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Abstract: In this paper, neighborly irregular, highly irregular and totally irregular product vague line graphs are defined. Also, some

properties of neighborly irregular and totally irregular product vague line graphs are given. Further, the applications of
product vague line graph to model road network have been discussed with an example.
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1. Introduction

Gau and Buehrer [5] proposed the concept of vague set and vague relation by replacing the value of an element in a set

with a subinterval of [0,1]. Namely a true membership function tv (x) and a false membership function fv (x) are used to

describe the boundaries of the membership degree. These two boundaries form a subinterval [tv (x) , 1− fv (x)] of [0, 1].

Ramakrishna [12] introduced the concept of vague graphs and studied some of their properties. Akram, Feng, Sarwar and

Jun [2] defined types of irregular vague graphs and discussed some properties. Akram, Dudek, and Yousaf [1] are introduced

the concepts of vague intersection graphs and vague line graphs. Rashmanlou and Borzooei [14] introduced the concepts of

product vague graphs, complete product vague graphs density and balanced irregular vague graphs.

In this paper, product vague line graphs are defined and types of irregular product vague line graphs are introduced. Also

some properties of product vague line graphs are investigated. Finally, an application of product vague line graphs in travel

time networks were discussed with an example.

2. Preliminaries

Definition 2.1 ([4]). Let a set E be fixed. An intuitionistic fuzzy set (IFS) A in E is an object of the form A =

{〈x, µA(x), νA(x)〉 | x ∈ E}, where the function µA : E → [0, 1] and νA : E → [0, 1] determine the degree of member-

ship and the degree of non-membership of the element x ∈ E, respectively and , 0 ≤ µA(x) + νA(x) ≤ 1, for every x ∈ E.

Definition 2.2 ([5]). A vague set A in an ordinary finite nonempty set X is a pair (tA, fA), where tA(x) : X → [0, 1],

fA(x) : X → [0, 1] are true and false membership functions respectively such that 0 ≤ tA (x) + fA (x) ≤ 1 for all x ∈ X , the

functions tA and fA should satisfy the condition tA ≤ 1− fA.
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Example 2.3. Let X be the set of integers. The vague set A is defined as A = {set of even numbers less than 10}. The

true membership function is defined as

tA(x) =


1

5x2+2
; if x ∈ (1, 10)

0; otherwise

x = 2 ⇒ tA(x) = 0.045; x = 4 ⇒ tA(x) = 0.012; x = 6 ⇒ tA(x) = 0.005; x = 8 ⇒ tA(x) = 0.003. Hesitancy value

(VA(x) = 0.1)

fA(x) = 1− tA(x)− VA(x)

tA(x) = 0.045; fA(x) = 0.855; VA(x) = 0.1

tA(x) = 0.012; fA(x) = 0.888; VA(x) = 0.1

tA(x) = 0.005; fA(x) = 0.895; VA(x) = 0.1

tA(x) = 0.003; fA(x) = 0.855; VA(x) = 0.1

Definition 2.4 ([7]). A pair G = (V,E) be a vague graph, where V = 〈tA, fA〉 is a vague set on V and E = 〈tB , fB〉

is a vague set on E ⊆ V × V such that tB (vi, vj) ≤ min (tA (vi) , tA (vj)) and fB (vi, vj) ≥ max (fA (vi) , fB (vj)) for each

(vi, vj) ∈ E.

Example 2.5. Let G = (V,E) be a vague graph with V = {v1, v2, v3, v4}, E =

{(v1, v2), (v2, v4), (v3, v4), (v1, v3)(v2, v3)(v1, v4)},

Figure 1: Vague graph

Definition 2.6. A product vague graph G = (V,E) is a pair of G = (A,B), where A = 〈tA, fA〉 is an vague set in V and

B = 〈tB , fB〉 is a vague set on E such that tB(vivj) ≤ tA(vi)× tA(vj) and fB(vivj) ≥ fA(vi)× fA(vj) for all vi, vj ∈ V .

Example 2.7. Let G = (V,E) where V = {v1, v2, v3, v4} and E = {v1v4, v2v3}. The product vague graph G is displayed in

Figure 2,

Figure 2: Product vague graph
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Definition 2.8. Let G = (V,E) be a product vague graph with vague subsets A = 〈tA, fA〉 on V and B = 〈tB , fB〉 on E.

Then the product vague line graph L(G) = (V
′
, E

′
) of G is defined as follows:

(1). V
′

=
{
v
′
i ∈ V

′
|v

′
i = (vi, vj), ∀ (vi, vj) ∈ E

}
(2). E

′
=
{

(v
′
i , v

′
j) ∈ E

′
|v

′
i ∩ v

′
j 6= φ,

}
(3). A1 = 〈tA1 , fA1〉 and B1 = 〈tB1 , fB1〉 are vague subsets of V

′
and E

′
respectively,

(4). tA1(v
′
i) = tB(vi, vj), fA1(v

′
i) = fB(vi, vj),

(5). tB1(v
′
i , v

′
j) = tA1(v

′
i)× tA1(v

′
j), fB1(v

′
i , v

′
j) = fA1(v

′
i)× fA1(v

′
j).

Example 2.9. Consider the product vague graph G = (V,E) where V = {v1, v2, v3, v4} and

E = {(v1, v2), (v2, v3), (v3, v4), (v4, v1), (v3, v1)}. The product vague line graph L(G) = (V
′
, E

′
)

of G such that V
′

=
{
v
′
1 = (v1, v2), v

′
2 = (v2, v3), v

′
3 = (v3, v4), v

′
4 = (v4, v1), v

′
5 = (v3, v1)

}
and E

′
={

(v
′
1, v

′
2), (v

′
2, v

′
3), (v

′
3, v

′
4), (v

′
4, v

′
1), (v

′
5, v

′
1), (v

′
5, v

′
2), (v

′
5, v

′
3), (v

′
5, v

′
4)
}

.

Figure 3: Product vague graph Figure 4: Product vague line graph

Definition 2.10. A product vague graph G = (V,E) is said to be strong if tB(vi, vj) = tA(vi) × tA(vj) and fB(vi, vj) =

fA(vi)× fA(vj) for all (vi, vj) ∈ E.

Definition 2.11. Let G = (V,E) be a product vague graph the open neighbourhood degree of a vertex v in G is defined by

deg(vi) = (degt(vi), degf (vi)), where degt(vi) =
∑

vi 6=vj ,(vi,vj)∈E
tB((vi, vj)) and degf (vi) =

∑
vi 6=vj ,(vi,vj)∈E

fB((vi, vj)). If all

the vertices of G have same open neighborhood degree (r1, r2), then G is called (r1, r2)-regular product vague graph.

Example 2.12. The regular product vague displayed in Figure 5

Figure 5: Regular product vague graph

In Figure 5, deg(v1) = deg(v2) = deg(v3) = deg(v4) = (0.3, 0.6). Hence, G is regular product vague graph.
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Definition 2.13. Let G = (V,E) be a product vague graph. The closed neighbourhood degree of a vertex v is defined by

degt [vi] = (degt [vi] , degf [vi]), where degt [vi] = degt(vi) + tA(vi) and degf [vi] = degf (vi) + fA(vi). If each vertex of G has

the same closed neighborhood degree (g1, g2), then G is called (g1, g2)-totally regular product vague graph.

Example 2.14. Totally regular product vague graph is shown in Figure 6

Figure 6: Totally regular product vague graph

In Figure 6, deg [v1] = deg [v2] = deg [v3] = deg [v4] = (0.67, 0.28). Hence, G is totally regular product vague graph.

3. Types of Irregular Product Vague Line Graphs

Definition 3.1. Let L(G) = (V
′
, E

′
) be a product vague line graph. Then L (G) is irregular product vague line graph if

there is a vertex which is adjacent to vertices with distinct degrees.

Example 3.2.

Figure 7: Irregular product vague graph

Figure 8: Irregular product vague line graph L(G)

In Figure 8, deg(v
′
1) = (0.396, 0.017); deg(v

′
2) = (0.336, 0.018); deg(v

′
3) = (0.32, 0.009); deg(v

′
4) = (0.336, 0.0192); deg(v

′
5) =

(0.124, 0.0112); deg(v
′
6) = (0.18, 0.0108). Here v

′
1 adjacent to v

′
2, v

′
3, v

′
4 and v

′
6 which are having distinct degrees then, L(G)

is irregular product vague line graph.
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Definition 3.3. Let L(G) = (V
′
, E

′
) be a product vague line graph. L (G) is said to be a neighborly irregular product vague

line graph if every two adjacent vertices of L(G) have distinct degrees.

Example 3.4.

Figure 9: Neighbourly irregular product vague graph

Figure 10: Neighbourly irregular product vague line graph L(G)

In Figure 10, deg
(
v
′
1

)
= (0.0012, 0.72); deg

(
v
′
2

)
= (0.0016, 0.78); deg

(
v
′
3

)
= (0.0016, 0.84); deg

(
v
′
4

)
= (0.0016, 0.78).

Definition 3.5. Let L(G) = (V
′
, E

′
) be a product vague line graph. Then L (G) is said to be a highly irregular product

vague line graph if every vertex of L(G) is adjacent to vertices with distinct degrees. Every vertex of product vague line graph

is adjacent to vertices with distinct degrees.

Example 3.6. Highly irregular product vague and line graph is displayed in Figure 11(a) and 11(b)

(a) Highly irregular product vague graph (b) Highly irregular product vague line graph L(G)

Figure 11:

In Figure 11(b), deg
(
v
′
1

)
= (0.006, 0.1); deg

(
v
′
2

)
= (0.0048, 0.186); deg

(
v
′
3

)
= (0.0016, 0.336); deg

(
v
′
4

)
= (0.0028, 0.36);

deg
(
v
′
5

)
= (0.0072, 0.21); deg

(
v
′
6

)
= (0.0072, 0.1). We see that every vertex of L(G) is adjacent to vertices with distinct

degree. So L(G) is highly irregular product vague line graph.
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Definition 3.7. Let L(G) = (V
′
, E

′
) be a product vague line graph. Then L (G) is said to be a totally irregular product

vague line graph if there is a vertex which is adjacent to vertices with distinct total degrees.

Example 3.8.

(a) Totally irregular product vague graph (b) Totally irregular product vague line graph L(G)

Figure 12:

In Figure 12(b), deg
[
v
′
1

]
= (0.0696, 0.501); deg

[
v
′
2

]
= (0.1416, 0.4125); deg

[
v
′
3

]
= (0.1416, 0.609); deg

[
v
′
4

]
=

(0.0696, 0.8673); deg
[
v
′
5

]
= (0.0448, 0.7518).

Theorem 3.9. Let L(G) be a product vague graph. Then L(G) is highly irregular product vague line graph and neighbourly

irregular product vague line graph if and only if the neighbourhood degrees of all the vertices of L(G) are distinct.

Proof. Let L(G) be a product vague line graph with n-vertices v1, v2, · · · vn. Assume that L(G) is highly irregular product

vague line graph and neighbourly irregular product vague line graph. To claim that neighbourhood degrees of all vertices of

L(G) are distinct. Let deg(vi) = (ki, li), i = 1, 2, · · · , n. Let the adjacent vertices of v1 be v2, v3, . . . , vn with neighbourhood

degrees (k2, l2), (k3, l3), . . . , (kn, ln) respectively. Then k2 6= k3 6= · · · 6= kn and l2 6= l3 6= · · · 6= ln, since L(G) is highly

irregular. Also k1 6= k2 6= k3 6= · · · 6= kn and l1 6= l2 6= l3 6= · · · 6= ln, since L(G) is neighbourly irregular. Hence, the

neighbourhood degree of all the vertices of L(G) are distinct.

Conversely, assume that the neighbourhood degrees of all the vertices of L(G) are distinct. L(G) is highly irregular and

neighbourly irregular product vague line graph. Let deg(vi) = (ki, li), i = 1, 2, . . . , n. Given that, k1 6= k2 6= k3 6= · · · 6= kn

and l1 6= l2 6= l3 6= · · · 6= ln, which implies that every two adjacent vertices have distinct neighbourhood degrees and to every

vertex, the adjacent vertices have distinct neighbourhood degrees.

Theorem 3.10. A product vague line graph L(G) is a cycle with vertices three is neighbourly irregular and highly irregular

product vague line graph if and only if the true membership and false membership value of the vertices between every pair of

vertices are all distinct.

Proof. Assume that true membership and false membership value of the vertices are all distinct. L(G) is neighbourly

irregular and highly irregular product vague line graph. Let vi, vj , vk ∈ V , given that, tA(vi) 6= tA(vj) 6= tA(vk) and fA(vi) 6=

fA(vj) 6= fA(vk), which implies that
∑
x ∈ N(x)tA(vi) 6=

∑
x ∈ N(x)tA(vj) 6=

∑
x ∈ N(x)tA(vk) and

∑
x ∈ N(x)fA(vi) 6=∑

x ∈ N(x)fA(vj) 6=
∑
x ∈ N(x)fA(vk). That is, deg(vi) 6= deg(vj) 6= deg(vk). Hence G is neighbourly irregular and highly

irregular product vague line graph.

Conversely, assume that L(G) is neighbourly irregular and highly irregular. True membership and false membership value

of the vertices are all distinct. Let deg(vi) = (ki, li), i = 1, 2, . . . , n. Suppose that true membership and false membership
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value of any two vertices are same. Let v1, v2 ∈ V . Let tA(v1) = tA(v2) and fA(v1) = fA(v2). Then deg(v1) = deg(v2), since

L(G) is cycle, which is contradiction. To the fact that L(G) is neighbourly irregular and highly irregular product vague line

graph. Hence true membership and false membership value of the vertices are all distinct.

Proposition 3.11. Let L(G) be a product vague line graph. If L(G) is neighbourly irregular product vague line graph and

(tA, fA) is a constant function, then L(G) is a neighbourly total irregular product vague line graph.

Proof. Assume that L(G) is a neighbourly irregular product vague line graph. That is the neighbourhood degrees of

every two adjacent vertices are distinct. Let vi, vj ∈ V , where vi and vj are adjacent vertices with distinct neighbourhood

degrees (k1, l1) and (k2, l2) respectively. That is deg(vi) = (k1, l1) and deg(vj) = (k2, l2), where k1 6= k2, l1 6= l2. Let as

assume that (t1(vi), f1(vi)) = (t1(vj), f1(vj)) = (c1, c2), where c1, c2 are constant and c1, c2 ∈ [0, 1]. Therefore, degt [vi] =

degt(vi) + t1(vi) = k1 + c1 and degf [vi] = degf (vi) + f1(vi) = l1 + c2; degt [vj ] = degt(vj) + t1(vj) = k2 + c1 and

degf [vj ] = degf (vj) + f1(vj) = l2 + c2.

Claim: degt [vi] 6= degt [vj ] and degf [vi] 6= degf [vj ] suppose that,degt [vi] = degt [vj ] and degf [vi] = degf [vj ]. Consider,

degt [vi] = degt [vj ]

k1 + c1 = k2 + c1

k1 − k2 = c1 − c1 = 0

k1 = k2,

which is a contradiction to k1 6= k2. Therefore,degt [vi] 6= degt [vj ]. Similarly, consider

degf [vi] = degf [vj ]

l1 + c2 = l2 + c2

l1 − l2 = c2 − c2 = 0

l1 = l2,

which is a contradiction to l1 6= l2. Therefore, degf [vi] 6= degf [vj ]. Hence L(G) is a neighbourly total irregular product

vague line graph.

Proposition 3.12. Let L(G) be a product vague line graph. If L(G) is a neighbourly total irregular and (tA, fA) is a

constant function, then L(G) is a neighbourly irregular product vague line graph.

Proof. Assume that L(G) is a neighbourly total irregular product vague line graph. That is the closed neighbourhood

degrees of every two adjacent vertices are distinct. Let vi, vj ∈ V and deg [vi] = (k1, l1),deg [vj ] = (k2, l2), where k1 6= k2

and l1 6= l2. Assume that, (t1(vi), f1(vi)) = (c1, c2) and (t1(vj), f1(vj)) = (c1, c2), where c1, c2 ∈ [0, 1] are constant and

deg [vi] 6= deg [vj ].

Claim: deg(vi) 6= deg(vj). Given that deg [vi] 6= deg [vj ] which implies degt [vi] 6= degt [vj ] and degf [vi] 6= degf [vj ]. Consider,

degt [vi] 6= degt [vj ]

k1 + c1 6= k2 + c1

k1 6= k2
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Consider

degf [vi] 6= degf [vj ]

l1 + c2 6= l2 + c2

l1 6= l2

That is the neighbourhood degrees of adjacent vertices of L(G) are distinct. Hence neighbourhood degree of every pair of

adjacent vertices is distinct in L(G).

4. Applications of Product Vague Line Graphs

Product vague line graphs are used in database theory, expert systems, neural networks, decision making problems, and

geographical systems. The main problem in networks is to find shortest path between two nodes. In many situations the

length of the road may be uncertain.The vague sets are used to define the uncertain concepts. A road network can be

represented by a product vague line graph L(G) = (V
′
, E

′
), in which V

′
represents nodes corresponds to crossings and E

′

represents edges corresponds to roads. The weight of the roads defined by vague numbers.

Example 4.1.

Figure 13: Product vague graph of a road network Figure 14: Product vague line graph of a road network

Figure 14, shows a model of a road network represented as an product vague line graph L(G) = (V
′
, E

′
), when V

′
is a an

vague set of crossings at which the traffic density is calculated.

V
′

=
{〈
v
′
1, 0.5, 0.2

〉
,
〈
v
′
2, 0.4, 0.3

〉
,
〈
v
′
3, 0.4, 0.2

〉
,
〈
v
′
4, 0.4, 0.4

〉
,
〈
v
′
5, 0.5, 0.1

〉}

and E
′

is an vague set of roads between two crossing. The product vague line graph L(G) of the road network is represented

by the adjacency matrix given below

L(G) =



(0.0, 1.0) (0.2, 0.06) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)

(0.0, 1.0) (0.0, 1.0) (0.16, 0.06) (0.0, 1.0) (0.0, 1.0)

(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.16, 0.08) (0.0, 1.0)

(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.2, 0.04)

(0.25, 0.02) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)


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The final weights on edges can be calculated by finding the ranks as Si = tA(x) − fA(x) × VA(x). Here Si represents the

shortest path between two vertices. The calculation of the weighted adjacency matrix is

S1 = 0.2− 0.06× 0.74 = 0.1556

S2 = 0.16− 0.06× 0.78 = 0.1132

S3 = 0.16− 0.08× 0.76 = 0.0992

S4 = 0.2− 0.04× 0.76 = 0.1696

S5 = 0.25− 0.02× 0.73 = 0.2354

WL(G) =



0 0.1556 0 0 0

0 0 0.1132 0 0

0 0 0 0.0992 0

0 0 0 0 0.1696

0.2354 0 0 0 0


The optimal path between two vertices can be find from weighted adjacency matrix. Hence the calculated weight between the

two vertices is v
′
1 and v

′
2 is 0.1556, v

′
2 and v′3 is 0.1132, v′3 and v′4 is 0.0992, v′4 and v′5 is 0.1696, v′5 and v′1 is 0.2354.

5. Conclusion

Graph theory has several interesting applications in system analysis, operations research, computer applications, and eco-

nomics. Since most of the time the aspects of graph problems are uncertain. It is nice to deal with these aspects via the

methods of vague systems. This paper discussed about the product vague line graphs and types of irregular product vague

line graphs. Also, some interesting properties of these new concepts are proved. Finally an application of product vague

line graph in travel time in decision support systems are discussed.
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