Transitivity of the Direct Product of the Alternating Group Acting on the Cartesian Product of Three Sets

Lewis N. Nyaga ${ }^{1, *}$
1 Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.

[^0]Keywords: Direct Product, Alternating Group, Cartesian product, Transitive group action.
(C) JS Publication.

1. Introduction

In this paper we consider the Alternating groups $\left(A_{n}, X_{1}\right),\left(A_{n}, X_{2}\right)$ and $\left(A_{n}, X_{3}\right)$, where the sets X_{1}, X_{2} and X_{3} are disjoint and of cardinality n. So the direct product $A_{n} \times A_{n} \times A_{n}$ acts on the Cartesian product $X_{1} \times X_{2} \times X_{3}$ by the rule

$$
\left(x_{1}, x_{2}, x_{3}\right)\left(g_{1}, g_{2}, g_{3}\right)=\left(x_{1} g_{1}, x_{2} g_{2}, x_{3} g_{3}\right) \forall x_{i} \in X_{i}, g_{i} \in A_{i}
$$

We shall investigate the transitivity of $A_{2} \times A_{2} \times A_{2}, A_{3} \times A_{3} \times A_{3}, A_{4} \times A_{4} \times A_{4}$ and $A_{5} \times A_{5} \times A_{5}$ before giving the results for $A_{n} \times A_{n} \times A_{n}$.

1.1. Notation and Preliminary Results

Definition 1.1. Let G act on a set X. Then X is partitioned into disjoint equivalence classes called orbits or transitivity classes of the action. For each $x \in X$ the orbit containing x is called the orbit of x and is denoted by Orb ${ }_{G} x$. Thus $O r b_{G} x=\{g x \mid g \in G\}$.

Definition 1.2. The action of a group G on the set X is said to be transitive if for each pair of points $x, y \in X$, there exists $g \in G$ such that $g x=y$; in other words, if the action has only one orbit. A group which is not transitive is called intransitive.

Definition 1.3. Let G act on a set X and let $x \in X$. The stabilizer of x in G is denoted by Stab ${ }_{G} x$ is given by Stab ${ }_{G} x=\{g \in G \mid g x=x\} . S t a b_{G} x$ forms a subgroup of G called the Isotropy group of x. It is also denoted by G_{x}.

[^1]Definition 1.4. Let G act on a set X. The set of elements of X fixed by $g \in G$ is called the fixed point set of G and is denoted by Fix (g). Thus Fix $(g)=\{x \in X \mid g x=x\}$.

Definition 1.5 ([2, 3, 8]). Let G be a finite group acting on a set X. The number of orbits in X under G is given by $\frac{1}{|G|} \sum_{g \in G}|f i x(g)|$.

Theorem 1.6 (Orbit-Stabilizer Theorem [2, 3, 8]). Let G be a group acting on a finite set X and $x \in X$. Then $\left|O r b_{G} x\right|=$ $\left|G: G_{x}\right|$, the index of G_{x} in G.

Definition 1.7. Suppose G is a group acting transitively on a set X and let G_{x} be the stabilizer in G of a point $x \in X$. The orbits $\Delta_{0}=x, \Delta_{1}, \Delta_{2}, \ldots, \Delta_{r-1}$ of G_{x} on X are known as suborbits of G. The rank of G in this case is r. The sizes $n_{i}=\left|\Delta_{i}\right|(i=0,1, \ldots, r-1)$ often called the 'lengths' of suborbits are known as the subdegrees of G. It can be shown that both r and the cardinalities of the suborbits. $\Delta_{i}(i=0,1, \ldots, r-1)$ are independent of the choices of $x \in X$.

Definition $1.8([1])$. Let $\left(G_{1}, X_{1}\right)$ and $\left(G_{2}, X_{2}\right)$ be permutation groups. The direct product $G_{1} \times G_{2}$ acts on the disjoint union $X_{1} \cup X_{2}$ by the rule

$$
x\left(g_{1}, g_{2}\right)= \begin{cases}x g_{1} ; & \text { if } x \in X_{1} \\ x g_{2} ; & \text { if } x \in X_{2}\end{cases}
$$

and on the Cartesian product $X_{1} \times X_{2}$ by the rule $\left(x_{1}, x_{2}\right)\left(g_{1}, g_{2}\right)=\left(x_{1} g_{1}, x_{2} g_{2}\right)$.

2. Main Results

Lemma 2.1. If $\left(A_{2}, X\right),\left(A_{2}, Y\right)$ and $\left(A_{2}, Z\right)$ are alternating groups with $X=\left\{x_{1}, x_{2}\right\}, Y=\left\{y_{1}, y_{2}\right\}$ and $Z=\left\{z_{1}, z_{2}\right\}$, then the action of $A_{2} \times A_{2} \times A_{2}$ on $X \times Y \times Z$ is transitive.

Proof. Let $G=A_{2} \times A_{2} \times A_{2}$ and $K=X \times Y \times Z$, then the elements of G are (e_{1}, e_{2}, e_{3}) where each e_{i} represents the identity from each alternating group and K has 3 elements. The stabilizer of an element $\left(x_{1}, y_{1}, z_{1}\right), \operatorname{stab} b_{G}\left(x_{1}, y_{1}, z_{1}\right)$ is $\left(e_{1}, e_{2}, e_{3}\right)$. Hence by Theorem 1.6.

$$
\begin{aligned}
\left|\operatorname{Orb}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right| & =\left|G: \operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right| \\
& =\frac{|G|}{\left|\operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right|} \\
& =8 \\
& =|X \times Y \times Z|
\end{aligned}
$$

Therefore the action is transitive since there is only 1 orbit.

Lemma 2.2. If $\left(A_{3}, X\right),\left(A_{3}, Y\right)$ and $\left(A_{3}, Z\right)$ are alternating groups with $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $Z=$ $\left\{z_{1}, z_{2}, z_{3}\right\}$, then $A_{3} \times A_{3} \times A_{3}$ acts transitively on $X \times Y \times Z$.

Proof. The elements of $\left(A_{3}, X\right),\left(A_{3}, Y\right)$ and $\left(A_{3}, Z\right)$ are $\left(e_{1},\left(x_{1} x_{2} x_{3}\right),\left(x_{1} x_{3} x_{2}\right)\right),\left(e_{2},\left(y_{1} y_{2} y_{3}\right),\left(y_{1} y_{3} y_{2}\right)\right)$, and $\left(e_{3},\left(z_{1} z_{2} z_{3}\right),\left(z_{1} z_{3} z_{2}\right)\right)$ respectively and therefore, $G=A_{3} \times A_{3} \times A_{3}$ has 27 elements from the direct product, and if $K=X \times Y \times Z$, then K has 27 elements each of which is an ordered triple, moreover, $\operatorname{stab}{ }_{G}\left(x_{1}, y_{1}, z_{1}\right)=\left(e_{1}, e_{2}, e_{3}\right)$. Using Theorem 1.6.

$$
\left|\operatorname{Orb}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right|=\left|G: \operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right|
$$

$$
\begin{aligned}
& =\frac{|G|}{\left|\operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right|} \\
& =27 \\
& =|X \times Y \times Z|
\end{aligned}
$$

Therefore the action is transitive.

Lemma 2.3. If $\left(A_{4}, X\right),\left(A_{4}, Y\right)$ and $\left(A_{4}, Z\right)$ are alternating groups with $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$, then $A_{4} \times A_{4} \times A_{4}$ acts transitively on $X \times Y \times Z$.

Proof. Let $G=A_{4} \times A_{4} \times A_{4}$ and $K=X \times Y \times Z$. If (x_{1}, y_{1}, z_{1}) represents an arbitrary element from K, then $\operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)$ is given in the Table 1.

Type of ordered triple of permutations fixing $\left(x_{1}, y_{1}, z_{1}\right)$	Number of Permutations
$\left(e_{1}, e_{2}, e_{3}\right)$	1
$\left(e_{1}, e_{2},\left(z_{2} z_{3} z_{4}\right)\right)$	2
$\left(e_{1},\left(y_{2} y_{4} y_{3}\right), e_{3}\right)$	2
$\left(\left(x_{2} x_{3} x_{4}\right), e_{2}, e_{3}\right)$	2
$\left(e_{1},\left(y_{2} y_{3} y_{4}\right),\left(z_{2} z_{3} z_{4}\right)\right)$	4
$\left(\left(x_{2} x_{3} x_{4}\right), e_{2},\left(z_{2} z_{3} z_{4}\right)\right)$	4
$\left(\left(x_{2} x_{3} x_{4}\right),\left(y_{2} y_{3} y_{4}\right), e_{3}\right)$	4
$\left(\left(x_{2} x_{3} x_{4}\right),\left(y_{2} y_{3} y_{4}\right),\left(z_{2} z_{4} z_{3}\right)\right)$	8
TOTAL	27

Table 1. Elements of the stabilizer of $\left(x_{1}, y_{1}, z_{1}\right)$

Therefore

$$
\begin{aligned}
\left|\operatorname{Orb}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right| & =\left|G: \operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right| \\
& =\frac{|G|}{\left|\operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right|} \\
& =\frac{12^{3}}{27} \\
& =64 \\
& =|X \times Y \times Z|
\end{aligned}
$$

Therefore the action is transitive.

Lemma 2.4. If $\left(A_{5}, X\right),\left(A_{5}, Y\right)$ and $\left(A_{5}, Z\right)$ are alternating groups with $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$ and $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right\}$, then $A_{5} \times A_{5} \times A_{5}$ acts transitively on $X \times Y \times Z$.

Proof. Let $G=A_{5} \times A_{5} \times A_{5}$ and $K=X \times Y \times Z$. If (x_{1}, y_{1}, z_{1}) represents an arbitrary element from K, then $\operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)$ is given on the Table 2.

Type of ordered triple of permutations fixing $\left(x_{1}, y_{1}, z_{1}\right)$	Number of Permutations
$\left(e_{1}, e_{2}, e_{3}\right)$	1
$\left(e_{1}, e_{2},(a b c)\right)$	8
$\left(e_{1}, e_{2},(a b)(c d)\right)$	3
$\left(e_{1},(a b c), e_{3}\right)$	8
$\left(e_{1},(a b)(c d), e_{3}\right)$	3

Type of ordered triple of permutations fixing $\left(x_{1}, y_{1}, z_{1}\right)$	Number of Permutations
$\left((a b c), e_{2}, e_{3}\right)$	8
$\left((a b)(c d), e_{2}, e_{3}\right)$	3
$\left(e_{1},(a b c),(d e f)\right)$	64
$\left(e_{1},(a b c),(d e)(f g)\right)$	24
$\left(e_{1},(a b)(c d),(e f g)\right)$	24
$\left(e_{1},(a b)(c d),(e f)(g h)\right)$	9
$\left((a b c), e_{2},(d e f)\right)$	64
$\left((a b c), e_{2},(d e)(f g)\right)$	24
$\left((a b)(c d), e_{2},(e f g)\right)$	24
$\left((a b)(c d), e_{2},(e f)(g h)\right)$	9
$\left((a b c),(d e f), e_{3}\right)$	64
$\left((a b c),(d e)(f g), e_{3}\right)$	24
$\left((a b)(c d),(e f g), e_{3}\right)$	24
$\left((a b)(c d),(e f)(g h), e_{3}\right)$	9
$((a b c),(d e f),(g h i))$	512
$((a b c),(d e f),(g h)(i j))$	192
$((a b c),(d e)(f g),(h i j))$	192
$((a b)(c d),(e f g),(h i j))$	192
$((a b c),(d e)(f g),(h i)(j k))$	72
$((a b)(c d),(e f g),(h i)(j k))$	72
$((a b)(c d),(e f)(g h),(i j k))$	72
$((a b)(c d),(e f)(g h),(i j)(k l))$	27
$(\mathrm{TOTAL}$	$\mathbf{1 7 2 8}$

Table 2. Elements of the stabilizer of $\left(x_{1}, y_{1}, z_{1}\right)$

Therefore

$$
\begin{aligned}
\left|\operatorname{Orb}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right| & =\left|G: \operatorname{sta}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right| \\
& =\frac{|G|}{\left|\operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right|} \\
& =\frac{60^{3}}{1728} \\
& =125 \\
& =|X \times Y \times Z|
\end{aligned}
$$

Therefore the action is transitive.

Theorem 2.5. If $\left(A_{n}, X\right),\left(A_{n}, Y\right)$ and $\left(A_{n}, Z\right)$ are alternating groups with $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and $Z=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$, and if $n \geq 4$, then the action of $A_{n} \times A_{n} \times A_{n}$ on $X \times Y \times Z$ is transitive.

Proof. Let $G=A_{n} \times A_{n} \times A_{n}$ and $K=X \times Y \times Z$, then $\operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)$ is isomorphic to $A_{n-1} \times A_{n-1} \times A_{n-1}$ where the permuting elements are from the sets $X-\left\{x_{1}\right\}, Y-\left\{y_{1}\right\}$ and $Z-\left\{z_{1}\right\}$. Using Theorem 1.6.,

$$
\begin{aligned}
\left|\operatorname{Orb}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right| & =\left|G: \operatorname{sta}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right| \\
& =\frac{|G|}{\left|\operatorname{stab}_{G}\left(x_{1}, y_{1}, z_{1}\right)\right|} \\
& =\frac{\frac{n!}{2} \times \frac{n!}{2} \times \frac{n!}{2}}{\frac{(n-1)!}{2} \times \frac{(n-1)!}{2} \times \frac{(n-1)!}{2}} \\
& =n^{3} \\
& =|X \times Y \times Z|
\end{aligned}
$$

Hence the action is transitive.

References

[1] P.J.Cameron, D.A.Gewurz and F.Merola, Product action, Discrete Math., (2008), 386-394.
[2] J.B.Fraleigh, A First Course in Abstract Algebra, Reading: Addison-Wesley Publishing Company, (1994).
[3] C.F.Gardiner, Algebraic Structures, Chichester: Ellis Horwood Limited, (1986).
[4] D.G.Higman, Characterization of families of rank 3 permutation groups by the subdegrees, Archiv der Mathematik, 21(1970).
[5] D.G.Higman, Finite permutation groups of rank 3, Math Zeitschriff, 86(1964), 145-156.
[6] L.N.Nyaga, Ranks, Subdegrees and Suborbital Graphs of the Symmetric Group $n S$ Acting on Unordered r-Element Subsets, PhD thesis, JKUAT, Nairobi, Kenya, (2012).
[7] J.K.Rimberia, Ranks and Subdegrees of the Symmetric Group $n S$ Acting on Ordered r-Element Subsets, PhD thesis, Kenyatta University, Nairobi, Kenya, (2011).
[8] J.S.Rose, A Course on Group Theory, Cambridge University Press, (1978).
[9] H.Wielandt, Finite Permutation Groups, Academic Press, New York, (1964).

[^0]: Abstract: The transitivity of the action of the direct product of the alternating Group on Cartesian product of three sets is investigated. In this paper, we show that the group action is transitive.

 MSC: 05E10.

[^1]: * E-mail: lnyaga@jkuat.ac.ke

