ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

E_k -Super Vertex Magic Labeling of Graphs

Sivagnanam Mutharasu¹ and Duraisamy Kumar^{1,*}

1 Department of Mathematics, C.B.M. College, Coimbatore, Tamilnadu, India.

Abstract

Let G be a graph with p vertices and q edges. An E_k -super vertex magic labeling $(E_k$ -SVML) is a bijection $f:V(G)\cup E(G)\to \{1,2,\ldots,p+q\}$ with the property that $f(E(G))=\{1,2,\ldots,q\}$ and for each $v\in V(G), \ f(v)+w_k(v)=M$ for some positive integer M. For an integer $k\geq 1$ and for $v\in V(G)$, let $w_k(v)=\sum_{e\in E_k(v)}f(e)$, where $E_k(v)$ is the set of

all edges which are at distance at most k from v. The graph G is said to be E_k -regular with regularity r if and only if $|E_k(e)| = r$ for some integer $r \ge 1$ and for all $e \in E(G)$. A graph that admits an E_k -SVML is called E_k -super vertex magic (E_k -SVM). This paper contain several properties of E_k -SVML in graphs. A necessary and sufficient condition for the existence of E_k -SVML in graphs has been obtained. Also, the magic constant for E_k -regular graphs has been obtained. Further, we establish E_2 -SVML of some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs.

MSC: 05C78.

Keywords: E_k -super vertex magic labeling, E_k -regular graphs, circulant graphs.

© JS Publication.

1. Introduction

Throughout this paper, we consider only finite simple and undirected graphs. The set of vertices and edges of a graph G(p,q) will be denoted by V(G) and E(G) respectively, p = |V(G)| and q = |E(G)|. A general reference for graph-theoretic terminology, we follow [2]. A graph labeling is an assignment of integers (usually positive or non-negative integers), which assigned to vertices /or edges /or both into a set of numbers. A comprehensive survey of graph labelings is given in Gallian [1]. In 1963, Sedlàček [7] introduced the concept of magic labeling in graphs. A graph G is magic if the edges of G can be labeled by the numbers $\{1, 2, \ldots, q\}$ so that the sum of labels of all the edges incident with any vertex is the same ([5]). In 2002, MacDougall et al. [3] introduced the notion of vertex magic total labeling (VMTL) in graphs. A VMTL of G is a bijection $f:V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p+q\}$ such that for each vertex $v \in V(G)$, $f(v) + \sum_{u \in N(v)} f(uv) = M$ for some positive integer M, called as the magic constant of VMTL of G. They studied some basic properties of vertex magic graphs and showed some families of graphs having a VMTL. In 2004, MacDougall et al. [4] defined the super vertex-magic total labeling (SVMTL) in graphs. They call a VMTL is super if $f(V(G)) = \{1, 2, \ldots, p\}$. In this labeling, the smallest labels are assigned to the vertices. Swaminathan and Jeyanthi [8] introduced another labeling called super vertex magic labeling (SVML). They call a VMTL is super if $f(E(G)) = \{1, 2, \ldots, q\}$. Here, the smallest labels are assigned to the edges. To avoid confusion, Marimuthu and Balakrishnan [5] called a VMTL is E-super if $f(E(G)) = \{1, 2, \ldots, q\}$. A graph G is called E-super vertex magic (E-SVM) if it admits an E-super vertex magic labeling (E-SVML).

^{*} E-mail: dkumarcnc@qmail.com

This paper generalize the definition of E-SVML and define a new labeling called E_k -super vertex magic labeling (E_K -SVML). For an integer $k \geq 1$ and for $v \in V(G)$, let $w_k(v) = \sum_{e \in E_k(v)} f(e)$, where $E_k(v)$ is the set of all edges which are at distance at most k from v. An E_k -SVML of G is a bijection $f: V(G) \cup E(G) \to \{1, 2, ..., p + q\}$ such that $f(E(G)) = \{1, 2, ..., q\}$ and for each $v \in V(G)$, $f(v) + w_k(v) = M$ for some positive integer M. This constant is called as the magic constant of E_k -SVML of G. A graph that admits an E_k -SVML is called E_k -super vertex magic (E_k -SVM). Let k be an integer such that $1 \leq k \leq \text{diam}(G)$. For $e \in E(G)$, we define $E_k(e)$ as the set of all vertices which are at distance at most k from e. Note that if uv is an edge, then the vertices u and v are at distance 1 from the edge uv. The graph G is said to be E_k -regular with regularity r if and only if $|E_k(e)| = r$ for some integer $r \geq 1$ and for all $e \in E(G)$. Note that all nontrivial graphs are E_1 -regular. Consider the following graph G(V, E), with $V(G) = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ and $E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6\}$.

The following table gives the values of $E_k(v)$ and $E_k(e)$ when k=2.

$E_2(v)$	$E_2(e)$
$E_2(v_1) = \{e_1, e_2\}$	$E_2(e_1) = \{v_1, v_2, v_3\}$
$E_2(v_2) = \{e_1, e_2, e_3\}$	$E_2(e_2) = \{v_1, v_2, v_3, v_4\}$
$E_2(v_3) = \{e_1, e_2, e_3, e_4, e_5\}$	$E_2(e_3) = \{v_2, v_3, v_4, v_5, v_6\}$
$E_2(v_4) = \{e_2, e_3, e_4, e_5, e_6\}$	$E_2(e_4) = \{v_3, v_4, v_5, v_6\}$
$E_2(v_5) = \{e_3, e_4, e_5, e_6\}$	$E_2(e_5) = \{v_3, v_4, v_5, v_6\}$
$E_2(v_6) = \{e_3, e_4, e_5, e_6\}$	$E_2(e_6) = \{v_4, v_5, v_6\}$

Table 1. $E_2(v)$ and $E_2(e)$ in G

This paper contain several properties of E_k -SVML in graphs. A necessary and sufficient condition for the existence of E_k -SVML in graphs has been obtained. Also, the magic constant for E_k -regular graphs has been obtained. Further, we establish E_2 -SVML of some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs.

2. Main Section

This section will explore the basic properties of E_k -SVML. Let G be a graph of order $p(\geq 2)$. Suppose $E_k(u) = E_k(v)$ for a pair of vertices u and v ($u \neq v$) of G. Then $f(u) + w_k(u) \neq f(v) + w_k(v)$ for any E_k -SVML f of G (since f is one to one). In this case, G does not admit E_k -SVML and hence the next result follows.

Lemma 2.1. Let G be a graph of order $p(\geq 2)$. If $E_k(u) = E_k(v)$ for some $u, v \in V(G)$ $(u \neq v)$, then G is not E_k -SVM.

If a graph G admits E_k -SVML, then $1 \le k \le \text{diam}(G)$ (If k > diam(G), then $E_k(u) = E_k(v)$ for any two different vertices $u, v \in V(G)$).

Corollary 2.2. The star graph S_n does not admit E_k -SVML for $k \geq 2$.

Proof. Suppose there exists an E_k -SVML f on S_n . Since $\operatorname{diam}(S_n) = 2$, S_n does not admit E_k -SVML for k > 3. When k = 2, we get $E_k(u) = E_k(v)$ for any two different vertices $u, v \in V(S_n)$. Then by Lemma 2.1, S_n does not admit E_k -SVML for $k \ge 2$.

Theorem 2.3. Let G be a graph and g is a bijection from E(G) onto $\{1, 2, ..., q\}$. Then g can be extended to an E_k -SVML of G if and only if $\{w_k(u)/u \in V(G)\}$ consists of p sequential integers.

Proof. Assume that $\{w_k(u)/u \in V(G)\}$ consists of p sequential integers. Let $t = \min\{w_k(u)/u \in V(G)\}$. Define $f: V(G) \cup E(G) \to \{1, 2, \dots, p+q\}$ as f(xy) = g(xy) for $xy \in E(G)$ and $f(x) = t+p+q-w_k(x)$. Then $f(E(G)) = \{1, 2, \dots, q\}$ and $f(V(G)) = \{p+q, p+q-1, \dots, q+1\}$ (since $\{w_k(x)-t: x \in V(G)\}$ is a set of sequential integers). Hence f is an E_k -SVML with magic constant M = t+p+q.

Conversely, suppose that g can be extended to an E_k -SVML f of G with a magic constant M. Since $f(u) + w_k(u) = M$ for every $u \in V(G)$, $\{w_k(u)/u \in V(G)\} = \{M - q - p, M - q - p + 1, \dots, M - q - 1\}$ is a set of p sequential integers. \square

Lemma 2.4. If a graph G(p,q) is E_k -SVM and E_k -regular with regularity r, then the magic constant is given by $M = q + \frac{p+1}{2} + \frac{r}{p} \frac{q(q+1)}{2}$.

Proof. Let f be an E_k -SVML of G with the magic constant M. Then $f(E(G)) = \{1, 2, ..., q\}$, $f(V(G)) = \{q + 1, q + 2, ..., q + p\}$ and $M = f(v) + w_k(v)$ for all $v \in V(G)$. By summing over all $v \in V(G)$, we get

$$pM = \sum_{v \in V(G)} f(v) + \sum_{v \in V(G)} w_k(v)$$

$$= \sum_{v \in V(G)} f(v) + \sum_{v \in V(G)} \sum_{e \in E_k(v)} f(e)$$

$$= (q+1) + (q+2) + \dots + (q+p) + r \sum_{e \in E(G)} f(e)$$

(since each edge is counted exactly r times in the sum $\sum_{v \in V(G)} \sum_{e \in E_k(v)} f(e)$). Thus $pM = pq + \frac{p(p+1)}{2} + r\frac{q(q+1)}{2}$ and hence $M = q + \frac{p+1}{2} + \frac{r}{p} \frac{q(q+1)}{2}$.

Lemma 2.4 gives the magic constant only for E_k -regular graphs which admit E_k -SVML for $k \ge 1$. In 2003, Swaminathan and Jeyanthi [8] obtained the following result which gives the magic constant for all non trivial graphs which admit E-SVML.

Lemma 2.5 ([8]). If a nontrivial graph G is super vertex magic then the magic number M is given by $M = q + \frac{p+1}{2} + \frac{q(q+1)}{p}$.

When k = 1, we have $r = |E_1(e)| = 2$ for all $e \in E(G)$. The above result is a corollary of Lemma 2.4, when k = 1.

Lemma 2.6. For $k \geq 2$, there is no tree which is E_k -regular and E_k -SVM.

Proof. Let T be a tree and $\operatorname{diam}(T) = d(\geq 3)$. Let $P: u_0u_1...u_{d-1}u_d$ be a path of length d. Then u_0u_1 and $u_{d-1}u_d$ must be pendent edges. When k = d, we have $E_k(u_0) = E_k(u_d)$ and hence T is not E_k -SVM. Also when $k \leq d-1$, we have $E_k(u_1u_2) > E_k(u_0u_1)$ and hence T is not E_k -regular. Thus $\operatorname{diam}(T) \leq 2$ and hence T is a star graph. Thus by Corollary 2.2, T is not E_k -SVM for $k \geq 2$.

Theorem 2.7. Let G be a connected E_k -regular graph with regularity r. If G is E_k -SVM, then $M \ge \frac{5p-3}{2}$ when k = 1 and $M \ge \frac{(p+1)(r+3)}{2} - 1$ when $k \ge 2$.

Proof. For k=1, we have r=2. Since G is connected, $q \geq p-1$. Thus by Lemma 2.4, $M \geq (p-1) + \frac{p+1}{2} + \frac{(p-1)p}{p} = \frac{5p-3}{2}$ (This part is proved in [5]). Let $k \geq 2$. Suppose q=p-1. Then G is a tree and by Lemma 2.6, there is no tree which is E_k -regular and E_k -SVM. If $q \geq p$, then by Lemma 2.4, $M \geq p + \frac{p+1}{2} + \frac{p}{p} \frac{p(p+1)}{2} = \frac{(p+1)(r+3)}{2} - 1$.

Remark 2.8. The lower bounds obtained in Theorem 2.7 are sharp.

(i) The path P_5 is E-SVM and $M = \frac{5p-3}{2} = 11$.

Figure 3: E_2 -SVML of C_5

(ii) The cycle C_5 is E_2 -regular with regularity r=4 and C_5 is E_2 -SVM with $M=\frac{(p+1)(r+3)}{2}-1=20$.

Remark 2.9. P_5 dose not admit E_2 -SVML.

Figure 4: The graph P₅

Suppose P_5 admits an E_2 -SVML, say f'. Then $f(E(G)) = \{f(e_1), f(e_2), f(e_3), f(e_4)\} = \{1, 2, 3, 4\}$ and hence $w_2(v_3) = 10$. Thus by Theorem 2.3, $\{w_2(v)/v \in V(G)\} = \{10, 9, 8, 7, 6\}$. Since $w_2(v_3) = 10$, we have $w_2(v_1) = f(e_1) + f(e_2) \in \{6, 7, 8, 9\}$. Thus either $f(e_1)$ or $f(e_2)$ must be 4. In this case $w_2(v_3) \leq 5$, a contradiction.

Marimuthu and Kumar [6] proved the following result.

Theorem 2.10 ([6]). Let G be a regular graph having an E-super vertex magic labeling in which the label 1 is assigned to some edge e. Then the graph $G - \{e\}$ has an E-super vertex magic labeling.

Remark 2.11. The above result fails in the case of E_2 -SVML. For example, consider the cycle C_5 . By Remark 2.8, the cycle C_5 is E_2 -SVM and by Remark 2.9, $C_5 - e \cong P_5$ is not E_2 -SVM.

3. E_2 -SVML of Cycles and Prism Graphs

In this section, we identified some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs which admit E_2 -SVML. Since $E_2(u)$ is same for all $u \in V(C_3)$, by Lemma 2.1, C_3 does not admit E_2 -SVML.

Lemma 3.1 ([9]). For any integers a and b, we have $gcd(a,b) = gcd(b,a) = gcd(\pm a, \pm b) = gcd(a,b-a) = gcd(a,b+a)$.

Theorem 3.2. Let $n(\geq 5)$ be an integer. Then the cycle C_n is E_2 -SVM if and only if n is odd.

Proof. Suppose there exists an E_2 -SVML f of C_n . Since $|E_2(e)| = r = 4$ for all $e \in E(C_n)$, by taking k = 2, p = q = n and r = 4 in Lemma 2.4, we get $M = \frac{7n+5}{2}$. Since M is an integer, n must be odd.

Conversely, assume that n is odd and $n \geq 5$. Let $V(C_n) = \{a_i/1 \leq i \leq n\}$ and $E(C_n) = \{a_i a_{i \oplus n} 1/1 \leq i \leq n\}$, where the operation \oplus_n stands for addition modulo n.

Case A: Suppose $n = 4\ell + 1$ for some integer $\ell \ge 1$. Define a function $f: V(C_n) \cup E(C_n) \to \{1, 2, ..., 2n\}$ as follows: $f(a_i) = n - 3 + i$ when $1 \le i \le n$ and $f(a_i) = 2n - 3 + i$ when $1 \le i \le 3$; $f(a_i a_{i \oplus_n 1}) = [(i - 1)\ell + 1] \pmod{n}$, where $[(i - 1)\ell + 1] \pmod{n}$ is the positive residue when $(i - 1)\ell + 1$ divides n.

Next we prove that $\gcd(\ell, 4\ell+1) = 1$. By taking $b = 4\ell+1$ and $a = \ell$ in Lemma 3.1, we get $\gcd(\ell, 4\ell+1) = \gcd(\ell, 3\ell+1) = \gcd(\ell, 2\ell+1) = \gcd(\ell, \ell+1) = \gcd(\ell, \ell$

Claim 1: $w_2(a_i) = 10\ell + 8 - i$ for $4 \le i \le n$ and $w_2(a_i) = (\ell + 1)6 - (i - 1)$ for $1 \le i \le 3$.

Case i: Suppose i = 4x for some $1 \le x \le \ell$. Now

$$w_{2}(a_{i}) = f(a_{i-2}a_{i-1}) + f(a_{i-1}a_{i}) + f(a_{i}a_{i+1}) + f(a_{i+1}a_{i+2})$$

$$= [(i-3)\frac{n-1}{4} \oplus_{n} 1] + [(i-2)\frac{n-1}{4} \oplus_{n} 1] + [(i-1)\frac{n-1}{4} \oplus_{n} 1] + [(i)\frac{n-1}{4} \oplus_{n} 1]$$

$$= [nx - x - \frac{3n}{4} + \frac{3}{4} \oplus_{n} 1] + [nx - x - \frac{n}{2} + \frac{1}{2} \oplus_{n} 1] + [nx - x - \frac{n}{4} + \frac{1}{4} \oplus_{n} 1] + [nx - x \oplus_{n} 1]$$

$$= [-x - \frac{3n}{4} + \frac{3}{4} \oplus_{n} 1] + [-x - \frac{n}{2} + \frac{1}{2} \oplus_{n} 1] + [-x - \frac{n}{4} + \frac{1}{4} \oplus_{n} 1] + [-x \oplus_{n} 1].$$

Since $1 \le x \le \ell$, the above four terms (brackets) are not positive. Thus

$$w_2(a_i) = [n-x-\frac{3n}{4}+\frac{3}{4}+1] + [n-x-\frac{n}{2}+\frac{1}{2}+1] + [n-x-\frac{n}{4}+\frac{1}{4}+1] + [n-x+1].$$

Since $n = 4\ell + 1$, we get $w_2(a_i) = 10\ell + 8 - i$.

Case ii: Suppose i = 4x + 1 for some $1 \le x \le \ell$. In this case,

$$w_2(a_i) = [-x - \frac{n}{2} + \frac{1}{2} \oplus_n 1] + [-x - \frac{n}{4} + \frac{1}{4} \oplus_n 1] + [-x \oplus_n 1] + [-x + \frac{n}{4} - \frac{1}{4} \oplus_n 1].$$

Here the first three terms are not positive (since $1 \le x \le \ell$). Thus

$$w_2(a_i) = [n - x - \frac{n}{2} + \frac{1}{2} + 1] + [n - x - \frac{n}{4} + \frac{1}{4} + 1] + [n - x + 1] + [-x + \frac{n}{4} - \frac{1}{4} + 1] = 10\ell + 8 - i.$$

Similarly, we can show that $w_2(a_i) = 10\ell + 8 - i$ when i = 4x + 2 and i = 4x + 3 for $1 \le x \le \ell - 1$. Consider the vertex a_1 .

$$\begin{split} w_2(a_1) &= f(a_1a_2) + f(a_2a_3) + f(a_na_1) + f(a_{n-1}a_n) \\ &= 1 + \left[\frac{n-1}{4} \oplus_n 1\right] + \left[(n-1)\frac{(n-1)}{4} \oplus_n 1\right] + \left[(n-2)\frac{(n-1)}{4} \oplus_n 1\right] \\ &= 1 + \left[\frac{n-1}{4} \oplus_n 1\right] + \left[(4\ell)\frac{(n-1)}{4} \oplus_n 1\right] + \left[(4\ell-1)\frac{(n-1)}{4} \oplus_n 1\right] \\ &= 1 + \left[\frac{n}{4} - \frac{1}{4} \oplus_n 1\right] + \left[-\ell \oplus_n 1\right] + \left[-\ell - \frac{n}{4} + \frac{1}{4} \oplus_n 1\right] \\ &= 1 + \left[\frac{n}{4} - \frac{1}{4} + 1\right] + \left[n - \ell + 1\right] + \left[n - \ell - \frac{n}{4} + \frac{1}{4} + 1\right] \text{ (since the last two terms are not positive)} \\ &= 6\ell + 6. \end{split}$$

Similarly, we can prove $w_2(a_2) = 6\ell + 5$ and $w_2(a_3) = 6\ell + 4$.

Note that $\ell = \frac{n-1}{4}$. Thus by Claim 1, $f(a_i) + w_2(a_i) = n - 3 + i + 10l + 8 - i = \frac{7n+5}{2} = M$ for $4 \le i \le n$. Again by Claim 1, $f(a_i) + w_2(a_i) = n - 3 + i + 6l + 7 - i = \frac{7n+5}{2} = M$ for i = 1, 2, 3.

Case B: Suppose $n = 4\ell + 3$ for some integer $\ell \ge 1$. Define $f: V(C_n) \cup E(C_n) \to \{1, 2, \dots, 2n\}$ as follows: $f(a_i) = 2n - i$ when $1 \le i \le n - 1$ and $f(a_n) = 2n$; $f(a_i a_{i \oplus_n 1}) = [(i-1)(\ell+1)+1] \pmod{n}$, where $[(i-1)(\ell+1)+1] \pmod{n}$ is the positive residue when $(i-1)(\ell+1)+1$ divides n. By Lemma 3.1, $\gcd(\ell+1, 4\ell+3) = \gcd(\ell+1, 3\ell+2) = \gcd(\ell+1, 2\ell+1) = \gcd(\ell+1, \ell) = \gcd(\ell, \ell+1) = \gcd(\ell, \ell) = 1$. Hence $\ell+1$ is a generator for the finite cyclic group (Z_n, \oplus_n) and hence $f(E(C_n)) = \{1, 2, \dots, n\}$. As proved in Case A, we can prove that the above labeling is an E_2 -SVML with magic constant $M = \frac{7n+5}{2}$.

Theorem 3.3. Let $G = \overline{C_n}$ be the complement of the cycle C_n , where $n(\geq 5)$ is an integer. Then G is E_2 -SVM with the magic constant $\frac{n^4 - 6n^3 + 15n^2 - 18n}{8}$

Proof. Define $f: V(\overline{C_n}) \cup E(\overline{C_n}) \to \{1, 2, \dots, \frac{n^2 - n}{2}\}$ as follows:

First we label the n edges $\{a_1a_3, a_2a_4, \dots, a_na_2\}$ by $f(a_{i\oplus n-1}a_{i\oplus 1})=i$ for $1\leq i\leq n$. And the remaining $\frac{n^2-3n}{2}-n$ edges are randomly labeled with the labels $\{n+1, n+2, \dots, \frac{n^2-3n}{2}\}$. The vertices are labeled as $f(a_i)=\frac{n^2-3n}{2}+i$. Then for each a_i with $1\leq i\leq n$, we have $f(a_i)+w_2(a_i)=[\frac{n^2-3n}{2}+i]+[1+2+\dots+\frac{n^2-3n}{2}-i]=\frac{n^4-6n^3+15n^2-18n}{8}$.

Theorem 3.4. Let $n(\geq 3)$ be an integer. Then the prism D_n is E_2 -SVM if and only if n is even.

Suppose there exists an E_2 -SVML f of D_n with the magic constant M. Since $|E_2(e)| = r = 6$ for all $e \in E(D_n)$, by taking k=2, p=2n, q=3n and r=6 in Lemma 2.4, we get $M=\frac{35n+10}{2}$. Since M is an integer, n must be even. Conversely, suppose n is even. Let $V(D_n) = \{a_i, b_i/1 \le i \le n\}$ and $E(D_n) = \{(a_ib_i)/1 \le i \le n\} \cup \{(a_ia_{i\oplus_n 1}), (b_ib_{i\oplus_n 1})/1 \le i \le n\}$ $i \leq n$. Define $f: V(D_n) \cup E(D_n) \to \{1, 2, \dots, 5n\}$ as follows: $f(a_i) = 4n + \frac{n}{2} - \frac{i-1}{2}$ if i is odd; The range is given by $\{4n + 1, 4n + 2, \dots, 4n + \frac{n}{2}\}$, $f(a_i) = 5n - (\frac{i}{2} - 2)$ if $i \ge 4 \ \forall i$ is even; $\{4n + \frac{n}{2} + 2, 4n + \frac{n}{2} + 3, \dots, 5n\},\$ $f(a_2) = 4n + \frac{n}{2} + 1; \{4n + \frac{n}{2} + 1\},$ $f(b_i) = 3n + \frac{i+1}{2}$ if i is odd; $\{3n+1, 3n+2, \dots, 3n+\frac{n}{2}\},\$ $f(b_i) = 3n + \frac{n}{2} + \frac{i}{2} - 1$ if $i \ge 4 \ \forall i$ is even; $\{3n + \frac{n}{2} + 1, 3n + \frac{n}{2} + 2, \dots, 4n - 1\}$, $f(b_2) = 4n; \{4n\},\$ $f(a_ib_i) = \frac{i+1}{2}$ if i is odd; $\{1, 2, \dots, \frac{n}{2}\},\$ $f(a_ib_i) = \frac{n}{2} + \frac{i}{2}$ if i is even; $\{\frac{n}{2} + 1, \frac{n}{2} + 2, \dots, n\},\$ $f(a_i a_{i \oplus_n 1}) = n + \frac{n}{2} - \frac{i-1}{2}$ if i is odd; $\{n+1, n+2, \dots, n+\frac{n}{2}\},$ $f(b_i b_{i \oplus n^1}) = 2n - (\frac{i}{2} - 1)$ if i is even; $\{n + \frac{n}{2} + 1, n + \frac{n}{2} + 2, \dots, 2n\},\$ $f(a_i a_{i \oplus_n 1}) = 2n + \frac{i}{2}$ if i is even; $\{2n + 1, 2n + 2, \dots, 2n + \frac{n}{2}\},\$ $f(b_i b_{i \oplus_n 1}) = 3n - \frac{i-1}{2}$ if i is odd; $\{2n + \frac{n}{2} + 1, 2n + \frac{n}{2} + 2, \dots, 3n\}$. It is easily seen that f is an E_2 -SVML with the magic constant $M = \frac{35n+10}{2}$.

Let Γ be a finite group with e as the identity. A generating set of Γ is a subset A such that every element of Γ can be expressed as a product of finitely many elements of A. Assume that $e \notin A$ and $a \in A$ implies $a^{-1} \in A$ (A is called as symmetric generating set). A Cayley graph is a graph G = (V, E), where $V(G) = \Gamma$ and $E(G) = \{(x, a)/x \in V(G), a \in A\}$ and it is denoted by $Cay(\Gamma, A)$. Since A is a generating set for Γ , G is a connected regular graph of degree |A|. When $\Gamma = Z_n$, the corresponding Cayley graph is called as a circulant graph, denoted by Cir(n, A).

In Lemma 2.4, we find the magic constant of E_k -regular graphs which admit E_k -SVML. When $A = \{1, 2, n-1, n-2\}$, the circulant graph Cir(n, A) is not E_2 -regular. In the next Theorem, we find the magic constant of this family of circulant graphs.

Theorem 3.5. Let $n(\geq 7)$ be an integer. Then $G = Cir(n, \{1, 2, n-1, n-2\})$ is E_2 -SVM with the magic constant 16n+7.

Proof. Let $V(G) = \{a_1, a_2, \dots, a_n\}$ and $E(G) = \{a_i a_{i \oplus 1}, a_i a_{i \oplus 2} / 1 \le i \le n\}$. Define $f: V(G) \cup E(G) \to \{1, 2, \dots, 3n\}$ as follows:

 $f(a_{i}) = 2n + i - 4 \text{ for } 5 \leq i \leq n; \ f(a_{i}) = 3n + i - 4 \text{ for } 1 \leq i \leq 4; \ f(a_{i}a_{i\oplus 1}) = i \text{ for } 1 \leq i \leq n \text{ and } f(a_{i}a_{i\oplus 2}) = 2n + 1 - i \text{ for } 1 \leq i \leq n.$ Let $v \in V(G)$. Suppose $v = a_{i}$, $5 \leq i \leq n - 2$. Then $f(a_{i}) + w_{2}(a_{i}) = f(a_{i}) + f(a_{i-3}a_{i-2}) + f(a_{i-2}a_{i-1}) + f(a_{i-1}a_{i}) + f(a_{i}a_{i\oplus 1}) + f(a_{i\oplus 1}a_{i\oplus 2}) + f(a_{i\oplus 2}a_{i\oplus 3}) + f(a_{i-4}a_{i-2}) + f(a_{i-3}a_{i-1}) + f(a_{i-2}a_{i}) + f(a_{i-1}a_{i\oplus 1}) + f(a_{i}a_{i\oplus 2}) + f(a_{i\oplus 1}a_{i\oplus 3}) + f(a_{i\oplus 2}a_{i\oplus 4}) = [2n + i - 4] + [i - 3] + [i - 2] + [i - 1] + i + [i + 1] + [i + 2] + [2n + 1 - (i - 4)] + [2n + 1 - (i - 3)] + [2n + 1 - (i - 1)] + [2n + 1 - (i + 1)] + [2n + 1 - (i + 1)] + [2n + 1 - (i + 2)] = 16n + 7.$ Similarly, we can prove that $f(a_{i}) + w_{2}(a_{i}) = 16n + 7$ for i = 1, 2, 3, 4, n - 1, n.

4. Some Results on E-SVML

In this section, we obtained some results on E-SVML.

Lemma 4.1. Any connected graph on four vertices is not E-SVM.

Proof. Suppose there exists an E-SVML with magic constant M. All the non-isomorphic connected graphs on four vertices are given below.

Then by Lemma 2.5, $M = q + \frac{p+1}{2} + \frac{q(q+1)}{p}$. Thus for the graphs A, B, C and D, the magic constant is not an integer and hence they are not E-SVM. Suppose the graph E admits an E-SVML, say f. Then M = 15, $f(E(E)) = \{1, 2, 3, 4, 5\}$ and $f(V(E)) = \{6, 7, 8, 9\}$.

Case 1: Suppose $f(v_1v_2) = 1$. Since $f(v_1) + w(v_1) = 15$, we must have $f(v_1) = 9$ and $f(v_1v_4) = 5$. Since $f(v_4) + w(v_4) = 15$, we must have $f(v_2v_4), f(v_3v_4) \in \{2, 3, 4\}$ and $f(v_4) \in \{6, 7, 8\}$ such that $f(v_4) + f(v_2v_4) + f(v_3v_4) = 10$, which is not possible. Similarly, the cases $f(v_2v_3) = 1$, $f(v_3v_4) = 1$ and $f(v_4v_1) = 1$ are not possible.

Case 2: Suppose $f(v_2v_4) = 1$. Since $5 \in f(E)$, with out loss of generality, assume that $f(v_1v_2) = 5$. Suppose $f(v_2v_3) = 2$, then $w(v_2) = w(v_4) = 8$, a contradiction by Lemma 2.1. Suppose $f(v_1v_4) = 2$, then $w(v_1) = w(v_3) = 7$, a contradiction by Lemma 2.1. Thus $f(v_3v_4)$ must be equal to 2. Since $f(v_2) + w(v_2) = 15$, we must have $f(v_2) = 6$ and $f(V_2v_3) = 3$. Thus $f(v_3)$ must be equal to 10, which is not possible. Hence the graph E is not E-SVM.

Next, we consider the graph F. Suppose the graph F admits E-SVML, say f. Then M=19, $f(E(F))=\{1,2,3,4,5,6\}$ and $f(V(F))=\{7,8,9,10\}$ and hence $w(v)\leq 12$ for all $v\in V(F)$.

Claim: $f(v_4v_2, v_4v_3, v_4v_1) = \{2, 3, 4\}$ or $\{1, 3, 5\}$. Suppose $f(v_4v_3) = 6$ or $f(v_4v_1) = 6$, then $w(v_3) \ge 13$ or $w(v_1) \ge 13$, which is not possible. Suppose $f(v_4v_2) = 6$, then $w(v_2) \ge 13$, which is not possible. Thus any edge adjacent with v_4 must not receive the label 6. Since $f(v_4) + w(v_4) = 19$ and $f(v_4) = 10$, from the above fact, we must have $f(v_4v_2, v_4v_3, v_4v_1) = \{2, 3, 4\}$ or $\{1, 3, 5\}$. Suppose $f(v_1v_3) = 6$. Since $f(v_3) + w(v_3) = 19$, by above claim, we must have $f(v_3v_4) = 3$ and $f(v_2v_3) = 1$. Since $f(v_2) + w(v_2) = 19$, we must have $f(v_1v_2) + f(v_2v_4) = 10$ and $f(v_1v_2), f(v_2v_4) \in \{2, 4, 5\}$, which is not possible. Suppose $f(v_2v_3) = 6$. Since $f(v_3) + w(v_3) = 19$, by above claim, we must have $f(v_3v_4) = 3$ and $f(v_1v_3) = 1$. Since $f(v_1) + w(v_1) = 19$, we must have $f(v_1v_2) + f(v_1v_4) = 11$ and $f(v_1v_2), f(v_1v_4) \in \{2, 4, 5\}$, which is not possible. Suppose $f(v_1v_2) = 6$. Since $f(v_1) + w(v_1) = 19$ and $f(v_1) = 7$, we must have $f(v_1v_3, v_1v_4) = \{1, 5\}$ or $\{2, 4\}$, which is not possible by the above claim. Thus we proved that we cannot label any edge by the label 6, which is a contradiction to $f(E(F)) = \{1, 2, 3, 4, 5, 6\}$.

Theorem 4.2. Let G be a (p,q) graph. If q = p + 1, then G is not E-SVM.

Proof. Suppose q=p+1. Then by Lemma 2.5, $M=p+1+\frac{p+1}{2}+\frac{(p+1)(p+2)}{p}=\frac{5p+9}{2}+\frac{2}{p}$ which is an integer only when p=4. Thus by Lemma 4.1, G is not E-SVM.

Corollary 4.3. For $n \geq 4$, the cycle with one chord is not E-SVM.

References

- [2] F.Harary, Graph Theory, Addison-Wesley, (1969).
- [3] J.A.MacDougall, M.Miller, Slamin and W.D.Wallis, Vertex-magic total labelings of graphs, Util. Math., 61(2002), 3-21.
- [4] J.A.MacDougall, M.Miller and K.A.Sugeng, Super vertex-magic total labelings of graphs, Proceedings of the 15th Australian Workshop on Combinatorial Algorithms, (2004), 222-229.
- [5] G.Marimuthu and M.Balakrishnan, E-super vertex magic labeling of graphs, Discrete Appl. Math., 160(2012), 1766-1774.
- [6] G.Marimuthu and G.Kumar, Solution to some Open problems On E-Super Vertex magic labeling of disconnected graphs, Appl. Math. Comput., 268(2015), 657-663.
- [7] J.Sedláček, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, June (1963), 163-167.
- [8] V.Swaminathan and P.Jeyanthi, Super vertex magic labeling, Indian J. Pure Appl. Math., 34(6)(2003), 935-939.
- [9] W.Stein, Elementary Number Theory, (2011).