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Abstract: Let G be a graph with p vertices and q edges. An Ek-super vertex magic labeling (Ek-SVML) is a bijection f : V (G) ∪
E(G) → {1, 2, . . . , p + q} with the property that f(E(G)) = {1, 2, . . . , q} and for each v ∈ V (G), f(v) + wk(v) = M for

some positive integer M . For an integer k ≥ 1 and for v ∈ V (G), let wk(v) =
∑

e∈Ek(v)

f(e), where Ek(v) is the set of

all edges which are at distance at most k from v. The graph G is said to be Ek-regular with regularity r if and only if

|Ek(e)| = r for some integer r ≥ 1 and for all e ∈ E(G). A graph that admits an Ek-SVML is called Ek-super vertex
magic (Ek-SVM). This paper contain several properties of Ek-SVML in graphs. A necessary and sufficient condition

for the existence of Ek-SVML in graphs has been obtained. Also, the magic constant for Ek-regular graphs has been
obtained. Further, we establish E2-SVML of some classes of graphs such as cycles, complement of cycles, prism graphs

and a family of circulant graphs.
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1. Introduction

Throughout this paper, we consider only finite simple and undirected graphs. The set of vertices and edges of a graph

G(p, q) will be denoted by V (G) and E(G) respectively, p = |V (G)| and q = |E(G)|. A general reference for graph-theoretic

terminology, we follow [2]. A graph labeling is an assignment of integers (usually positive or non-negative integers), which

assigned to vertices /or edges /or both into a set of numbers. A comprehensive survey of graph labelings is given in Gallian

[1]. In 1963, Sedlàček [7] introduced the concept of magic labeling in graphs. A graph G is magic if the edges of G can be

labeled by the numbers {1, 2, . . . , q} so that the sum of labels of all the edges incident with any vertex is the same ([5]).

In 2002, MacDougall et al. [3] introduced the notion of vertex magic total labeling (VMTL) in graphs. A VMTL of G is

a bijection f : V (G) ∪ E(G) → {1, 2, . . . , p + q} such that for each vertex v ∈ V (G), f(v) +
∑

u∈N(v)

f(uv) = M for some

positive integer M , called as the magic constant of VMTL of G. They studied some basic properties of vertex magic graphs

and showed some families of graphs having a VMTL. In 2004, MacDougall et al. [4] defined the super vertex-magic total

labeling (SVMTL) in graphs. They call a VMTL is super if f(V (G)) = {1, 2, . . . , p}. In this labeling, the smallest labels

are assigned to the vertices. Swaminathan and Jeyanthi [8] introduced another labeling called super vertex magic labeling

(SVML). They call a VMTL is super if f(E(G)) = {1, 2, . . . , q}. Here, the smallest labels are assigned to the edges. To

avoid confusion, Marimuthu and Balakrishnan [5] called a VMTL is E-super if f(E(G)) = {1, 2, . . . , q}. A graph G is called

E-super vertex magic (E-SVM) if it admits an E-super vertex magic labeling (E-SVML).

∗ E-mail: dkumarcnc@gmail.com
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This paper generalize the definition of E-SVML and define a new labeling called Ek-super vertex magic labeling (EK-SVML).

For an integer k ≥ 1 and for v ∈ V (G), let wk(v) =
∑

e∈Ek(v)

f(e), where Ek(v) is the set of all edges which are at distance

at most k from v. An Ek-SVML of G is a bijection f : V (G) ∪ E(G) → {1, 2, . . . , p + q} such that f(E(G)) = {1, 2, . . . , q}

and for each v ∈ V (G), f(v) + wk(v) = M for some positive integer M . This constant is called as the magic constant of

Ek-SVML of G. A graph that admits an Ek-SVML is called Ek-super vertex magic (Ek-SVM). Let k be an integer such

that 1 ≤ k ≤ diam(G). For e ∈ E(G), we define Ek(e) as the set of all vertices which are at distance at most k from e. Note

that if uv is an edge, then the vertices u and v are at distance 1 from the edge uv. The graph G is said to be Ek-regular

with regularity r if and only if |Ek(e)| = r for some integer r ≥ 1 and for all e ∈ E(G). Note that all nontrivial graphs are

E1-regular. Consider the following graph G(V,E), with V (G) = {v1, v2, v3, v4, v5, v6} and E(G) = {e1, e2, e3, e4, e5, e6}.

r r r r r
r

e1 e2 e3 e4

e5 e6

v1 v2 v3 v4 v5

v6

Figure 1: G

The following table gives the values of Ek(v) and Ek(e) when k = 2.

E2(v) E2(e)

E2(v1) = {e1, e2} E2(e1) = {v1, v2, v3}
E2(v2) = {e1, e2, e3} E2(e2) = {v1, v2, v3, v4}

E2(v3) = {e1, e2, e3, e4, e5} E2(e3) = {v2, v3, v4, v5, v6}
E2(v4) = {e2, e3, e4, e5, e6} E2(e4) = {v3, v4, v5, v6}
E2(v5) = {e3, e4, e5, e6} E2(e5) = {v3, v4, v5, v6}
E2(v6) = {e3, e4, e5, e6} E2(e6) = {v4, v5, v6}

Table 1. E2(v) and E2(e) in G

This paper contain several properties of Ek-SVML in graphs. A necessary and sufficient condition for the existence of

Ek-SVML in graphs has been obtained. Also, the magic constant for Ek-regular graphs has been obtained. Further, we

establish E2-SVML of some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant

graphs.

2. Main Section

This section will explore the basic properties of Ek-SVML. Let G be a graph of order p(≥ 2). Suppose Ek(u) = Ek(v) for a

pair of vertices u and v (u 6= v) of G. Then f(u) + wk(u) 6= f(v) + wk(v) for any Ek-SVML f of G (since f is one to one).

In this case, G does not admit Ek-SVML and hence the next result follows.

Lemma 2.1. Let G be a graph of order p(≥ 2). If Ek(u) = Ek(v) for some u, v ∈ V (G) (u 6= v), then G is not Ek-SVM.

If a graph G admits Ek-SVML, then 1 ≤ k ≤ diam(G) (If k > diam(G), then Ek(u) = Ek(v) for any two different vertices

u, v ∈ V (G)).

Corollary 2.2. The star graph Sn does not admit Ek-SVML for k ≥ 2.

Proof. Suppose there exists an Ek-SVML f on Sn. Since diam(Sn) = 2, Sn does not admit Ek-SVML for k > 3. When

k = 2, we get Ek(u) = Ek(v) for any two different vertices u, v ∈ V (Sn). Then by Lemma 2.1, Sn does not admit Ek-SVML

for k ≥ 2.
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Theorem 2.3. Let G be a graph and g is a bijection from E(G) onto {1, 2, . . . , q}. Then g can be extended to an Ek-SVML

of G if and only if {wk(u)/u ∈ V (G)} consists of p sequential integers.

Proof. Assume that {wk(u)/u ∈ V (G)} consists of p sequential integers. Let t = min{wk(u)/u ∈ V (G)}. Define

f : V (G)∪E(G)→ {1, 2, . . . , p+q} as f(xy) = g(xy) for xy ∈ E(G) and f(x) = t+p+q−wk(x). Then f(E(G)) = {1, 2, . . . , q}

and f(V (G)) = {p + q, p + q − 1, . . . , q + 1} (since {wk(x) − t : x ∈ V (G)} is a set of sequential integers). Hence f is an

Ek-SVML with magic constant M = t + p + q.

Conversely, suppose that g can be extended to an Ek-SVML f of G with a magic constant M . Since f(u) + wk(u) = M for

every u ∈ V (G), {wk(u)/u ∈ V (G)} = {M − q − p,M − q − p + 1, . . . ,M − q − 1} is a set of p sequential integers.

Lemma 2.4. If a graph G(p, q) is Ek-SVM and Ek-regular with regularity r, then the magic constant is given by M =

q + p+1
2

+ r
p

q(q+1)
2

.

Proof. Let f be an Ek-SVML of G with the magic constant M . Then f(E(G)) = {1, 2, . . . , q}, f(V (G)) = {q + 1, q +

2, . . . , q + p} and M = f(v) + wk(v) for all v ∈ V (G). By summing over all v ∈ V (G), we get

pM =
∑

v∈V (G)

f(v) +
∑

v∈V (G)

wk(v)

=
∑

v∈V (G)

f(v) +
∑

v∈V (G)

∑
e∈Ek(v)

f(e)

= (q + 1) + (q + 2) + . . . + (q + p) + r
∑

e∈E(G)

f(e)

(since each edge is counted exactly r times in the sum
∑

v∈V (G)

∑
e∈Ek(v)

f(e)). Thus pM = pq + p(p+1)
2

+ r q(q+1)
2

and hence

M = q + p+1
2

+ r
p

q(q+1)
2

.

Lemma 2.4 gives the magic constant only for Ek-regular graphs which admit Ek-SVML for k ≥ 1. In 2003, Swaminathan and

Jeyanthi [8] obtained the following result which gives the magic constant for all non trivial graphs which admit E-SVML.

Lemma 2.5 ([8]). If a nontrivial graph G is super vertex magic then the magic number M is given by M = q+ p+1
2

+ q(q+1)
p

.

When k = 1, we have r = |E1(e)| = 2 for all e ∈ E(G). The above result is a corollary of Lemma 2.4, when k = 1.

Lemma 2.6. For k ≥ 2, there is no tree which is Ek-regular and Ek-SVM.

Proof. Let T be a tree and diam(T ) = d(≥ 3). Let P : u0u1...ud−1ud be a path of length d. Then u0u1 and ud−1ud must

be pendent edges. When k = d, we have Ek(u0) = Ek(ud) and hence T is not Ek-SVM. Also when k ≤ d − 1, we have

Ek(u1u2) > Ek(u0u1) and hence T is not Ek-regular. Thus diam(T ) ≤ 2 and hence T is a star graph. Thus by Corollary 2.2,

T is not Ek-SVM for k ≥ 2.

Theorem 2.7. Let G be a connected Ek-regular graph with regularity r. If G is Ek-SVM, then M ≥ 5p−3
2

when k = 1 and

M ≥ (p+1)(r+3)
2

− 1 when k ≥ 2.

Proof. For k = 1, we have r = 2. Since G is connected, q ≥ p − 1. Thus by Lemma 2.4, M ≥ (p − 1) + p+1
2

+ (p−1)p
p

= 5p−3
2

(This part is proved in [5]). Let k ≥ 2. Suppose q = p − 1. Then G is a tree and by Lemma 2.6, there is no tree

which is Ek-regular and Ek-SVM. If q ≥ p, then by Lemma 2.4, M ≥ p + p+1
2

+ r
p

p(p+1)
2

= (p+1)(r+3)
2

− 1.

Remark 2.8. The lower bounds obtained in Theorem 2.7 are sharp.

(i) The path P5 is E-SVM and M = 5p−3
2

=11.
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Figure 3: E2-SVML of C5

r r r r r
2 4 1 3

9 5 6 7 8

Figure 2: E-SVML of P5

(ii) The cycle C5 is E2-regular with regularity r = 4 and C5 is E2-SVM with M= (p+1)(r+3)
2

− 1=20.

Remark 2.9. P5 dose not admit E2-SVML.

r r r r rv1 v2 v3 v4 v5

e1 e2 e3 e4

Figure 4: The graph P5

Suppose P5 admits an E2-SVML, say ′f ′. Then f(E(G)) = {f(e1), f(e2), f(e3), f(e4)} = {1, 2, 3, 4} and hence w2(v3) = 10.

Thus by Theorem 2.3, {w2(v)/v ∈ V (G)} = {10, 9, 8, 7, 6}. Since w2(v3) = 10, we have w2(v1) = f(e1) + f(e2) ∈ {6, 7, 8, 9}.

Thus either f(e1) or f(e2) must be 4. In this case w2(v5) ≤ 5, a contradiction.

Marimuthu and Kumar [6] proved the following result.

Theorem 2.10 ([6]). Let G be a regular graph having an E-super vertex magic labeling in which the label 1 is assigned to

some edge e. Then the graph G− {e} has an E-super vertex magic labeling.

Remark 2.11. The above result fails in the case of E2-SVML. For example, consider the cycle C5. By Remark 2.8, the

cycle C5 is E2-SVM and by Remark 2.9, C5 − e (∼= P5) is not E2-SVM.

3. E2-SVML of Cycles and Prism Graphs

In this section, we identified some classes of graphs such as cycles, complement of cycles, prism graphs and a family of

circulant graphs which admit E2-SVML. Since E2(u) is same for all u ∈ V (C3), by Lemma 2.1, C3 does not admit E2-

SVML.

Lemma 3.1 ([9]). For any integers a and b, we have gcd(a, b) = gcd(b, a) = gcd(±a,±b) = gcd(a, b− a) = gcd(a, b + a).

Theorem 3.2. Let n(≥ 5) be an integer. Then the cycle Cn is E2-SVM if and only if n is odd.

Proof. Suppose there exists an E2-SVML f of Cn. Since |E2(e)| = r = 4 for all e ∈ E(Cn), by taking k = 2, p = q = n

and r = 4 in Lemma 2.4, we get M = 7n+5
2

. Since M is an integer, n must be odd.

Conversely, assume that n is odd and n ≥ 5. Let V (Cn) = {ai/1 ≤ i ≤ n} and E(Cn) = {aiai⊕n1/1 ≤ i ≤ n}, where the

operation ⊕n stands for addition modulo n.

Case A: Suppose n = 4` + 1 for some integer ` ≥ 1. Define a function f : V (Cn) ∪ E(Cn) → {1, 2, . . . , 2n} as follows:

f(ai) = n − 3 + i when 4 ≤ i ≤ n and f(ai) = 2n − 3 + i when 1 ≤ i ≤ 3; f(aiai⊕n1) = [(i − 1)` + 1](mod n), where

[(i− 1)` + 1](mod n) is the positive residue when (i− 1)` + 1 divides n.

Next we prove that gcd(`, 4`+ 1) = 1. By taking b = 4`+ 1 and a = ` in Lemma 3.1, we get gcd(`, 4`+ 1) = gcd(`, 3`+ 1) =

gcd(`, 2` + 1) = gcd(`, ` + 1) = gcd(`, 1) = 1. Thus ` is a generator for the finite cyclic group (Zn,⊕n) and hence

f(E(Cn)) = {1, 2, . . . , n}.
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Claim 1: w2(ai) = 10` + 8− i for 4 ≤ i ≤ n and w2(ai) = (` + 1)6− (i− 1) for 1 ≤ i ≤ 3.

Case i: Suppose i = 4x for some 1 ≤ x ≤ `. Now

w2(ai) = f(ai−2ai−1) + f(ai−1ai) + f(aiai+1) + f(ai+1ai+2)

= [(i− 3)
n− 1

4
⊕n 1] + [(i− 2)

n− 1

4
⊕n 1] + [(i− 1)

n− 1

4
⊕n 1] + [(i)

n− 1

4
⊕n 1]

= [nx− x− 3n

4
+

3

4
⊕n 1] + [nx− x− n

2
+

1

2
⊕n 1] + [nx− x− n

4
+

1

4
⊕n 1] + [nx− x⊕n 1]

= [−x− 3n

4
+

3

4
⊕n 1] + [−x− n

2
+

1

2
⊕n 1] + [−x− n

4
+

1

4
⊕n 1] + [−x⊕n 1].

Since 1 ≤ x ≤ `, the above four terms (brackets) are not positive. Thus

w2(ai) = [n− x− 3n

4
+

3

4
+ 1] + [n− x− n

2
+

1

2
+ 1] + [n− x− n

4
+

1

4
+ 1] + [n− x + 1].

Since n = 4` + 1, we get w2(ai) = 10` + 8− i.

Case ii: Suppose i = 4x + 1 for some 1 ≤ x ≤ `. In this case,

w2(ai) = [−x− n

2
+

1

2
⊕n 1] + [−x− n

4
+

1

4
⊕n 1] + [−x⊕n 1] + [−x +

n

4
− 1

4
⊕n 1].

Here the first three terms are not positive (since 1 ≤ x ≤ `). Thus

w2(ai) = [n− x− n

2
+

1

2
+ 1] + [n− x− n

4
+

1

4
+ 1] + [n− x + 1] + [−x +

n

4
− 1

4
+ 1] = 10` + 8− i.

Similarly, we can show that w2(ai) = 10` + 8− i when i = 4x + 2 and i = 4x + 3 for 1 ≤ x ≤ `− 1. Consider the vertex a1.

w2(a1) = f(a1a2) + f(a2a3) + f(ana1) + f(an−1an)

= 1 + [
n− 1

4
⊕n 1] + [(n− 1)

(n− 1)

4
⊕n 1] + [(n− 2)

(n− 1)

4
⊕n 1]

= 1 + [
n− 1

4
⊕n 1] + [(4`)

(n− 1)

4
⊕n 1] + [(4`− 1)

(n− 1)

4
⊕n 1]

= 1 + [
n

4
− 1

4
⊕n 1] + [−`⊕n 1] + [−`− n

4
+

1

4
⊕n 1]

= 1 + [
n

4
− 1

4
+ 1] + [n− ` + 1] + [n− `− n

4
+

1

4
+ 1] (since the last two terms are not positive)

= 6` + 6.

Similarly, we can prove w2(a2) = 6` + 5 and w2(a3) = 6` + 4.

Note that ` = n−1
4

. Thus by Claim 1, f(ai) + w2(ai) = n− 3 + i + 10l + 8− i = 7n+5
2

= M for 4 ≤ i ≤ n. Again by Claim

1, f(ai) + w2(ai) = n− 3 + i + 6l + 7− i = 7n+5
2

= M for i = 1, 2, 3.

Case B: Suppose n = 4`+3 for some integer ` ≥ 1. Define f : V (Cn)∪E(Cn)→ {1, 2, . . . , 2n} as follows: f(ai) = 2n−i when

1 ≤ i ≤ n−1 and f(an) = 2n; f(aiai⊕n1) = [(i−1)(`+1)+1](mod n), where [(i−1)(`+1)+1](mod n) is the positive residue

when (i− 1)(`+ 1) + 1 divides n. By Lemma 3.1, gcd(`+ 1, 4`+ 3) = gcd(`+ 1, 3`+ 2) = gcd(`+ 1, 2`+ 1) = gcd(`+ 1, `) =

gcd(`, `+1) = gcd(`, 1) = 1. Hence `+1 is a generator for the finite cyclic group (Zn,⊕n) and hence f(E(Cn)) = {1, 2, . . . , n}.

As proved in Case A, we can prove that the above labeling is an E2-SVML with magic constant M = 7n+5
2

.

Theorem 3.3. Let G = Cn be the complement of the cycle Cn, where n(≥ 5) is an integer. Then G is E2-SVM with the

magic constant n4−6n3+15n2−18n
8
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Proof. Define f : V (Cn) ∪ E(Cn)→ {1, 2, . . . , n2−n
2
} as follows:

First we label the n edges {a1a3, a2a4, . . . , ana2} by f(ai⊕n−1ai⊕1) = i for 1 ≤ i ≤ n. And the remaining n2−3n
2
− n edges

are randomly labeled with the labels {n+ 1, n+ 2, . . . , n2−3n
2
}. The vertices are labeled as f(ai) = n2−3n

2
+ i. Then for each

ai with 1 ≤ i ≤ n, we have f(ai) + w2(ai) = [n
2−3n
2

+ i] + [1 + 2 + . . . + n2−3n
2
− i] = n4−6n3+15n2−18n

8
.

Theorem 3.4. Let n(≥ 3) be an integer. Then the prism Dn is E2-SVM if and only if n is even.

Proof. Suppose there exists an E2-SVML f of Dn with the magic constant M . Since |E2(e)| = r = 6 for all e ∈ E(Dn),

by taking k = 2, p = 2n, q = 3n and r = 6 in Lemma 2.4, we get M = 35n+10
2

. Since M is an integer, n must be even.

Conversely, suppose n is even. Let V (Dn) = {ai, bi/1 ≤ i ≤ n} and E(Dn) = {(aibi)/1 ≤ i ≤ n} ∪ {(aiai⊕n1), (bibi⊕n1)/1 ≤

i ≤ n}. Define f : V (Dn) ∪ E(Dn)→ {1, 2, . . . , 5n} as follows:

f(ai) = 4n + n
2
− i−1

2
if i is odd; The range is given by {4n + 1, 4n + 2, . . . , 4n + n

2
},

f(ai) = 5n− ( i
2
− 2) if i ≥ 4 ∀ i is even; {4n + n

2
+ 2, 4n + n

2
+ 3, . . . , 5n},

f(a2) = 4n + n
2

+ 1; {4n + n
2

+ 1},

f(bi) = 3n + i+1
2

if i is odd; {3n + 1, 3n + 2, . . . , 3n + n
2
},

f(bi) = 3n + n
2

+ i
2
− 1 if i ≥ 4 ∀ i is even; {3n + n

2
+ 1, 3n + n

2
+ 2, . . . , 4n− 1},

f(b2) = 4n; {4n},

f(aibi) = i+1
2

if i is odd; {1, 2, . . . , n
2
},

f(aibi) = n
2

+ i
2

if i is even; {n
2

+ 1, n
2

+ 2, . . . , n},

f(aiai⊕n1) = n + n
2
− i−1

2
if i is odd; {n + 1, n + 2, . . . , n + n

2
},

f(bibi⊕n1) = 2n− ( i
2
− 1) if i is even; {n + n

2
+ 1, n + n

2
+ 2, . . . , 2n},

f(aiai⊕n1) = 2n + i
2

if i is even; {2n + 1, 2n + 2, . . . , 2n + n
2
},

f(bibi⊕n1) = 3n− i−1
2

if i is odd; {2n + n
2

+ 1, 2n + n
2

+ 2, . . . , 3n}.

It is easily seen that f is an E2-SVML with the magic constant M = 35n+10
2

.

Let Γ be a finite group with e as the identity. A generating set of Γ is a subset A such that every element of Γ can be

expressed as a product of finitely many elements of A. Assume that e /∈ A and a ∈ A implies a−1 ∈ A (A is called as

symmetric generating set). A Cayley graph is a graph G = (V,E), where V (G) = Γ and E(G) = {(x, a)/x ∈ V (G), a ∈ A}

and it is denoted by Cay(Γ, A). Since A is a generating set for Γ, G is a connected regular graph of degree |A|. When

Γ = Zn, the corresponding Cayley graph is called as a circulant graph, denoted by Cir(n,A).

In Lemma 2.4, we find the magic constant of Ek-regular graphs which admit Ek-SVML. When A = {1, 2, n− 1, n− 2}, the

circulant graph Cir(n,A) is not E2-regular. In the next Theorem, we find the magic constant of this family of circulant

graphs.

Theorem 3.5. Let n(≥ 7) be an integer. Then G = Cir(n, {1, 2, n− 1, n− 2}) is E2-SVM with the magic constant 16n+ 7.

Proof. Let V (G) = {a1, a2, . . . , an} and E(G) = {aiai⊕1, aiai⊕2/1 ≤ i ≤ n}. Define f : V (G) ∪ E(G)→ {1, 2, . . . , 3n} as

follows:

f(ai) = 2n + i − 4 for 5 ≤ i ≤ n; f(ai) = 3n + i − 4 for 1 ≤ i ≤ 4; f(aiai⊕1) = i for 1 ≤ i ≤ n and f(aiai⊕2) = 2n + 1 − i

for 1 ≤ i ≤ n. Let v ∈ V (G). Suppose v = ai, 5 ≤ i ≤ n − 2. Then f(ai) + w2(ai) = f(ai) + f(ai−3ai−2) + f(ai−2ai−1) +

f(ai−1ai) + f(aiai⊕1) + f(ai⊕1ai⊕2) + f(ai⊕2ai⊕3) + f(ai−4ai−2) + f(ai−3ai−1) + f(ai−2ai) + f(ai−1ai⊕1) + f(aiai⊕2) +

f(ai⊕1ai⊕3) + f(ai⊕2ai⊕4) = [2n + i− 4] + [i− 3] + [i− 2] + [i− 1] + i + [i + 1] + [i + 2] + [2n + 1− (i− 4)] + [2n + 1− (i−

3)] + [2n + 1− (i− 2)] + [2n + 1− (i− 1)] + [2n + 1− i] + [2n + 1− (i + 1)] + [2n + 1− (i + 2)] = 16n + 7. Similarly, we can

prove that f(ai) + w2(ai) = 16n + 7 for i = 1, 2, 3, 4, n− 1, n.
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4. Some Results on E-SVML

In this section, we obtained some results on E-SVML.

Lemma 4.1. Any connected graph on four vertices is not E-SVM.

Proof. Suppose there exists an E-SVML with magic constant M . All the non-isomorphic connected graphs on four vertices

are given below.

rr
rr

v3v4

v2v1

A

r r
r r

v4 v3

v1 v2

B

r r
r r
v4 v3

v2v1

C

r r
r r
v4 v3

v1 v2

D

r r
r r
v4 v3

v1 v2

E

r r
r r
v4 v3

v1 v2

F

Then by Lemma 2.5, M = q + p+1
2

+ q(q+1)
p

. Thus for the graphs A,B,C and D, the magic constant is not an integer and

hence they are not E-SVM. Suppose the graph E admits an E-SVML, say f . Then M = 15, f(E(E)) = {1, 2, 3, 4, 5} and

f(V (E)) = {6, 7, 8, 9}.

Case 1: Suppose f(v1v2) = 1. Since f(v1)+w(v1) = 15, we must have f(v1) = 9 and f(v1v4) = 5. Since f(v4)+w(v4) = 15,

we must have f(v2v4), f(v3v4) ∈ {2, 3, 4} and f(v4) ∈ {6, 7, 8} such that f(v4)+f(v2v4)+f(v3v4) = 10, which is not possible.

Similarly, the cases f(v2v3) = 1, f(v3v4) = 1 and f(v4v1) = 1 are not possible.

Case 2: Suppose f(v2v4) = 1. Since 5 ∈ f(E), with out loss of generality, assume that f(v1v2) = 5. Suppose f(v2v3) = 2,

then w(v2) = w(v4) = 8, a contradiction by Lemma 2.1. Suppose f(v1v4) = 2, then w(v1) = w(v3) = 7, a contradiction by

Lemma 2.1. Thus f(v3v4) must be equal to 2. Since f(v2) + w(v2) = 15, we must have f(v2) = 6 and f(V2v3) = 3. Thus

f(v3) must be equal to 10, which is not possible. Hence the graph E is not E-SVM.

Next, we consider the graph F . Suppose the graph F admits E-SVML, say f . Then M = 19, f(E(F )) = {1, 2, 3, 4, 5, 6}

and f(V (F )) = {7, 8, 9, 10} and hence w(v) ≤ 12 for all v ∈ V (F ).

Claim : f(v4v2, v4v3, v4v1) = {2, 3, 4} or {1, 3, 5}. Suppose f(v4v3) = 6 or f(v4v1) = 6, then w(v3) ≥ 13 or w(v1) ≥ 13,

which is not possible. Suppose f(v4v2) = 6, then w(v2) ≥ 13, which is not possible. Thus any edge adjacent with v4 must not

receive the label 6. Since f(v4)+w(v4) = 19 and f(v4) = 10, from the above fact, we must have f(v4v2, v4v3, v4v1) = {2, 3, 4}

or {1, 3, 5}. Suppose f(v1v3) = 6. Since f(v3) + w(v3) = 19, by above claim, we must have f(v3v4) = 3 and f(v2v3) = 1.

Since f(v2)+w(v2) = 19, we must have f(v1v2)+f(v2v4) = 10 and f(v1v2), f(v2v4) ∈ {2, 4, 5}, which is not possible. Suppose

f(v2v3) = 6. Since f(v3)+w(v3) = 19, by above claim, we must have f(v3v4) = 3 and f(v1v3) = 1. Since f(v1)+w(v1) = 19,

we must have f(v1v2) + f(v1v4) = 11 and f(v1v2), f(v1v4) ∈ {2, 4, 5}, which is not possible. Suppose f(v1v2) = 6. Since

f(v1) + w(v1) = 19 and f(v1) = 7, we must have f(v1v3, v1v4) = {1, 5} or {2, 4}, which is not possible by the above claim.

Thus we proved that we cannot label any edge by the label 6, which is a contradiction to f(E(F )) = {1, 2, 3, 4, 5, 6}.

Theorem 4.2. Let G be a (p, q) graph. If q = p + 1, then G is not E-SVM.

Proof. Suppose q = p + 1. Then by Lemma 2.5, M = p + 1 + p+1
2

+ (p+1)(p+2)
p

= 5p+9
2

+ 2
p

which is an integer only when

p = 4. Thus by Lemma 4.1, G is not E-SVM.

Corollary 4.3. For n ≥ 4, the cycle with one chord is not E-SVM.
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