j}\right)\left|P_{n-1}^{(k+1)}\left(x_{j}\right)\right|^{2}} \\
\xi_{3} & \leq \sum_{j=1}^{n} \frac{(n+2 k+1)^{2}\left\{\left(1-x^{2}\right)^{k+1}+2 x(k+1)(1+x)\left(1-x^{2}\right)^{k}\right\}\left|P_{n-1}^{(k+1)}(x)\right|^{2}}{4\left(1+x_{j}\right)\left\{\left(1-x_{j}^{2}\right)^{\frac{k}{2}+\frac{1}{4}}\left|P_{n}^{(k)^{\prime}}\left(x_{j}\right)\right|\right\}^{4}} \times \tilde{h}_{n}^{(k)} \\
& \times\left\{\gamma_{8}+\sum_{\nu=1}^{n-1} \frac{1}{h_{\nu}^{(k)}}\left(1-x_{j}^{2}\right)^{k}\left|P_{\nu}^{(k)}\left(x_{j}\right)\right|\left|P_{\nu}^{(k)}(x)\right|\right\}
\end{aligned}
$$

where γ_{8} is a constant independent of x . By using (16), (17), (22), (23) and (49) then we obtain

$$
\xi_{3}=O\left(n^{2 k+3}\right)
$$

Hence the theorem is proved.
Theorem 4.4. Let $k \geq 0$ be a fixed integer $m=3 n+2 k$ and let $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n-1}$ be the roots of the Ultraspherical polynomials $P_{n}^{(k)}(x)$ and $P_{n-1}^{(k+1)}(x)$ respectively if $f \in C^{r}[-1,1](r \geq k+1, n \geq 2 r-k+2)$ then the interpolational polynomial

$$
R_{m}(x ; f)=\sum_{i=1}^{n} f\left(x_{i}\right) A_{i}(x)+\sum_{i=1}^{n-1} f\left(x_{i}^{*}\right) B_{i}(x)+\sum_{i=1}^{n-1} f^{\prime}\left(x_{i}^{*}\right) C_{i}(x)+\sum_{j=0}^{k} f^{(j)}(1) D_{j}(x)+\sum_{j=0}^{k+1} f^{(j)}(-1) E_{j}(x)
$$

with the fundamental polynomials given in (31)-(36) satisfies for $x \in[-1,1]$

$$
\begin{equation*}
\left|f^{\prime}(x)-R_{m}^{\prime}(x ; f)\right|=w\left(f^{(r)} ; \frac{1}{n}\right) O\left(n^{2 k-r+7}\right) \tag{51}
\end{equation*}
$$

Proof. For $k=0$ we refer to (11), proved by Xie and Zhou [9]. Let $f \in C^{r}[-1,1]$, by the theorem of Gopengauz [1] for every $m \geq 4 r+5$ there exists a polynomial $p_{m}(x)$ of degree at most m such that for $j=0, \ldots, r$

$$
\left|f^{(j)}(x)-p_{m}^{(j)}(x)\right| \leq M_{r, j}\left(\frac{\sqrt{1-x^{2}}}{m}\right)^{r-j} w\left(f^{(r)} ; \frac{\sqrt{1-x^{2}}}{m}\right)
$$

where $w\left(f^{(r)} ;.\right)$ denotes the modulus of continuity of the function $f^{(r)}(x)$ and the constants $M_{r, j}$ depend only on r and j . Furthermore,

$$
f^{(j)}(\pm 1)=p_{m}^{(j)}(\pm 1) \quad(j=0, \ldots, r)
$$

By the uniqueness of the interpolational polynomials $R_{m}(x ; f)$ it is clear that $R_{m}\left(x ; p_{m}\right)=p_{m}(x)$. Hence for $x \in[-1,1]$

$$
\begin{aligned}
\left|f^{\prime}(x)-R_{m}^{\prime}(x ; f)\right| & \leq\left|f^{\prime}(x)-p_{m}^{\prime}(x)\right|+\left|R_{m}^{\prime}\left(x ; p_{m}\right)-R_{m}^{\prime}(x ; f)\right| \\
& \leq\left|f^{\prime}(x)-p_{m}^{\prime}(x)\right|+\sum_{j=1}^{n}\left|f\left(x_{j}\right)-p_{m}\left(x_{j}\right)\right|\left|A_{j}^{\prime}(x)\right|+\sum_{j=1}^{n-1}\left|f\left(x_{j}^{*}\right)-p_{m}\left(x_{j}^{*}\right)\right|\left|B_{j}^{\prime}(x)\right| \\
& +\sum_{j=1}^{n-1}\left|f^{\prime}\left(x_{j}^{*}\right)-p_{m}^{\prime}\left(x_{j}^{*}\right)\right|\left|C_{j}^{\prime}(x)\right| \\
& \leq M_{r, 0} \frac{1}{n^{r}} w\left(f^{(r)} ; \frac{1}{n}\right) \sum_{j=1}^{n}\left(1-x_{j}^{2}\right)\left|A_{j}^{\prime}(x)\right|+M_{r, 0} \frac{1}{n^{r}} w\left(f^{(r)} ; \frac{1}{n}\right) \sum_{j=1}^{n-1}\left(1-x_{j}^{* 2}\right)\left|B_{j}^{\prime}(x)\right| \\
& +M_{r, 1} \frac{1}{n^{r-1}} w\left(f^{(r)} ; \frac{1}{n}\right)\left\{1+\sum_{j=1}^{n-1}\left|C_{j}^{\prime}(x)\right|\right\}
\end{aligned}
$$

Now applying the estimates (37), (41) and (47) we have

$$
\begin{aligned}
\left|f^{\prime}(x)-R_{m}^{\prime}(x ; f)\right| & \leq O(1) \frac{1}{n^{r}} w\left(f^{(r)} ; \frac{1}{n}\right) n^{2 k+5}+O(1) \frac{1}{n^{r}} w\left(f^{(r)} ; \frac{1}{n}\right) n^{2 k+7}+O(1) \frac{1}{n^{r-1}} w\left(f^{(r)} ; \frac{1}{n}\right)\left(1+n^{k+\frac{9}{2}}\right) \\
& =O(1) n^{2 k-r+7} w\left(f^{(r)} ; \frac{1}{n}\right)
\end{aligned}
$$

which is the statement of the theorem.

By using Main Theorem and (12) we can state the following convergence theorem.

Theorem 4.5. Let $k \geq 0$ be a fixed integer, $m=3 n+2 k, n \geq k+4$, let $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n-1}$ be the roots of the ultraspherical polynomials $P_{n}^{(k)}(x)$ and $P_{n-1}^{k+1}(x)$ respectively. If $f \in C^{k+2}[-1,1], f^{k+2} \in$ Lip $\alpha, \alpha>\frac{1}{2}$, then $R_{m}(x ; f)$ and $R_{m}^{\prime}(x ; f)$ uniformly converge to $f(x)$ and $f^{\prime}(x)$, respectively on $[-1,1]$ as $n \rightarrow \infty$.

References

[1] I.E.Gopengaus, On the The Theorem of A.F. Timan on Approximation of Continuous Functions on a line segment, Math. Zametski, 2(1967), 163-172.
[2] I.Joo and L.Szili, On weighted (0,2)-Interpolation on the roots of Jacobi polynomials, Acta Math. Hung., 66(1-2)(1995), 25-50.
[3] M.Lenard, On (0;1) Pál-type Interpolation with boundary conditions, Publ. Math. Debrecen, 33(1999).
[4] M.Lenard, Simultaneous approximation to a differentiable function and its derivative by Pál-type interpolation on the roots of Jacobi polynomials, Annales Univ. Sci. Budapest. Sect. Comp., 20(2001), 71-82.
[5] L.G.Pal, A general lacunary (0; 0,1)-interpolation process, Annales Univ. Budapest Sect. Comp., 16(1996), 291-301.
[6] Z.F.Sebestyen, Pal type interpolation on the roots of Hermite polynomials, Pure Math. Appl., 9(3-4)(1998), 429-439.
[7] R.Srivastava and K.Mathur, Pal Type Hermite Interpolation on Infinite Interval, Journal of Mathematical Analysis and Application 192(1995), 346-359.
[8] G.Szego, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ., 23(1939).
[9] T.-F.Xie and S.-P.Zhou, On Convergence of Pál-type interpolation polynomial, Chinese Ann. Math., 9B(1988), 315-321.

[^0]: * E-mail: singh.yamini02@gmail.com

