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all edges which are at distance at most k from v. The graph G is said to be Ej-regular with regularity r if and only if
|Ey(e)] = r for some integer » > 1 and for all e € E(G). A graph that admits an E;-SVML is called Ej-super vertex
magic (E-SVM). This paper contain several properties of Ey-SVML in graphs. A necessary and sufficient condition
for the existence of Fp-SVML in graphs has been obtained. Also, the magic constant for Ej-regular graphs has been
obtained. Further, we establish E2-SVML of some classes of graphs such as cycles, complement of cycles, prism graphs
and a family of circulant graphs.
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1. Introduction

Throughout this paper, we consider only finite simple and undirected graphs. The set of vertices and edges of a graph
G(p, q) will be denoted by V(@) and E(G) respectively, p = |V (G)| and g = |E(G)|. A general reference for graph-theoretic
terminology, we follow [2]. A graph labeling is an assignment of integers (usually positive or non-negative integers), which
assigned to vertices /or edges /or both into a set of numbers. A comprehensive survey of graph labelings is given in Gallian
[1]. In 1963, Sedlacek [7] introduced the concept of magic labeling in graphs. A graph G is magic if the edges of G can be
labeled by the numbers {1,2,...,q} so that the sum of labels of all the edges incident with any vertex is the same ([5]).

In 2002, MacDougall et al. [3] introduced the notion of vertex magic total labeling (VMTL) in graphs. A VMTL of G is
a bijection f : V(G) U E(G) — {1,2,...,p + ¢} such that for each vertex v € V(G), f(v)+ >, f(uww) = M for some
positive integer M, called as the magic constant of VMTL of G. They studied some basic propeirt‘fi];]s(véf vertex magic graphs
and showed some families of graphs having a VMTL. In 2004, MacDougall et al. [4] defined the super vertex-magic total
labeling (SVMTL) in graphs. They call a VMTL is super if f(V(G)) = {1,2,...,p}. In this labeling, the smallest labels
are assigned to the vertices. Swaminathan and Jeyanthi [8] introduced another labeling called super vertex magic labeling
(SVML). They call a VMTL is super if f(E(G)) = {1,2,...,q}. Here, the smallest labels are assigned to the edges. To
avoid confusion, Marimuthu and Balakrishnan [5] called a VMTL is E-super if f(E(G)) ={1,2,...,q}. A graph G is called

E-super vertex magic (E-SVM) if it admits an E-super vertex magic labeling (E-SVML).
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This paper generalize the definition of E-SVML and define a new labeling called Ex-super vertex magic labeling (Ex-SVML).
For an integer k > 1 and for v € V(G), let wi(v) = > f(e), where Ey(v) is the set of all edges which are at distance
at most k from v. An E,-SVML of G is a bijection ;6%23) UE(G) —{1,2,...,p+ ¢} such that f(E(GQ)) ={1,2,...,q}
and for each v € V(G), f(v) + wi(v) = M for some positive integer M. This constant is called as the magic constant of
E,-SVML of G. A graph that admits an Ex-SVML is called Ej-super vertex magic (Ex-SVM). Let k be an integer such
that 1 < k < diam(G). For e € E(G), we define Ej(e) as the set of all vertices which are at distance at most k from e. Note
that if uv is an edge, then the vertices w and v are at distance 1 from the edge uv. The graph G is said to be Ej-regular
with regularity r if and only if |Ey(e)| = r for some integer r > 1 and for all e € E(G). Note that all nontrivial graphs are
Ei-regular. Consider the following graph G(V, E), with V(GQ) = {v1, v2, v3,v4,v5,v6} and E(G) = {e1, e2, €3, €4, 5,€6}.
Ve

€5 €6
e1 €2 €3 €4

U1 V2 U3 V4 Us

Figure 1: G

The following table gives the values of E(v) and Ej(e) when k = 2.

Es(v) Es(e)
Ez(v1) ={e1,e2} Ea(e1) = {v1,v2,v3}
E>(v2) = {e1,e2,e3} Ez(e2) = {v1,v2,v3,v4}

Ea(v3) = {e1,e2,e3,e4,e5} | Fa(e3) = {v2,v3,v4,v5,v6}

E2(vy) = {ez,e3,eq,e5,e6}| Fa(eq) = {v3,v4,v5,v6}
Ba(vs) = {es,e4,e5,e6} | Fa(es) = {v3,va,v5,06}
Ea(vs) = {e3,e4,€5,¢e6} Ez(es) = {va,v5,v6}

Table 1. FE3(v) and Ez(e) in G

This paper contain several properties of Fp-SVML in graphs. A necessary and sufficient condition for the existence of
FE-SVML in graphs has been obtained. Also, the magic constant for Ej-regular graphs has been obtained. Further, we
establish E>-SVML of some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant

graphs.

2. Main Section

This section will explore the basic properties of Ex-SVML. Let G be a graph of order p(> 2). Suppose Ej(u) = Ex(v) for a
pair of vertices u and v (u # v) of G. Then f(u) + wi(u) # f(v) + wr(v) for any Ex-SVML f of G (since f is one to one).

In this case, G does not admit Ex-SVML and hence the next result follows.
Lemma 2.1. Let G be a graph of order p(> 2). If Ex(u) = Ex(v) for some u,v € V(G) (u#v), then G is not E,-SVM.

If a graph G admits Ex-SVML, then 1 < k < diam(G) (If £ > diam(G), then Eji(u) = Ex(v) for any two different vertices
u,v € V(G)).

Corollary 2.2. The star graph Sy, does not admit Ey-SVML for k > 2.

Proof. Suppose there exists an Ex-SVML f on S,. Since diam(S,) = 2, S,, does not admit Fx-SVML for k > 3. When
k =2, we get Ex(u) = Ej(v) for any two different vertices u,v € V(S). Then by Lemma 2.1, S, does not admit E,-SVML

for k > 2. O
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Theorem 2.3. Let G be a graph and g is a bijection from E(G) onto {1,2,...,q}. Then g can be extended to an Ex-SVML

of G if and only if {wk(u)/u € V(G)} consists of p sequential integers.

Proof.  Assume that {wi(u)/u € V(G)} consists of p sequential integers. Let ¢ = min{wi(u)/u € V(G)}. Define
f:V(QUE(G) — {1,2,...,p+q} as f(zy) = g(ay) for zy € E(G) and f(z) = t+p+g—wi(z). Then f(E(G)) ={1,2,...,q}
and f(V(G)) ={p+¢p+q—1,...,q+ 1} (since {wi(xz) —t : x € V(G)} is a set of sequential integers). Hence f is an
FE,-SVML with magic constant M =t + p + q.

Conversely, suppose that g can be extended to an E-SVML f of G with a magic constant M. Since f(u) + wi(u) = M for

every u € V(GQ), {wr(u)/u e V(@)}={M —-q—p,M —q—p+1,...,M — qg— 1} is a set of p sequential integers. O

Lemma 2.4. If a graph G(p,q) is Ex-SVM and Ey-regular with regularity r, then the magic constant is given by M =

P

q+ % + r q(q+1)

Proof. Let f be an E,-SVML of G with the magic constant M. Then f(E(G)) = {1,2,...,q}, f(V(G)) = {qg+ 1,9 +

2,...,q+p} and M = f(v) + wi(v) for all v € V(G). By summing over all v € V(G), we get

pPM= > f)+ > wilv)

vEV(Q) vEV(G)

= D+ > > fle

veV(G) veV(G) e€Ey(v)

=(@+D)+(@+2)+...+@+p)+r > fle)
e€E(Q)

since each edge 1s counted exactly r times in the sum e)). us pM = pqg + —5— + r-—-5— and hence
i h edge i d exactly r times in th Thus pM pletl) | pa(@tl) and b
vEV(G) e€EE(v)

M =g+ il 4 ralen 0

Lemma 2.4 gives the magic constant only for Ej-regular graphs which admit E,-SVML for £ > 1. In 2003, Swaminathan and

Jeyanthi [8] obtained the following result which gives the magic constant for all non trivial graphs which admit F-SVML.
Lemma 2.5 ([8]). If a nontrivial graph G is super vertex magic then the magic number M is given by M = q+ p—;l + %.
When k£ =1, we have r = |E1(e)| = 2 for all e € E(G). The above result is a corollary of Lemma 2.4, when k = 1.
Lemma 2.6. For k > 2, there is no tree which is Ex-reqular and Ey-SVM.

Proof. Let T be a tree and diam(7T") = d(> 3). Let P : uou1...uq—1uq be a path of length d. Then uou1 and uq—1ug must
be pendent edges. When k = d, we have Fi(uo) = Fr(uq) and hence T is not E-SVM. Also when k < d — 1, we have
Ej(uiu2) > E(uou1) and hence T is not Ep-regular. Thus diam(7") < 2 and hence T is a star graph. Thus by Corollary 2.2,
T is not Ex-SVM for k > 2. O

Theorem 2.7. Let G be a connected Ey-regular graph with regularity r. If G is Ex-SVM, then M > % when k=1 and

Mzwflwhenkzz

Proof. For k = 1, we have 7 = 2. Since G is connected, ¢ > p — 1. Thus by Lemma 2.4, M > (p— 1) + %H + w

= % (This part is proved in [5]). Let k > 2. Suppose ¢ = p — 1. Then G is a tree and by Lemma 2.6, there is no tree

which is Ej-regular and Ex-SVM. If ¢ > p, then by Lemma 2.4, M > p + ’%H + 3’7(’72“) = (p+1)2(r+3) —1. O

P

Remark 2.8. The lower bounds obtained in Theorem 2.7 are sharp.

(i) The path P5 is E-SVM and M = %2-2=11.
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Figure 2: E-SVML of Ps Figure 3: E3-SVML of Cs

(ii) The cycle Cs is Fa-regular with regularity » = 4 and C5 is F2-SVM with M:(‘H'l)2M —1=20.
Remark 2.9. P5 dose not admit E2-SVML.

V1 V2 V3 V4 Vs

€1 €2 €3 €4

Figure 4: The graph Ps

Suppose Ps admits an E2-SVML, say ' f'. Then f(E(G)) = {f(e1), f(ez2), f(e3), f(ea)} = {1,2,3,4} and hence wa(vs) = 10.
Thus by Theorem 2.3, {w2(v)/v € V(G)} = {10,9,8,7,6}. Since wa(vs) = 10, we have wa(v1) = f(e1) + f(e2) € {6,7,8,9}.

Thus either f(e1) or f(e2) must be 4. In this case w2(vs) < 5, a contradiction.
Marimuthu and Kumar [6] proved the following result.

Theorem 2.10 ([6]). Let G be a regular graph having an E-super vertex magic labeling in which the label 1 is assigned to

some edge e. Then the graph G — {e} has an E-super vertex magic labeling.

Remark 2.11. The above result fails in the case of Eo-SVML. For example, consider the cycle Cs. By Remark 2.8, the
cycle Cs is E2-SVM and by Remark 2.9, Cs — e (22 Ps) is not E2-SVM.

3. FE3>-SVML of Cycles and Prism Graphs

In this section, we identified some classes of graphs such as cycles, complement of cycles, prism graphs and a family of
circulant graphs which admit E>-SVML. Since F2(u) is same for all u € V(C3), by Lemma 2.1, C3 does not admit E»-
SVML.

Lemma 3.1 ([9]). For any integers a and b, we have gcd(a,b) = ged(b, a) = ged(fa, £b) = ged(a,b — a) = ged(a, b+ a).
Theorem 3.2. Let n(> 5) be an integer. Then the cycle Cyp is E2-SVM if and only if n is odd.

Proof.  Suppose there exists an E2-SVML f of C,,. Since |E2(e)] = r =4 for all e € E(C,,), by takingk =2, p=q=n
and r =4 in Lemma 2.4, we get M = 7"2i Since M is an integer, n must be odd.

Conversely, assume that n is odd and n > 5. Let V(C,) = {ai/1 < i < n} and E(Cy) = {aiaig,1/1 < i < n}, where the
operation @, stands for addition modulo n.

Case A: Suppose n = 4¢ + 1 for some integer £ > 1. Define a function f : V(Cn) U E(Cr) — {1,2,...,2n} as follows:
fla;) =n—344 when 4 < i <nand f(a;) = 2n — 3+ ¢ when 1 < i < 3; f(aiaqig,1) = [(¢ — 1)¢ + 1](mod n), where
[(i — 1)€ + 1](mod n) is the positive residue when (i — 1)¢ + 1 divides n.

Next we prove that gcd(¢,4¢+ 1) = 1. By taking b = 4¢+ 1 and a = £ in Lemma 3.1, we get gcd(¢, 40+ 1) = ged(¢,30+1) =
ged((,2¢ + 1) = ged((,£ + 1) = ged(¢,1) = 1. Thus ¢ is a generator for the finite cyclic group (Z,,®.) and hence
F(E(CR)) ={1,2,...,n}.
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Claim 1: wz(a;) =100+ 8 — i for 4 <i < mn and wa(a;) = ((+1)6 — (i — 1) for 1 <i < 3.

Case i: Suppose ¢ = 4x for some 1 < z < ¢. Now

wa(a;) = f(ai—2ai—1) + f(ai—1a:) + f(aiai+1) + f(ait1ait2)

-1 -1 -1 -1
= (=3 = @ 1+ ="~ @ 1]+ [( = D)= & 1+ ()"~ @n 1]
:[nm—m—3—n—l—§@n1]+[nw—x—E—i—l@nl]—&—[nm—m—E—i—l@nl]—l—[nx—m@nl]
4 4 2 2 4 4
3n 3 n 1 n 1
_[_x_Z+Z®n1]+[_l‘_§+§®nl]+[_$—Z—’_Z@nl]—’_[_m@nl}'

Since 1 < z < ¢, the above four terms (brackets) are not positive. Thus

3n 3 n 1 n 1
J=m—-2— 224241+ n—-2——+-+1+n—2——+>+1+n—=2+1]
we(ai) = [n—x 4+4+]+[n x 2-1—2—&-]4-[71 T 4-|—4—|—]-&-[n x 4 1]
Since n = 4¢ + 1, we get wa(a;) = 10 + 8 — 1.
Case ii: Suppose i = 4z + 1 for some 1 < z < 4. In this case,
T ) R eSO B P R | Y P S| ) AP ey
S 2 T2 4 g " 4 47

Here the first three terms are not positive (since 1 < x < ¢). Thus
n 1 n 1 n 1 .
wg(ai)z[n—x—§+§+1]+[n—x—Z—i-z—i-l]—l—[n—x—l—l]—l—[—:c—i-f—f—&-l} =100+ 8 —i.

4 4

Similarly, we can show that w2(a;) = 10+ 8 — ¢ when ¢ = 4z + 2 and i = 4o + 3 for 1 <z < £ — 1. Consider the vertex a;.

wa(a1) = f(araz2) + f(azas3) + f(anar) + f(an—1axs)

-1 -1 -1
1+ e+ -0 e+ i -2 e
-1 -1 -1
1 e 10" N e v (a1 D e,
1 1
=145 - 7@ U+ L@ 1]+ [0 T+ @]
:1+[%fi+1]+[nf£+1]+[nf£f%+i+1] (since the last two terms are not positive)

=6(46.

Similarly, we can prove wa(az2) = 6¢ 4+ 5 and wa(a3) = 6£ + 4.

Note that £ = ”T_l. Thus by Claim 1, f(a;) + wa2(a;) =n—3+i+100+8 —i = 7”—;5 = M for 4 <i <n. Again by Claim
1, f(ai) + waai) =n—34+i+6l+7—i="25 =M fori=1,2,3.

Case B: Suppose n = 4+ 3 for some integer £ > 1. Define f : V(Cr)UE(Cy) — {1,2,...,2n} as follows: f(a;) = 2n—i when
1<i<n-—1and f(an) = 2n; f(aiaig,1) = [(i—1)({+1)+1](mod n), where [(¢—1)(£+1)+1](mod n) is the positive residue
when (i —1)(€+1) +1 divides n. By Lemma 3.1, gcd(¢+ 1,40+ 3) = ged(£+1,30+2) = ged({+ 1,20+ 1) = ged({ +1,¢) =
ged(2,£4+1) = ged(¢,1) = 1. Hence £+1 is a generator for the finite cyclic group (Z,, ®») and hence f(E(Cr)) = {1,2,...,n}.

As proved in Case A, we can prove that the above labeling is an E>-SVML with magic constant M = 7”—;5 O

Theorem 3.3. Let G = C,, be the complement of the cycle Cr, where n(> 5) is an integer. Then G is E2-SVM with the

. 4_5 3 2
magic constant M
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Proof. Define f: V(C,)UE(C,) — {1,2,..., ”22_”} as follows:

First we label the n edges {a1as, aza4, ..., ana2} by f(aign—1aie1) =i for 1 <i <n. And the remaining ”2;3"

—n edges
are randomly labeled with the labels {n+1,n+2,..., "2%3"} The vertices are labeled as f(a;) = "27;3" + 4. Then for each

a; with 1 < < n, we have f(a;) + wa(a;) = [53% 4 4] + [1 + 24 ... 4 22580 _j] — nl6n®+1on®_18n O
Theorem 3.4. Let n(> 3) be an integer. Then the prism D, is E2-SVM if and only if n is even.

Proof.  Suppose there exists an F2-SVML f of D,, with the magic constant M. Since |E2(e)| = r = 6 for all e € E(D,,),

by taking k = 2, p = 2n, ¢ = 3n and r = 6 in Lemma 2.4, we get M = . Since M is an integer, n must be even.

35n+10
2
Conversely, suppose n is even. Let V(Dy) = {a;,b;/1 <i < n} and E(D,) = {(aibi)/1 < i < n}U{(aitig,1), (bibig,1)/1 <

i <n}. Define f: V(D,)UE(Dy) — {1,2,...,5n} as follows:

fla;))=4n+ 2 151- i1 ; is gi , oo An+ 51,

fla)=5n— (4 —2)ifi >4 Viiseven; {dn+ 2 +2,4n+ 2 +3,...,5n},

—~

az) =4n+ 5 +1; {4n+ 5 + 1},
b;

f

f

)=3n+ 2L ifiis odd; {3n+1,3n+2,...,3n + 2},
)
f(b2) = 4n; {4n},
b

bi)=3n+2+i—1ifi>4Viiseven; {3n+ 2 +1,3n+2+2,...,4n— 1},

- =

aibi) =2+ L ifiiseven; {2 4+1,2+2,...,n},

~

aiGig,1) =n+ 5 — 121 ifiisodd; {n+1,n+2,...,n+ 5},

(
(
(
(
(
(
(asbi) = ELif i is odd; {1,2,..., 2},
(
(
f(bibig,1) =2n— (£ — 1) ifiiseven; {n+ 2+ 1,n+ 2 +2,...,2n},
f(aiaig,1) =2n+ % if i is even; {2n+1,2n+2,...,2n+ 2},
(

f(bibig,1) = ;3n}.
It is easily seen that f is an F>-SVML with the magic constant M = w. O

Let T be a finite group with e as the identity. A generating set of I is a subset A such that every element of T' can be
expressed as a product of finitely many elements of A. Assume that e ¢ A and a € A implies a=* € A (A is called as
symmetric generating set). A Cayley graph is a graph G = (V, E), where V(G) =T and E(G) = {(z,a)/z € V(G),a € A}
and it is denoted by Cay(I', A). Since A is a generating set for I', G is a connected regular graph of degree |A|. When
I’ = Z,, the corresponding Cayley graph is called as a circulant graph, denoted by Cir(n, A).

In Lemma 2.4, we find the magic constant of Ej-regular graphs which admit Ex-SVML. When A = {1,2,n — — 2}, the
circulant graph Cir(n, A) is not Ea-regular. In the next Theorem, we find the magic constant of this family of circulant

graphs.
Theorem 3.5. Let n(>7) be an integer. Then G = Cir(n,{1,2,n—1,n—2}) is E2-SVM with the magic constant 16n+7.

Proof. Let V(G) = {a1,a2,...,an} and E(G) = {a;iaig1,a:ia4ie2/1 < i < n}. Define f: V(G) U E(G) — {1,2,...,3n} as
follows:

fla) =2n+i—4for5<i<m fla)) =3n—+i—4forl<i<4; flasaip)=iforl<i<nand flasaigs) =2n+1—1i
for 1 <i<n. Let v € V(G). Suppose v = a;, 5 <i <n—2. Then f(a;) + wa2(a;) = f(a;) + f(ai—zai—2) + f(ai—2ai—1) +
flai—1a:) + faiaig) + flaisaioz) + f(aig2aie3) + flai—aai—2) + flai—zai—1) + f(ai—2a:) + f(ai—1ai81) + faiaip2) +
flaigraigs) + flaigzaigs) = 2n+i—4)+ i —3]+[i—2]+[i—1]+i+[i+1]+[i+2]+[2n+1—-(G—4)]+[2n+1—(i—
P +P2n+1-(G—-2)]+2n+1-(—-1)]+2n+1—-di+2n+1—-(i+1)]+[2n+1— (i+2)] = 16n + 7. Similarly, we can
prove that f(a;) +wz(a;) =16n+7for i =1,2,3,4,n — 1, n. O
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4. Some Results on E-SVML

In this section, we obtained some results on E-SVML.
Lemma 4.1. Any connected graph on four vertices is not E-SVM.

Proof. Suppose there exists an E-SVML with magic constant M. All the non-isomorphic connected graphs on four vertices

are given below.

V1 V2 v1 V2 V1 V2 V1 V2 V1 V2 V1 V2
(2 V3 V4 v3 V4 U3 V4 V3 V4 V3 V4 V3
A B C D E F

Then by Lemma 2.5, M = q+ % + %. Thus for the graphs A, B,C and D, the magic constant is not an integer and
hence they are not E-SVM. Suppose the graph E admits an E-SVML, say f. Then M = 15, f(E(F)) = {1,2,3,4,5} and
f(V(E)) = {6,7,8,9}.

Case 1: Suppose f(viv2) = 1. Since f(v1)+w(v1) = 15, we must have f(vi) =9 and f(vivs) = 5. Since f(va)+w(vs) = 15,
we must have f(vava), f(vsva) € {2,3,4} and f(v4) € {6, 7,8} such that f(vs)+ f(vevs)+ f(vsva) = 10, which is not possible.
Similarly, the cases f(v2vs) =1, f(vsvs) =1 and f(v4v1) = 1 are not possible.

Case 2: Suppose f(vavs) = 1. Since 5 € f(E), with out loss of generality, assume that f(vive) = 5. Suppose f(vavs) = 2,
then w(v2) = w(vs) = 8, a contradiction by Lemma 2.1. Suppose f(viv4) = 2, then w(v1) = w(vs) = 7, a contradiction by
Lemma 2.1. Thus f(vsvs) must be equal to 2. Since f(v2) + w(v2) = 15, we must have f(vz) = 6 and f(Vavs) = 3. Thus
f(v3) must be equal to 10, which is not possible. Hence the graph E is not E-SVM.

Next, we consider the graph F. Suppose the graph F' admits E-SVML, say f. Then M = 19, f(E(F)) = {1,2,3,4,5,6}
and f(V(F)) ={7,8,9,10} and hence w(v) < 12 for all v € V(F).

Claim : f(v4v2,v4v3,v4v1) = {2,3,4} or {1,3,5}. Suppose f(vsvs) = 6 or f(vsv1) = 6, then w(vs) > 13 or w(vy) > 13,
which is not possible. Suppose f(vav2) = 6, then w(v2) > 13, which is not possible. Thus any edge adjacent with v4 must not
receive the label 6. Since f(v4)+w(vs) = 19 and f(v4) = 10, from the above fact, we must have f(v4v2, vavs,vavi) = {2,3,4}
or {1,3,5}. Suppose f(vivs) = 6. Since f(vs) + w(vs) = 19, by above claim, we must have f(vsvs) = 3 and f(vov3) = 1.
Since f(v2)+w(vz) = 19, we must have f(viv2)+ f(v2vs) = 10 and f(viv2), f(v2va) € {2,4,5}, which is not possible. Suppose
f(vavs) = 6. Since f(v3)+w(vsz) = 19, by above claim, we must have f(vsvs) = 3 and f(vivs) = 1. Since f(vi)+w(vi) = 19,
we must have f(viv2) + f(viva) = 11 and f(viva), f(viva) € {2,4,5}, which is not possible. Suppose f(viv2) = 6. Since
f(v1) + w(v1) =19 and f(v1) = 7, we must have f(vivs,vivs) = {1,5} or {2,4}, which is not possible by the above claim.

Thus we proved that we cannot label any edge by the label 6, which is a contradiction to f(E(F)) ={1,2,3,4,5,6}. O
Theorem 4.2. Let G be a (p,q) graph. If g =p+ 1, then G is not E-SVM.

Proof. Suppose ¢ = p+ 1. Then by Lemma 2.5, M =p+1+ p—;l + W = @ + % which is an integer only when
p = 4. Thus by Lemma 4.1, G is not E-SVM. O

Corollary 4.3. Forn > 4, the cycle with one chord is not E-SVM.
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