
Int. J. Math. And Appl., 6(1–E)(2018), 877–887

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Cloud Load Prediction for Multiuser Mixed Distribution

Task Length and Task Arrival Scenario

Vikash Goswami1,∗ and R. K. Shrivastava1

1 Department of Mathematics, S.M.S Government Science College, Jiwaji University, Gwalior, Madhya Pradesh, India.

Abstract: In the mathematics queuing theory is one of the fields which can be used for finding solutions of a wide range of practical
problems. One of the recently growing application of this field is in computer network traffic management. In this paper

we applied the queuing theory for the prediction of job request queue in a cloud network where the job requests are arriving

through a single queue and are combination of jobs generated by a number of users with each having the different job
request patterns (distribution function). The growing adaption of cloud systems, resulting in excessive loading of cloud

servers. Since the cloud is designed to provide different resources as service over the internet. The cloud user requests

required resources from the cloud and the cloud serves these requests by forming virtual machines and allotting it some
the resources from cloud resource pool. The resources allotted to VMs depends upon the requirements of the task and

guaranteed QoS of the cloud. Once the task is completed these VMs can either be dissolved to utilize its resources for

another VM or can be suspended for later utilization and saving power. The creation of a VM may take several seconds
while activation of a suspended VM is also required some time, which may ultimately cause sluggish response and latency

in cloud response. Such situations can be avoided by predicting the upcoming task requirements. The knowledge of

upcoming tasks can be used to decide whether VMs needs to keep alive, suspended or dissolved to efficiently utilize the
resources, saving power and serve the requests with minimum latency. The prediction of task requirements is a difficult

job especially when the task requests are generated by different users and each user may follow different distribution
function. This paper presents the HMM-based prediction model for such conditions and evaluates its performance.

Keywords: Queue Prediction, Cloud Computing, HMM, Task Scheduling.

c© JS Publication.

1. Introduction

The queuing theory dedicated field for finding the solution of queue management problem and has already applied to a

number of practical applications like transportation scheduling, manufacturing processes, appointment management, com-

puter network traffic management etc. The computer networking is a vast area one of them is cloud computing which is

attracting lots of users towards this technology. The cloud was designed to provide different resources as service over a

network (generally internet) and defined as the delivery of computing services like servers, storage, software and more over

the Internet. These services can be divided into three categories such as software as a service (SaaS), platform as a service

(PaaS) and infrastructure as a service (IaaS). Since a number of users with different requirements may simultaneously re-

quest for resources from the cloud system. To serve these requests a number of VMs (virtual machines) are formed inside

the cloud from its available resources in such a manner that it fulfills the user’s requirements and guaranteed the QoS with

minimum cloud resource utilization. Because the formation of VMs does not require any physical reconfiguration as it’s all

done using software that virtually divides or allocates the resources to form VMs. Such characteristics of VM provides the

flexibility to the cloud as it can reconfigure the resources of VMs dynamically and quickly when required. The dynamic

∗ E-mail: vikash.goswami088@gmail.com

877

http://ijmaa.in/

Cloud Load Prediction for Multiuser Mixed Distribution Task Length and Task Arrival Scenario

operational state of VM depends upon the current and future status of load, generally it can be kept in one of the three

states alive, suspended or dissolved. The VM is kept alive if jobs are continuously arriving. It can be kept in suspended

for near future utilization which can significantly reduce the response time because the suspended VM can be activated

in a fraction of the time required for reformation however in such case the resources will be blocked although the power

can be saved. Hence for the efficient operation of cloud it is needed to manage a tradeoff among the different states of

VMs like keep alive, suspend or dissolve (In the presented scenario the arbitrary configuration of VMs is not considered

instead a fixed number of predefined configurations are taken). Presently the queuing theory is gaining the applicability

in the area of cloud computing where it is used to manage the clients requests arriving into the servers. However unlike

other fields the cloud computing requires much complex queuing management system because of the of the complex client

request characteristics, higher rate of request arrival, availability of resources, guaranteed QoS, operational cost and lower

calculation time. Knowing the fact that present states of VMs must be maintained on the basis of upcoming service requests.

This paper presents a queue prediction based solution for the above-mentioned problem.

2. Related Work

This section reviews the literature most related to our work. Rich Wolski et al. [12] presented and efcient predictive

scheduling methodology for power savings in private clouds. It estimates the distribution of future VM requirements and

finds the quantiles to find the unwanted machines which can be shut down to save power without affecting the QoS. A

cloud administrator sets a probability bound for each VM which defines the probability that a machine will be powered

down when a cloud request arrives. This probability is decided on the basis required start-up delay resulting from power

savings. Minh Quang Nguyen et al. [14] proposed a simple prediction model for tail latency for a large class of Fork-Join

queuing networks and generalized the model for the cases where each request process through a fraction of of processing

units in the whole network. Then a link between the system-level request tail latency constraints, (tail-latency SLO) is

established. Secondly they proposed an empirical approach for mean latency approximation for above mentioned system

based on the developed tail latency prediction model. P. Ramrez-Cobo et al. [?] describe a technique for Bayesian

estimation related to the two-state stationary Markov arrival process (MAP2), which has been accepted as a versatile model

in a number of contexts. The approach is considered for both simulated and real data sets, and the performance of the MAP2

is compared against MMPP2. Further extension on the method is provided by matrix generalization of the M/G/1 queue

to estimate the queue length and virtual waiting time distributions of a stationary MAP2/G/1 queueing system that allows

for dependent inter-arrival times. Gao Wanlin et al. [4] presented a sliding-window-based model combined with SS-PLS

(partial least squares-semi-supervised) specifically designed to learn from smaller data sets for fast adaption. The sliding

window based method is used to predict from smaller dataset, which is then combined with PLS and SS learning named

as SS-PLS for further improvement. The experimental results for VM load prediction showed that the proposed technique

provides significant improvements over auto regression moving average (ARMA). Zhenhuan Gong et al. [5] presented

Predictive Elastic reSource Scaling (PRESS) scheme for cloud management. PRESS finds the minute dynamic patterns

from application resource demands and then use it for their resource allocations adjustment. The approach contains light

weight signal processing and statistical learning algorithms to predict the dynamic application resource requirements. The

experimental result shows that their prediction schemes achieve better prediction accuracy than previous approaches also

the elastic resource scaling effectively reduces the resource waste and the SLO (service level objective) violations. John J.

Prevost et al. [6] introduce a novel framework integrating the load demand prediction and stochastic state transition models

for optimal cloud resource allocation. The tradeoff is achieved between energy consumed and performance levels. The neural

878

Vikash Goswami and R. K. Shrivastava

network and autoregressive linear prediction algorithms are used to predict the loads in cloud data center. Kranthi Manoj

Nagothu et al. [7] discussed a to ultra-low power cloud computing systems methods applicable for the systems such as data

centers and web hosting. Their analysis indicates that power saving up to 80% is possible when data center components

are optimal allocated. The analysis done on the basis of proper arrangement of adaptive load prediction and smart task

distribution systems. Sadeka Islam et al. [11] developed a prediction-based resource estimation and provisioning methods

using Neural Network and Linear Regression to fulfill upcoming on-demand resource allocation in the cloud.

3. Hidden Markov Model (HMM)

3.1. Markov Models

In the Markov Model the prediction of the next state and its related observation only depends on the current state, or

alternatively the state transition probabilities do not depend on the whole history of the past process [?]. This is called a

first order Markov process the definition can be generalized for the ith order Markov process as the probability of next state

can be calculated by obtaining and taking account of the past i states. For the sequence of random variablesX = (XI , . . . , Xr)

taking values in some finite set S = sr, . . . , sr, the state space. Then the Markov Properties are [?]:

P (X(t+1) = sk|X1, . . . , Xt) = P (X(t+1) = sk|Xt), (limitedhozrizon) (1)

= P (X2 = sk|X1), (T imeinvariant) (2)

Because of the state transition is independent of time, we can have the following state transition matrix A:

aij = P (X(t+1) = sj |Xt = si) (3)

aij is a probability, hence:

aij ≥ 0, ∀i, j
N∑
j=1

ai,j = 1 (4)

Also we need to know the probability to start from a certain state, the initial state distribution:

πi = P (X1 = si), where,

N∑
i=1

πi = 1 (5)

In a visible Markov model, the states from which the observations are produced and the probabilistic functions are known

so we can regard the state sequence as the output.

3.2. Hidden Markov Models

The Hidden Markov Model (HMM) extends the Markov Model for the cases where state knowledge is unavailable or in HMM,

one does not know anything about what (system states) generates the observation sequence. The number of states, the

transition probabilities, and from which state an observation is generated are all unknown. Hence each state of the system

is liked with observation with a probabilistic function instead of deterministic function as in case of Markov Model. At time

t, an observation ot is generated by a probabilistic function bj(ot), which is associated with state j, with the probability:

bj(ot) = P (otXt = j) (6)

879

Cloud Load Prediction for Multiuser Mixed Distribution Task Length and Task Arrival Scenario

3.3. Mathematical Terms in HMM

An HMM is composed of a ve-tuple: (S,K,,A,B).

(1). S = 1, . . . , N is the set of states. The state at time t is denoted st.

(2). K = k1, . . . , kM is the output observation and M is the number of observation choices.

(3). Initial state distribution Π = πi, i ∈ S.πi is defined as:

πi = P (s1 = i) (7)

(4). State transition probability distribution A = aij, i, j ∈ S.

aij = P (st+1|st), 1 ≤ i, j ≤ N (8)

(5). Observation symbol probability distribution B = bj(ot). The probabilistic function for each state j is:

bj(ot) = P (otst = j) (9)

After modeling a problem as an HMM, and assuming that some set of data was generated by the HMM, we are able to

calculate the probabilities of the observation sequence and the probable underlying state sequences. Also we can train the

model parameters based on the observed data and get a more accurate model. Then use the trained model to predict unseen

data.

To generate the HMM model for any system we need to compute three parameters

(1). Observation Sequence Computing: The probability of the observation sequences.

(2). The state sequence (1, . . . , N) that best explains the observations.

(3). The tuning of the parameters to nd the best model for given observation sequence O, and a space of possible models.

Finding the probability of an observation: Given an observation sequence O = (o1, . . . , oT) and an HMM = (A,B,Π),

we want to nd out the probability of the sequence P (O|µ). This process is also known as decoding. Since the observations

are independent of each other, the probability of a state sequence S = (s1, ..., sT) generating the observation sequence can

be calculated as:

P (O|µ) =
∑
S

P (O|S, µ)P (S|µ) (10)

=
∑

s1,...,sT+1

πs1

T∏
t=1

astst+1bstst+1ot (11)

The computation is quite straightforward by summing the observation probabilities for each of the possible state sequence.

Finding the best state sequence: To find the best state sequence given a model and the observation sequence is to

choose the states that are individually most likely at each time t. For each time t, 1 ≤ t ≤ T + 1, we find the following

probability variable:

γi(t) = P (st = i|O,µ) (12)

880

Vikash Goswami and R. K. Shrivastava

=
P (st = i, O|µ)

P (O|µ)
(13)

=
αi(t)βi(t)
N∑
j=1

αj(t)βj(t)

(14)

The individually most likely state sequence S0 can be found as:

S′ = arg max
x1≤i≤N

γi(t), 1 ≤ t ≤ T + 1, 1 ≤ i ≤ N (15)

This quantity maximizes the expected number of correct states.

Estimation of parameters: The last and most difficult problem about HMMs is that of the parameter estimation. Given

an observation sequence, we want to nd the model parameters µ = (A,B, π) that best explains the observation sequence.

The problem can be reformulated as nd the parameters that maximize the following probability:

arg max
µ

P (O|µ) (16)

There is no known analytic method to choose µ to maximize P (O|µ) but we can use a local maximization algorithm to nd

the highest probability. This algorithm is called the Baum-Welch. This is a special case of the Expectation Maximization

method. It works iteratively to improve the likelihood of P (O|µ). This iterative process is called the training of the

model. The Baum-Welch algorithm is numerically stable with the likelihood non-decreasing of each iteration. It has linear

convergence to a local optima. To work out the optimal model µ = (A,B, π) iteratively, we will need to dene a few

intermediate variables. Dene pt(i, j), 1 ≤ t ≤ T, 1 ≤ i, j ≤ N as follows:

pt(ij) = P (st = i, st+1 = j|O,µ) (17)

=
P (st = i, st+1 = j|O,µ)

P (O|µ)
(18)

=
αi(t)aijbijotβj(t+ 1)

N∑
m=1

αm(t)βm(t)

(19)

=
αi(t)aijbijotβj(t+ 1)

N∑
m=1

N∑
m=1

αm(t)amnbmnotβn(t+ 1)

(20)

Then dene i(t). This is the probability of being at state i at time t, given the observation O and the model :

γi(t) = P (st = i|O,µ) (21)

=

N∑
j=1

P (st = i, st+1 = j|O,µ) (22)

=

N∑
j=1

pt(i, j) (23)

The above equation holds because i(t) is the expected number of transition from state i and pt(i, j) is the expected number

of transitions from state i to j. Given the above denitions we begin with an initial model µ and run the training data

O through the current model to estimate the expectations of each model parameter. Then we can change the model to

maximize the values of the paths that are used. By repeating this process we hope to converge on the optimal values for

the model parameters. The re-estimation formulas of the model are:

π′i = probability of being at state i at time t = 1 = i(1) (24)

881

Cloud Load Prediction for Multiuser Mixed Distribution Task Length and Task Arrival Scenario

a′ij =
expected number of transitions from state i to j

expected number of transitions from state i
=

T∑
t=1

pt(i, j)

T∑
t=1

γi(t)

(25)

b′ijk =
expected number of transitions from i to j with k observed

expected number of transitions from i to j
=

∑
t:ot=k,
i≤t≤T

pt(i, j)

T∑
t=1

pt(i, j)

(26)

In the following calculations, we will replace bijot with bjot , i.e. each observation is generated by the probability density

function associated with one state at one time step. This is also called a rst order HMM.

4. Proposed Algorithm

This section gives the detailed explanation of the proposed algorithm. The explanation follows the flow chart shown in

figure 1. According to scenario a number of users are connected to a cloud and the requested task lengths as well as requests

inter-arrival time for each user follows different distribution functions. Considering the conditions in the scenario the normal

HMM based prediction may not work properly because some user may not generate request in each sampling window and

some user may generate multiple requests under the same sampling window. Hence we proposed a dual HMM model where

one HMM is used to calculate the probability of generating request by any user in the upcoming sampling window and the

second HMM for calculating the request pattern that may be generated by any user in the upcoming sampling window.

After that these two results are combined to estimate the exact request pattern in the upcoming sampling window.

Figure 1: The flowchart of proposed algorithm.

Since large number of user requests arrive at the cloud and each request may differ the others, to model such system with

HMM a large number of observation symbols are required. The increase in observation symbols will definitely affect the

system accuracy and complexity. Hence in the proposed algorithm we created the S requests category and the requests

arriving in the cloud is replaced by the category symbol closely related to it. This limits the total number of observations

to S. The cloud also have S different VM configurations for best serving each of the S requests category. The length of

882

Vikash Goswami and R. K. Shrivastava

the sampling window W is the length of sequences of symbols used to predict the upcoming symbols sequences. Let the

requests in the cloud for some sampling window length be R = ra1 , r
b
2, r

c
3, r

b
4, . . . , r

s
W , where a, b, c, . . . , s ∈ N , r ∈ S and ra1

is representing the 1st entry of request in the sampling window generated by ath user. The N number of different users

given as U = u1, u2, . . . , uN . Let the last L requests generated by user ui is defined as si = {ri−1, r
i
−2, . . . , r−L)i}, and the

requests by ith user appeared in M previous sampling windows is defined as gi = {bi−1, b
i
−2, b

i
−3, . . . , b

i
−M}, b0, 1, the b is a

binary variable and bim states that there was at least one request in the mth previous sampling window generated by ith

user. Now using the equation described in section 3.10 the probability of requesting a specific symbol by a specific user

at the next W events and the probability of generating the request by each user in upcoming sampling windows can be

calculated. Let the calculated probability of arriving of each request (symbol) in upcoming sampling window by ith user be

Pi = {pi1, pi2, pi3, . . . , piN}, and the probability of generating any request (symbol) in the next sampling window by ith user

be ti. The total probability of appearing a request rj in the upcoming sampling windows is calculated as

P totali =

N∑
i=1

tipj ∗ i (27)

Hence the total probability of arriving of each request in upcoming sampling window can be given as

P total = {P total1 , P total2 , P total3 , . . . , P totalS } (28)

Since P total is non-normalized we need to convert it into normalized probability by calculating P totalall and diving P total by

it as follows

P totalall =

S∑
i=1

P totali (29)

P totalnorm =

{
P total1

P totalall

,
P total2

P totalall

,
P total3

P totalall

, . . . ,
P totalS

P totalall

}
(30)

P totalnorm = {P total1,norm, P
total
2,norm, P

total
3,norm, . . . , P

total
S,norm} (31)

Now rearrange the P totalnorm elements in descending order as follows

P totalnorm,order = {P totala,norm > P totalb,norm > P totalc,norm, . . . , }, where a, b, c, · · · ∈ (32)

Next we find the two dividing points (D1, D2) in between 1 and S for P totalnorm,order such that 1 < D1 < D2 < S and

PTop > PMedium > PLow. The values of PTop, PMedium and Plow are calculated as follows

PTop =

D1∑
i=1

P totalnorm,order(i) (33)

PMedium =

D2∑
i=D1+1

P totalnorm,order(i) (34)

PLow =

DS∑
i=D2+1

P totalnorm,order(i) (35)

Once the above values are calculated the cloud turns on (or kept them active) the VMs whose configurations are related to

requests in PTop. Similarly it suspends and dissolves the VMs whose configurations are related to requests in PMedium and

PLow respectively.

883

Cloud Load Prediction for Multiuser Mixed Distribution Task Length and Task Arrival Scenario

5. Simulation Results

The simulation and validation of proposed algorithm is performed using Matlab/Octave. Following configurations are used

during the simulation of the algorithm.

Name of Variable Value

Number of Cloud Users 10

Number of Symbols 10

Length of Sampling Windows 50

Table 1: Showing the simulation environment configuration

User ID Distribution Name Parameters

1 Beta α = 2, β = 2

2 Binomial n = 40, p = 0.5

3 Cauchy x = 20, γ = 10

4 Chi Square k = 1

5 Exponential λ = 0.5

6 F Distribution d1 = 100, d2 = 50

7 Gamma k = 1, θ = 2

8 Weibull λ = 1, k = 5

9 Lognormal σ = 1, µ = 0

10 Normal σ = 1, µ = 0

Table 2: List of different distribution functions used for request generation by different users.

Figure 2: Plot showing the requests generated by each user

Figure 3: Plot showing the probability of generating different request symbols by each user

884

Vikash Goswami and R. K. Shrivastava

Figure 4: Plot showing the probability of

generating any request symbols in upcoming

sampling window by each user.

Figure 5: Plot showing total probability of

arriving different request symbols in upcoming

sampling window.

Total Number of Samples 10

Sampling Windows Length
Prediction Accuracy (%)

Proposed HMM

10 78.08 68.73

20 82.93 69.34

30 80.52 77.43

40 85.49 75.53

50 86.92 73.52

Table 3: Comparison of prediction accuracy for

different length of sampling window.

Sampling Window Length 50

Total Symbols
Prediction Accuracy (%)

Proposed HMM

10 86.92 73.52

15 80.21 70.45

20 71.83 64.79

25 76.94 74.68

30 68.26 57.53

Table 4: Comparison of prediction accuracy for

different values of total number of symbols.

Figure 6: graph for the table 2 data (Comparison

of prediction accuracy for different length of

sampling window).

Figure 7: graph for the table 3 data Comparison

of prediction accuracy for different values of total

number of symbols.

885

Cloud Load Prediction for Multiuser Mixed Distribution Task Length and Task Arrival Scenario

Sampling Window Length 50

No. of Symbols
Excessive Booting (%) Excessive Power Consumption (%) Improvements (%)

Proposed HMM Proposed HMM Proposed HMM

10 7.55 12.51 6.2 10.94 35.99 41.42

15 10.12 13.42 10.56 14.04 24.78 24.92

20 15.13 18.51 11.88 14.04 18.47 15.46

25 15.27 17.66 14.39 17.83 12.19 19.1

30 16.65 17.62 13.93 18.99 5.25 25.75

Table 5: Comparison of Excessive VM Booting and Power Consumption for different number of Symbols.

Total Number of Symbols 10

No. of Symbols
Excessive Booting (%) Excessive Power Consumption (%) Improvements (%)

Proposed HMM Proposed HMM Proposed HMM

10 11.13 16.11 9.57 16.9 26.44 41.38

20 6.3 11.73 7.25 11.98 46.02 39.33

30 6.64 11.02 7.44 12.7 41.4 41.65

40 8.84 13.63 8.75 13.47 34.26 33.69

50 7.55 12.51 6.2 10.94 35.99 41.42

Table 6: Comparison of Excessive VM Booting and Power Consumption for different length of sampling window.

Prediction Technique
Symbol Number

1 2 3 4 5 6 7 8 9 10

Exact Occurrence 10 10 7 4 5 4 1 0 1 8

Predicted by HMM 11 7 5 5 5 6 4 2 1 5

Predicted by Proposed Algo. 10 10 5 5 5 4 1 5 1 6

Table 7: Comparison of Excessive VM Booting and Power Consumption for different length of sampling window.

6. Conclusion

This paper presented a new approach with Hidden Markov Model (HMM) for cloud load prediction in the complex working

conditions. The users requests are predicted for upcoming sampling (time) window length by combining the request (symbol)

emission probability of each user using weighted average. The weight in weighted averaging is the normalized probability of

transmission of each user in upcoming sampling window. The calculation in such way avoid the complex time consuming

procedure of detecting most probable sequence generally done by Viterbi algorithm. Because in the present problem the

order of symbols in which they are coming is not important instead we are interested in the probability of arriving in whole

sampling window duration. The proposed algorithm is also verified by the simulation results which shows that the proposed

approach improves the prediction accuracy by 10% (average) which ultimately improves the unwanted booting of VMs and

power consumption by approximately 30% (average) and 40% (average) respectively than HMM.

References

[1] Xiuze Zhou, Fan Lin, Lvqing Yang, Jing Nie, Qian Tan, Wenhua Zeng and Nian Zhang, Load balancing prediction method

ofcloud storage based onanalytic hierarchy process andhybrid hierarchical genetic algorithm, Springer Plus, 5(2016).

[2] Gabor Kecskemeti, Attila Kertesz and Zsolt Nemeth, Cloud Workload Prediction by Means of Simulations, Proceedings

of the Computing Frontiers Conference, Siena, Italy, (2017), 279-282.

886

Vikash Goswami and R. K. Shrivastava

[3] Jingjing Yuan, Yuanyuan Sun and Mingyue Zhai, Smart Grid Load Forecasting Cloud Platform Architecture: A Review,

2016 3rd International Conference on Engineering Technology and Application, (2016).

[4] Gao Wanlin, Hu Hui, Xu Dongbo and Zhang Ganghong, Virtual machine load prediction model for agricultural cloud

video platform based on semi-supervised partial least squares, Transactions of the Chinese Society of Agricultural Engi-

neering, 33(2017).

[5] Zhenhuan Gong, Xiaohui Gu and John Wilkes, PRESS: PRedictive Elastic ReSource Scaling for cloud systems, Network

and Service Management (CNSM), 2010 International Conference on 25-29, (2010).

[6] John J.Prevost, KranthiManoj Nagothu, Brian Kelley and Mo Jamshidi, Prediction of Cloud Data Center Networks

Loads Using Stochastic and Neural Models, Proc. of the 2011 6th International Conference on System of Systems

Engineering, Albuquerque, New Mexico, USA, June 27-30, (2011).

[7] KranthiManoj Nagothu, Brian Kelley, Jeff Prevost and Mo Jamshidi, Ultra Low Energy Cloud Computing Using Adaptive

Load Prediction, World Automation Congress, (2010).

[8] Zhen Xiao, Senior Member, Weijia Song and Qi Chen, Dynamic Resource Allocation using Virtual Machines for Cloud

Computing Environment, IEEE Transaction On Parallel and Distributed System, 24(6)(2013).

[9] Eyal Zohar, Israel Cidon and Osnat (Ossi) Mokryn, The Power of Prediction: Cloud Bandwidth and Cost Reduction,

ACM SIGCOMM Computer Communication Review October, (2011).

[10] Ya-Xiu Yu and Xin-Wei Wang, Web Usage Mining Based on Fuzzy Clustering, International Forum on Information

Technology and Application, IEEE, (2009).

[11] Sadeka Islam, Jacky Keung, Kevin Lee and Anna Liu, Empirical prediction models for adaptive resource provisioning

in the cloud, Future Generation Computer Systems, 28(2012), 155162.

[12] Rich Wolski and John Brevik, QPRED: Using Quantile Predictions to Improve Power Usage for Private Clouds, Cloud

Computing (CLOUD), 2017 IEEE 10th International Conference on 25-30 June, (2017).

[13] Minh Quang Nguyen, Performance Analysis of Scale-Out Workloads on Parallel and Distributed Systems, the University

of Texas at Arlington Doctor of Philosophy August, (2017).

[14] Madhu Jain, Chandra Shekhar and Shalini Shukla, Queueing Analysis of Machine Repair Problem with Controlled Rates

and Working Vacation Under F-Policy, Proceedings of the National Academy of Sciences, India Section A January,

(2016).

887

	Introduction
	Related Work
	Hidden Markov Model (HMM)
	Proposed Algorithm
	Simulation Results
	Conclusion
	References

