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1. Introduction

The Fuzzy set theory has been applied to many disciplines such as control theory and management sciences, mathematical

modeling and industrial applications. The concept of fuzzy mathematical programming in general level was first proposed

by Tanaka [18] which was based on Fuzzy theorem developed by Bellman and Zadeh [1]. The first formulation of fuzzy linear

programming (FLP) has been introduced by Zimmermann [20]. Zadeh and Kacprzyk [? ] presented the concept of fuzzy

logic for knowledge-based systems which include the use of fuzzy relations. Afterward, many authors considered various

types of the FLP problems were investigated led to several approaches for solving these problems [4, 13, 15, 16]. In addition,

Piegat [? ] presented a new definition of the fuzzy set. Based on this definition, the number of arithmetic operations would

dramatically decrease compare to the results produced by the existing fuzzy arithmetic.

After finding the optimal solution to the given LP model, the POA can be exploited to analyze the consequences of imposing

changes in problem’s parameters. One of the first papers on the POA in multi-objective linear programming was an article

by Hansen [8] in which the authors analyzed the sensitivity of problems parameters after scalarization.

Many papers on the POA [2, 10] are focused on showing how the optimal solution of the linear programming changes when

the problem’s data are changed. For this case, they construct methods on how to find the breakpoints and the rate of

changes (shadow price) of the objective function. Gal and Wolf [6] presented a survey of the literature considering the

sensitivity of input data in multi-objective function (MOLP) problems. A geometric interpretation of tolerance analysis is

given by Borges and Antunes [3]. Such an approach was used by Hladik [9] in the case of the tolerance approach and Sitarz
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[17] in the case of standard sensitivity approach. Jones [22] presented a weight sensitivity algorithm that can be used to

investigate a portion of weight space of interest to the decision maker in a goal or multiple objective programming.

However, there are only a few papers to deal with post optimality analysis in published works on fuzzy linear program-

ming. The concept of sensitivity analysis in fuzzy number linear programming (FNLP) problems by applying fuzzy simplex

algorithms and using the general linear ranking functions on fuzzy numbers was considered by Ebrahimnejad [5].

This paper has a contribution to post optimality analysis in fuzzy multi-objective linear programming problems (FMOLP).

We consider the POA for selected coefficients of (one of the) objective functions in FMOLP problems. By using the

approach of Jimenez and Bilbao [11] we obtain an interval for the selected coefficient where the fuzzy efficient solution

remains unchanged. Finally, we examine whether by removing or adding an objective function into the initial problem the

given fuzzy efficient point remains fuzzy efficient or not?

This paper is organized as follows: In section 2, we review some basic concepts and results of fuzzy numbers. In addition,

FMOLP problem is introduced in this section. The Post Optimality Analysis of one objective’s coefficient is discussed in

section 3. Also, the effect of removing and adding an objective function on the efficiency of the solutions is expressed in this

section.

2. Preliminaries

In this section, we review some preliminaries on fuzzy numbers and their ordering, FMOLP and its solution approach. These

concepts are to be used in the next sections.

2.1. Fuzzy Number and its Ordering

The uncertainty Management is an important issue in the design of expert systems because a lot of information in the

knowledge base of a typical expert system is imprecise, incomplete or not totally reliable. An approach to the uncertainty

Management used in fuzzy environment is the logic underlying approximately or equivalently. A feature of fuzzy environment

which is a great importance to the uncertainty Management is providing a systematic framework for dealing with uncertain

linguistic variables (e.g. many, few, almost all, infrequently, about 0.8,...) by introducing fuzzy quantifiers and fuzzy

numbers. Here, we recall the notions of fuzzy numbers and their comparison.

Definition 2.1 (Fuzzy Number). A fuzzy number Ã = (m,n, α, β) is going to be an LR flat fuzzy number if its membership

function is given by:

µÃ (x) =


L
(
m−x
a

)
, x ≤ m,

R
(
x−n
β

)
, x ≥ n,

1, m ≤ x ≤ n,

(1)

where α > 0 and β > 0.

If m = n then Ã = (m,n, α, β) will be converted into Ã = (m,α, β) and is going to be an LR fuzzy number. L and R are called

reference functions, which are continuous, non-increasing functions defining left and right shapes of µÃ (x) respectively (and

L (0) = R (0) = 1). Two special cases are triangular and trapezoidal fuzzy number, for which L (x) = R (x) = max{0, 1−x},

are linear functions.

Definition 2.2 (Ranking Function). A ranking function R : F (R) → R maps each fuzzy number into the real line, where
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a natural order exists. Let ã and b̃ be two fuzzy numbers, then

ã �R b̃ if and only if R(ã) ≤ R(b̃),

ã ≺R b̃ if and only if R (ã) < R(b̃),

ã 'R b̃ if and only if R (ã) = R(b̃).

(2)

Several rankings are introduced by some authors. In this paper we use the following ranking proposed by Yager [19]:

R (ã) =
1

2

∫ 1

0

(inf ãλ + sup ãλ)dλ, (3)

where ãλ is the λ-cut of ã. For trapezoidal fuzzy number Ã = (m,n, α, β), R(Ã) reduces to:

R(Ã) =
1

2
(m+ n) +

1

4
(β − α) . (4)

2.2. Multi Objective Linear Programming

Consider the following multi objective linear programming problem with k objective functions

max z(x) = (z1 (x) = c1x, z2 (x) = c2x, . . . , zk (x) = ckx) (5)

such that x ∈ X, where the feasible set X = {x ∈ Rn : Ax ≤ b, x ≥ 0}, ci = (ci1, . . . , cin) ∈ Rn, i = 1, . . . , k, b =

(b1, . . . , bm) ∈ Rm and A = [aij ]m∗n ∈ Rm∗n. The similarity of a multi-objective programming problem and a single

programming problem is clear; the only difference is that instead of just one objective function in a single programming

problem, there are some objective functions in a multi-objective programming problem. If the notion of optimality is used

to an objective function and multi-objective optimization problem, then we have the following definition.

Definition 2.3. x∗ ∈ X is said to be a complete optimal solution to the problem (5) if it optimizes all objective functions

simultaneously; which means, for all x∗ ∈ X we have zi(x) ≤ zi(x∗).

Generally, access to a complete optimal solution is not possible, a new concept which called an efficient solution, is introduced.

Definition 2.4. x∗ ∈ X is said to be a efficient (Pareto Optimal) solution to the problem (5) if and only if there is no

another x ∈ S where zi(x) ≤ zi(x
∗) for all i = 1, 2, . . . , k and zi (x) < zi(x

∗). For at least one l = 1, 2, . . . , k holds.

Otherwise, x∗ is called inefficient.

2.3. Fuzzy Multi Objective Linear Programming

Let a FMOLP problem with k objective functions z̃i(x) = cTi x, i = 1, 2, . . . , k be

P : max z̃(x) = (z̃1 (x) , z̃2 (x) , . . . , z̃k (x)) (6)

such that x ∈ S, where the feasible set S =
{
x ∈ Rn : Ãx �R b̃, x ≥ 0

}
, R is an arbitrary ranking function, c̃i =

(c̃i1, . . . , c̃in) ∈ (F (R))n, i = 1, . . . , k, b̃ = (b̃1, . . . , b̃m) ∈ (F (R))m and Ã = [ãij ]m∗n ∈ (F (R))m∗n.

Definition 2.5 (Fuzzy Efficient Solution). x∗ ∈ S is said to be a fuzzy efficient solution to the problem (6) if and only if

there does not exist another x ∈ S for which µz̃i (x∗) ≤ µz̃i (x) for all i = 1, 2, . . . , k and µz̃l (x∗) 6= µz̃l (x) for at least one

l = 1, 2, . . . , k holds.

927



Post Optimality Analysis in Fuzzy Multi Objective Linear Programming

In the other words, x∗ ∈ S is a fuzzy efficient solution if and only if

∀ x ∈ S; µz̃i (x∗) ≤ µz̃i (x) : i = 1, 2, . . . , k µz̃i (x∗) = µz̃i (x) : i = 1, 2, . . . , k. (7)

Several authors have proposed procedures in order to achieve fuzzy efficient solutions. Here, we refer to the two-phase

approach proposed by Guua and Wu [7]. A FMOLP problem, using the fuzzy decision (max-min) of Bellman and Zadeh

with introducing the auxiliary variable λ adopts the following problem:

max λ

subject to 1 ≥ µZ̃i (x) ≥ λ ≥ 0 : i = 1, . . . , k,

x ∈ S

(8)

The Guua and Wu algorithm is as follows:

Step 1: Solve problem (8). Let the optimal solution be given by (x∗, λ∗). If the optimal solution is unique, then x∗ is a

fuzzy efficient solution, then, Stop.

Step 2: Solve the second phase model, i.e.,

max
k∑
i=1

λi

subject to 1 ≥ µZi (x) ≥ λi ≥ µZi (x∗) : i = 1, . . . , k,

x ∈ S

(9)

Let the optimal solution be given by (x∗∗, λ∗∗). In this case, x∗∗ is a fuzzy efficient solution.

3. Post Optimality

The attainment of the optimal solution to a linear programming problem is often desirable to study the effect of discrete

changes in the different coefficients of the problem on the current optimal solution. One way to accomplish this is to solve

the problem anew, but this may be computationally inefficient. The changes in the linear programming problem usually

studied by post optimality analysis include:

• Tightness of the constraints, that is, changes in the right-hand side of the constraints.

• Coefficients of the objectives function.

• Technological coefficients of decision variables.

• Addition of new variables to the problem.

• Addition of new constraint(s).

• Addition of new constraint(s).

• Removal of new constraint(s).

In this section, we consider the post optimality analysis for three cases: changing in one objective function coefficient (the

change in one of objective functions’ coefficient), objective function removal and objective function addition.
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3.1. Convexity

There is the element-wise analysis approach to the sensitivity analysis presented below. Let x∗ be a fuzzy efficient solution

of problem (6). We wish to determine the region for the parameter t̃, where x∗ remains a fuzzy efficient solution of the

following problem:

P
(
t̃
)

: max z̃ (x) = (z̃1 (x) , z̃2 (x) , . . . , z̃r−1 (x) , z̃r+1 (x) , . . . , z̃k (x)) ,

max z̃r =
j=n∑
j=1
j 6=p

c̃rjxj + t̃xp

subject to x ∈ S =
{
x ∈ Rn : Ãx �R b̃, x ≥ 0

}
.

(10)

The next theorem shows that the set of such t̃ is convex. In the proof of the theorem we use a linear membership function

with a given ranking function R [15]:

µz̃i (x) = 1−
R
(
z̃i
)
−R

(∑
j c̃ijxj

)
qi

= 1−
zi −

∑
j cijxj

qi
, (11)

where z̃i is an aspiration level for ith objective function and qi be a tolerance for z̃i, subjectively chooses by Decision Maker

(DM). However, this can be easily extended to a more general shape of membership functions.

Theorem 3.1. Let x∗ be a fuzzy efficient solution of problem (6). Then the set of all t̃λ where x∗ is a fuzzy efficient solution

in problem (10) is convex.

Proof. Let x∗ be a fuzzy efficient solution for problem P (t̃0) and P (t̃1). Assume t̃λ = λt̃0 + (1− λ) t̃1, λ ∈ [0, 1] holds. We

must show that x∗ is a fuzzy efficient solution for problem P (t̃λ). Let there exists x ∈ S such that:

µ
t̃λ
Z̃i

(x∗) = 1−
Zi −

∑
j;j 6=p

cijx
∗
j − (λt0 + (1− λ) t1)x∗p

qi
≤ 1−

Zi −
∑
j;j 6=p cijxj − (λt0 + (1− λ) t1)xp

qi
= µ

t̃λ
Z̃i

(x) , (12)

for all i = 1, 2, . . . , k. Therefore:

∑
j;j 6=p

cijx
∗
j + (λt0 + (1− λ) t1)x∗p ≤

∑
j;j 6=p

cijxj + (λt0 + (1− λ) t1)xp, i = 1, 2, . . . , k. (13)

Since,

∑
j;j 6=p

cijx
∗
j = λ

∑
j;j 6=p

cijx
∗
j + (1− λ)

∑
j;j 6=p

cijx
∗
j , i = 1, 2, . . . , k (14)

∑
j;j 6=p

cijxj = λ
∑
j;j 6=p

cijxj + (1− λ)
∑
j;j 6=p

cijxj , i = 1, 2, . . . , k (15)

hence:

λ

∑
j;j 6=p

cijx
∗
j + t0x

∗
p

+(1− λ)

∑
j;j 6=p

cijx
∗
j + t1x

∗
p

 ≤ λ
∑
j;j 6=p

cijxj + t0xp

+(1− λ)

∑
j;j 6=p

cijxj + t1xp

 , i = 1, 2, . . . , k

(16)

Therefore

λ

∑
j;j 6=p

cijx
∗
j + t0x

∗
p

 ≤ λ
∑
j;j 6=p

cijxj + t0xp

 , i = 1, 2, . . . , k (17)
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or

(1− λ)

∑
j;j 6=p

cijx
∗
j + t1x

∗
p

 ≤ (1− λ)

∑
j;j 6=p

cijxj + t1xp

 , i = 1, 2, . . . , k. (18)

Set

Ai =
∑
j;j 6=p

cijx
∗
j + t0x

∗
p,

Bi =
∑
j;j 6=p

cijxj + t0xp,

Ci =
∑
j;j 6=p

cijx
∗
j + t1x

∗
p,

Di =
∑
j;j 6=p

cijxj + t1xp, i = 1, . . . , k.

Therefore inequalities (16) imply: Ai ≤ Ci or Bi ≤ Di, i = 1, . . . , k. For 1 ≤ i ≤ k we have the following procedure:

If Ai ≤ Ci, then µt̃0
Z̃i

(x∗) ≤ µt̃0
Z̃i

(x). Since x∗ is fuzzy efficient for P (t̃0), (7) implies µt̃0
Z̃i

(x∗) = µt̃0
Z̃i

(x), and hence Ai = Ci.

Now, by (16) we must have Bi ≤ Di, and the similar way shows that Bi = Di. Thus Ai + Bi = Ci +Di. Assuming that

Bi ≤ Di leads to the same result. Therefore µ
t̃λ
Z̃i

(x∗) = µ
t̃λ
Z̃i

(x), and hence x∗ is a fuzzy efficient solution for P (t̃λ) by

(7).

3.2. The tolerance of objective coefficient

In two-phase approach proposed by Guua and Wu (1999), if one of the objectives to be fulfilled entirely, the fuzzy efficient

solution may not be Pareto Optimal [22]. In this section, we recall an algorithm where the founded fuzzy efficient solution

remains Pareto Optimal. Moreover, we obtain an interval as a tolerance for the selected coefficient of an objective function

such that the fuzzy efficient and Pareto optimal solution does not change. First, we need to consider the following problem:

max λ

subject to 1 ≥ µZ̃i (x) = 1− bi−cTi x
pi

≥ λ ≥ 0, i = 1, 2, . . . , k,

x ∈ S

(19)

Let the optimal solution be given by (x∗, λ∗). Now see Algorithm 2.

Step 1: If the optimal solution is unique then:

(a). If µZ̃i (x∗) < 1 for all i = 1, . . . , k, then x∗ is fuzzy efficient and Pareto optimal [11]. Solving the following

inequality for tp, gives a tolerance for cwp:

1 ≥ 1−
bw −

(
cw1x

∗
1 + · · ·+ tpx

∗
p + · · ·+ cwnx

∗
n

)
pw

≥ λ∗. (20)

Stop.

(b). If µZ̃i (x∗) = 1 for some 1 ≤ i ≤ k, then x∗ is fuzzy efficient but it may not be Pareto optimal [11]. Go to Step 3.

If there exist multiple optimal solutions: go to Step 2.

Step 2: Let (x∗∗, λ∗∗) be the optimal solution of the following problem:

max
k∑
i=1

λi

subject to 1 ≥ µZi (x) ≥ λi ≥ µZi (x∗) , i = 1, . . . , k,

x ∈ S

(21)
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(a). If µZ̃i (x∗∗) < 1 for all i = 1, . . . , k, then x∗∗ is fuzzy efficient and Pareto optimal [11]. Solving the following

inequality for tp, gives a tolerance for cwp:

1 ≥ 1−
bw −

(
cw1x

∗∗
1 + · · ·+ tpx

∗∗
p + · · ·+ cwnx

∗∗
n

)
pw

≥ λ∗∗. (22)

Stop.

(b). If µZ̃i (x∗∗) = 1 for some 1 ≤ i ≤ k, however x∗∗ is fuzzy efficient but it may not be Pareto optimal [11].

Step 3: Solve the following problem:

max
p∑
s=1

ns

subject to Zs (x)− ns = Zs (x∗∗) s ∈ I1,

µZr (x) = µZr (x∗∗) r ∈ I2,

x ∈ S; ns ≥ 0,

(23)

where I1 = {s : µZs̃ (x∗∗) = 1} and I2 = {r : µZr̃ (x∗∗) < 1}. The optimal solution, xo, is fuzzy efficient and Pareto

optimal.

Set λo = 1− bw−cTwx
o

pw
and solving the following inequality for tp in order to obtain a tolerance for cwp:

1 ≥ 1−
bw −

(
cw1x

o
1 + · · ·+ tpx

o
p + · · ·+ cwnx

o
n

)
pw

≥ λo. (24)

Here, the following example illustrates the usefulness of the proposed approach.

Example 3.2. Consider the following problem:

max z̃1 =
(
5, 7 1

2
, 1
2

)
x1 +

(
2, 6, 1

2
, 1
2

)
x2 +

(
1, 3, 1

2
, 1
2

)
x3

max z̃2 =
(
2, 4, 1

2
, 1
2

)
x1 +

(
3, 7, 1

2
, 1
2

)
x2 −

(
1, 3, 1

2
, 1
2

)
x3

max z̃3 =
(
1, 3, 1

2
, 1
2

)
x1 +

(
3, 4, 1

2
, 1
2

)
x2 +

(
3, 5, 1

2
, 1
2

)
x3

subject to
(
3, 7, 1

2
, 1
2

)
x1 +

(
2, 4, 1

2
, 1
2

)
x2 +

(
4, 8, 1

2
, 1
2

)
x3 �R

(
10, 14, 1

2
, 1
2

)
,(

1
2
, 3
2
, 1
2
, 1
2

)
x1 +

(
1
2
, 3
2
, 1
2
, 1
2

)
x2 �R

(
1, 5, 1

2
, 1
2

)
,

x1, x2, x3 ≥ 0.

(25)

Now, we apply the Yager ranking function for the fuzzy coefficients. Thus, the problem reduces to:

max z1 = 6x1 + 4x2 + 2x3

max z2 = 3x1 + 5x2 − 2x3

max z3 = 2x1 + 3.5x2 + 4x3

subject to 5x1 + 3x2 + 6x3 ≤ 12,

x1 + x2 ≤ 3,

x1, x2, x3 ≥ 0.

(26)
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Let the DM’s aspiration levels for the objectives are 8, 10 and 4, respectively, and their tolerance threshold are 10, 8 and 7,

respectively. For the sake of simplicity, we work with linear membership functions [12, 21]. The max-min problem leads to:

max λ

subject to λ ≤ 1− 8−(6x1+4x2+2x3)
10

≤ 1,

λ ≤ 1− 10−(3x1+5x2−2x3)
8

≤ 1,

λ ≤ 1− 4−(2x1+3.5x2+4x3)
7

≤ 1,

5x1 + 3x2 + 6x3 ≤ 12,

x1 + x2 ≤ 3,

x1, x2, x3 ≥ 0,

0 ≤ λ ≤ 1.

(27)

The optimal solution is x∗ = (x∗1, x
∗
2, x
∗
3) = (0.92, 0.61, 0), λ∗ = 0.48, z1 (x∗) = 7.96, z2 (x∗) = 5.81, z3 (x∗) = 3.97,

µz1 (x∗) = 0.98, µz2 (x∗) = λ∗ = 0.48, µz3 (x∗) = 0.99. The optimal solution is unique and all the satisfaction degrees are

strictly less than 1, hence x∗ is fuzzy efficient and Pareto optimal.

In order to obtain an interval as a tolerance for c11 such that x∗ remains fuzzy efficient and Pareto optimal, use the derived

(x∗, λ∗) in inequality (20):

0.48 ≤ 1− 8− (0.92t+ 4× 0.61)

10
≤ 1⇒ t ∈ [0.39, 6.04] . (28)

Solving the following interval programming problem shows that for all values c11 ∈ [0.39, 6.04] the fuzzy efficient and Pareto

optimal solution for both problems (26) and the following problem are the same:

max z1 = [0.39, 6.04]x1 + 4x2 + 2x3

max z2 = 3x1 + 5x2 − 2x3

max z3 = 2x1 + 3.5x2 + 4x3

subject to 5x1 + 3x2 + 6x3 ≤ 12,

x1 + x2 ≤ 3,

x1, x2, x3 ≥ 0.

(29)

The max-min approach leads to:

max λ

subject to λ ≤ 1− 8−([0.39,6.04]x1+4x2+2x3)
10

≤ 1,

λ ≤ 1− 10−(3x1+5x2−2x3)
8

≤ 1,

λ ≤ 1− 4−(2x1+3.5x2+4x3)
7

≤ 1,

5x1 + 3x2 + 6x3 ≤ 12,

x1 + x2 ≤ 3,

x1, x2, x3 ≥ 0,

0 ≤ λ ≤ 1.

(30)

The optimal solution is x∗1 = 0.92, x∗2 = 0.61, x∗3 = 0 with λ∗ = 0.48, that is the same solution for problem (27).

In order to obtain intervals as tolerances for c11 and c22 such that x∗ remains fuzzy efficient and Pareto optimal, use the

derived (x∗, λ∗) in inequality (20): 0.48 ≤ 1− 8−(0.92t1+4×0.61)
10

≤ 1⇒ t1 ∈ [0.39, 6.04] ,

0.48 ≤ 1− 10−(3×0.92+0.61t2)
7

≤ 1⇒ t2 ∈ [4.99, 11.87] .
(31)
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By substituting these two intervals and solving analogous problems, we have:

max λ

subject to −6.04x1 − 4x2 − 2x3 + 10λ ≤ 2,

6.04x1 + 4x2 + 2x3 ≤ 8,

3x1 + 11.87x2 − 2x3 − 8λ ≥ 2,

3x1 + 11.87x2 − 2x3 ≤ 10,

−2x1 − 3.5x2 − 4x3 + 7λ ≤ 3,

2x1 + 3.5x2 + 4x3 ≤ 4,

5x1 + 3x2 + 6x3 ≤ 12,

x1 + x2 ≤ 3,

x1, x2, x3 ≥ 0,

0 ≤ λ ≤ 1.

(32)

The optimal solution is x∗1 = 0.92, x∗2 = 0.61 and x∗3 = 0 with λ∗ = 0.48, that is the same solution for problem (27).

3.3. Objective Function Removal

After removing sth (1 ≤ s ≤ k) objective function from problem (6), we have the following problem:

max z̃i =
∑
c̃ijxj , i = 1, 2, . . . k; i 6= s

subject to x ∈ S =
{
x ∈ Rn : Ãx �R b̃, x ≥ 0

}
.

(33)

Now, we want to verify if the fuzzy efficient solution x∗ in problem (6) remains a fuzzy efficient solution in problem (33).

The next theorem is considering this matter.

In the proof of the next theorem we use the linear membership function (11).

Theorem 3.3. Let x∗ be a fuzzy efficient solution of problem (6). If x∗ is optimal for the following problem:

min z̃s =
∑
j c̃sjxj

subject to x ∈ S′ =
{
x ∈ Rn : Ãx �R b̃, c̃x %R c̃x∗, x ≥ 0

}
.

(34)

Then x∗ is a fuzzy efficient solution of problem (33).

Proof. Let (by contradiction) x∗ isn’t a fuzzy efficient solution for problem (34). Therefore:

∃ x ∈ S′ : µZ̃i (x∗) = 1−
Zi −

∑
j cijx

∗
j

qi
≤ 1−

Zi −
∑
j cijxj

qi
= µ

Z̃i

(x) : i = 1, . . . , k, i 6= s, (35)

µZ̃l (x∗) = 1−
Zl −

∑
j cljx

∗
j

ql
< 1−

Zl −
∑
j cljxj

ql
= µ

Z̃l

(x)

for some 1 ≤ l ≤ k, l 6= s. Since x∗ is an optimal solution for problem (34), thus we obtain:

c̃sx
∗ �R c̃sx⇒ R (c̃sx

∗) ≤ R (c̃sx)⇒ csx
∗ ≤ csx. (36)

Therefore, we have:

µZ̃s (x∗) = 1−
Zs −

∑
j csjx

∗
j

qs
≤ 1−

Zs −
∑
j csjxj

qs
= µZ̃s (x)⇒ µZ̃s (x∗) ≤ µZ̃s (x) . (37)
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But inequalities (35) and (37) lead to:

µZ̃i (x∗) = 1−
Zi −

∑
j cijx

∗
j

qi
≤ 1−

Zi −
∑
j cijxj

qi
= µZ̃i (x) : i = 1, . . . , k,∧

µZ̃l (x∗) < µZ̃l (x) for some 1 ≤ l ≤ k.

(38)

It means x∗ is not a fuzzy efficient solution for problem (6). This is to contradict with the hypothesis of theorem.

Example 3.4. Consider the following problem:

max z̃1 = −
(
5, 9, 1

2
, 1
2

)
x1 +

(
1
2
, 3
2
, 1
2
, 1
2

)
x2

max z̃2 = −
(
8, 10, 1

2
, 1
2

)
x1 +

(
3, 5, 1

2
, 1
2

)
x2

max z̃3 =
(
5, 11, 1

2
, 1
2

)
x1 −

(
1, 3, 1

2
, 1
2

)
x2

subject to
(
8, 12, 1

2
, 1
2

)
x1 +

(
20, 30, 1

2
, 1
2

)
x2 �R

(
1
2
, 3
2
, 1
2
, 1
2

)
,(

10, 20, 1
2
, 1
2

)
x1 +

(
10, 20, 1

2
, 1
2

)
x2 �R

(
13, 17, 1

2
, 1
2

)
,

x1, x2 ≥ 0.

(39)

By using the Yager ranking function for the fuzzy coefficients the following problem will be obtained:

max z1 = −7x1 + x2

max z2 = −9x1 + 4x2

max z3 = 8x1 − 2x2

subject to 10x1 + 25x2 ≤ 1,

15x1 + 15x2 ≤ 15,

x1, x2 ≥ 0.

(40)

Let the DM’s aspiration levels for the objectives are 5, 7 and 6, respectively, and their tolerance threshold are 10, 15 and

20, respectively. For the sake of simplicity, we work with linear membership functions. For finding a fuzzy efficient solution

according to the first step of the two-phase approach (1999) we must solve the following problem:

max λ

subject to λ ≤ 1− 5−(−7x1+x2)
10

≤ 1,

λ ≤ 1− 7−(−9x1+4x2)
15

≤ 1,

λ ≤ 1− 6−(8x1−2x2)
20

≤ 1,

10x1 + 25x2 ≤ 1,

15x1 + 15x2 ≤ 15,

x1, x2 ≥ 0,

0 ≤ λ ≤ 1.

(41)

The optimal solution is x∗ = (x∗1, x
∗
2) = (0, 0.04), λ∗ = 0.5. Since the optimal solution is unique, according to the first step

of the two-phase approach, x∗ is a fuzzy efficient solution of problem (39). Now, consider the following problem:

min z̃ =
(
5, 11, 1

2
, 1
2

)
x1 −

(
1, 3, 1

2
, 1
2

)
x2

subject to
(
8, 12, 1

2
, 1
2

)
x1 +

(
20, 30, 1

2
, 1
2

)
x2 �R ( 1

2
, 3
2
, 1
2
, 1
2
),(

10, 20, 1
2
, 1
2

)
x1 +

(
10, 20, 1

2
, 1
2

)
x2 �R

(
13, 17, 1

2
, 1
2

)
,

x1, x2 ≥ 0.

(42)
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By using the Yager ranking function for the fuzzy coefficients, we have the following:

min z = 8x1 − 2x2

subject to 10x1 + 25x2 ≤ 1

15x1 + 15x2 ≤ 15,

x1, x2 ≥ 0.

(43)

The optimal solution of problem (43) is x∗ = (x∗1, x
∗
2) = (0, 0.04). Therefore, according to theorem (2), x∗ is a fuzzy efficient

solution of the following problem that is arisen by removing the third objective function from problem (39):

max z̃1 = −
(
5, 9, 1

2
, 1
2

)
x1 +

(
1
2
, 3
2
, 1
2
, 1
2

)
x2

max z̃2 = −
(
8, 10, 1

2
, 1
2

)
x1 +

(
3, 5, 1

2
, 1
2

)
x2

subject to
(
8, 12, 1

2
, 1
2

)
x1 +

(
20, 30, 1

2
, 1
2

)
x2 �R

(
1
2
, 3
2
, 1
2
, 1
2

)
,(

10, 20, 1
2
, 1
2

)
x1 +

(
10, 20, 1

2
, 1
2

)
x2 �R

(
13, 17, 1

2
, 1
2

)
,

x1, x2 ≥ 0.

(44)

3.4. Objective Function Addition

Consider the new following problem arising from problem (6) by adding a new objective function:

max z̃i =
∑
c̃ijxj , i = 1, 2, . . . , k

max z̃k+1 =
∑
d̃jxj

subject to x ∈ S =
{
x ∈ Rn : Ãx �R b̃, x ≥ 0

}
.

(45)

Now, we want to verify if the fuzzy efficient solution, x∗, in problem (6) remains a fuzzy efficient solution for problem (45).

Theorem 3.5. Let x∗ be a fuzzy efficient solution of problem (6). Then, x∗ is a fuzzy efficient solution of problem (45) if

and only if x∗ is an optimal solution of the following problem:

max z̃k+1 =
∑
d̃jxj

subject to x ∈ S
′′

=
{
x ∈ Rn : Ãx �R b̃, c̃x ∼=R c̃x

∗, x ≥ 0
}
.

(46)

Proof. If x∗ is an optimal solution for problem (46), obviously, x∗ is fuzzy efficient for problem (45).

Conversely, let x∗ be a fuzzy efficient solution for problem (6), but it is not optimal for problem (46). Thus, there exists

x ∈ S
′′

such that
∑
j djx

∗
j <

∑
j djxj . Therefore

µZ̃k+1
(x∗) = 1−

zk+1 −
∑
j djx

∗
j

qk+1
< 1−

zk+1 −
∑
j djxj

qk+1
= µZ̃k+1

(x) . (47)

Since x∗ is a fuzzy efficient solution for problem (6), by (7) we must have µZ̃i (x∗) = µZ̃i (x), i = 1, . . . , k. x ∈ S
′′

and

inequality (47) imply:

µZ̃i (x∗) = µZ̃i (x) : i = 1, . . . , k,∧
µZ̃k+1

(x∗) < µZ̃k+1
(x) ,

(48)

which is a contradiction with fuzzy efficiency x∗ for problem (45).
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Example 3.6. Consider problem (39) with its fuzzy efficient solution as x∗ = (x∗1, x
∗
2) = (0, 0.04). Now, consider the

following problem:

max z̃ = −
(
1, 3, 1

2
, 1
2

)
x1 +

(
1
2
, 3
2
, 1
2
, 1
2

)
x2

subject to
(
8, 12, 1

2
, 1
2

)
x1 +

(
20, 30, 1

2
, 1
2

)
x2 �R

(
1
2
, 3
2
, 1
2
, 1
2

)
,(

10, 20, 1
2
, 1
2

)
x1 +

(
10, 20, 1

2
, 1
2

)
x2 �R

(
13, 17, 1

2
, 1
2

)
,

x1, x2 ≥ 0.

(49)

By using the Yager ranking function for the fuzzy coefficients we will have the following problem:

max z = −2x1 + x2

subject to 10x1 + 25x2 ≤ 1,

15x1 + 15x2 ≤ 15,

x1, x2 ≥ 0.

(50)

The optimal solution is x∗ = (x∗1, x
∗
2) = (0, 0.04). Therefore, according to theorem (3), it can be concluded that x∗ is a fuzzy

efficient solution of the following problem that is arisen with adding a new objective function to problem (39):

max z̃1 = −
(
5, 9, 1

2
, 1
2

)
x1 +

(
1
2
, 3
2
, 1
2
, 1
2

)
x2

max z̃2 = −
(
8, 10, 1

2
, 1
2

)
x1 +

(
3, 5, 1

2
, 1
2

)
x2

max z̃3 =
(
5, 11, 1

2
, 1
2

)
x1 −

(
1, 3, 1

2
, 1
2

)
x2

max z̃4 = −
(
1, 3, 1

2
, 1
2

)
x1 +

(
1
2
, 3
2
, 1
2
, 1
2

)
x2

subject to
(
8, 12, 1

2
, 1
2

)
x1 +

(
20, 30, 1

2
, 1
2

)
x2 �R ( 1

2
, 3
2
, 1
2
, 1
2
),(

10, 20, 1
2
, 1
2

)
x1 +

(
10, 20, 1

2
, 1
2

)
x2 �R

(
13, 17, 1

2
, 1
2

)
,

x1, x2 ≥ 0.

(51)

4. Conclusion

The post optimality analysis of fuzzy efficient solutions was presented in this paper. Three cases were considered: changing

in one objective function coefficient, objective function removal and objective function addition. The convexity property of

the set of parameters for which a given fuzzy efficient solution remains fuzzy efficient is proved. In the case that one objective

function coefficient changes, a computational procedure was presented to obtain post optimality results. An algorithm based

on the two-phase approach was used for obtaining the fuzzy efficient and Pareto optimal solution for the fuzzy multi-objective

linear programming problem. The approach was also easy to implement, and we believe it could be incorporated in linear

optimization software to enrich the post optimality analysis and to give more insight on the fuzzy efficient solutions. In

addition, in this paper the post optimality analysis was examined for two cases, objective function removal and objective

function addition. In each of these cases, we presented a theory which let us analyze the sensitivity of a given fuzzy efficient

solution.
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