International Journal of Mathematics fud its Applications

E_{k}-Super Vertex Magic Labeling of Graphs

Sivagnanam Mutharasu ${ }^{1}$ and Duraisamy Kumar ${ }^{1, *}$
1 Department of Mathematics, C.B.M. College, Coimbatore, Tamilnadu, India.

Abstract

Let G be a graph with p vertices and q edges. An E_{k}-super vertex magic labeling (E_{k}-SVML) is a bijection $f: V(G) \cup$ $E(G) \rightarrow\{1,2, \ldots, p+q\}$ with the property that $f(E(G))=\{1,2, \ldots, q\}$ and for each $v \in V(G), f(v)+w_{k}(v)=M$ for some positive integer M. For an integer $k \geq 1$ and for $v \in V(G)$, let $w_{k}(v)=\sum_{e \in E_{k}(v)} f(e)$, where $E_{k}(v)$ is the set of all edges which are at distance at most k from v. The graph G is said to be E_{k}-regular with regularity r if and only if $\left|E_{k}(e)\right|=r$ for some integer $r \geq 1$ and for all $e \in E(G)$. A graph that admits an E_{k}-SVML is called E_{k}-super vertex magic (E_{k}-SVM). This paper contain several properties of E_{k}-SVML in graphs. A necessary and sufficient condition for the existence of E_{k}-SVML in graphs has been obtained. Also, the magic constant for E_{k}-regular graphs has been obtained. Further, we establish E_{2}-SVML of some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs. MSC: 05C78.

Keywords: E_{k}-super vertex magic labeling, E_{k}-regular graphs, circulant graphs.
(c) JS Publication.

1. Introduction

Throughout this paper, we consider only finite simple and undirected graphs. The set of vertices and edges of a graph $G(p, q)$ will be denoted by $V(G)$ and $E(G)$ respectively, $p=|V(G)|$ and $q=|E(G)|$. A general reference for graph-theoretic terminology, we follow [2]. A graph labeling is an assignment of integers (usually positive or non-negative integers), which assigned to vertices /or edges / or both into a set of numbers. A comprehensive survey of graph labelings is given in Gallian [1]. In 1963, Sedlàček [7] introduced the concept of magic labeling in graphs. A graph G is magic if the edges of G can be labeled by the numbers $\{1,2, \ldots, q\}$ so that the sum of labels of all the edges incident with any vertex is the same ([5]). In 2002, MacDougall et al. [3] introduced the notion of vertex magic total labeling (VMTL) in graphs. A VMTL of G is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for each vertex $v \in V(G), f(v)+\sum_{u \in N(v)} f(u v)=M$ for some positive integer M, called as the magic constant of $V M T L$ of G. They studied some basic properties of vertex magic graphs and showed some families of graphs having a VMTL. In 2004, MacDougall et al. [4] defined the super vertex-magic total labeling (SVMTL) in graphs. They call a VMTL is super if $f(V(G))=\{1,2, \ldots, p\}$. In this labeling, the smallest labels are assigned to the vertices. Swaminathan and Jeyanthi [8] introduced another labeling called super vertex magic labeling (SVML). They call a VMTL is super if $f(E(G))=\{1,2, \ldots, q\}$. Here, the smallest labels are assigned to the edges. To avoid confusion, Marimuthu and Balakrishnan [5] called a VMTL is E-super if $f(E(G))=\{1,2, \ldots, q\}$. A graph G is called E-super vertex magic (E-SVM) if it admits an E-super vertex magic labeling (E-SVML).

[^0]This paper generalize the definition of E-SVML and define a new labeling called E_{k}-super vertex magic labeling (E_{K}-SVML). For an integer $k \geq 1$ and for $v \in V(G)$, let $w_{k}(v)=\sum_{e \in E_{k}(v)} f(e)$, where $E_{k}(v)$ is the set of all edges which are at distance at most k from v. An E_{k}-SVML of G is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that $f(E(G))=\{1,2, \ldots, q\}$ and for each $v \in V(G), f(v)+w_{k}(v)=M$ for some positive integer M. This constant is called as the magic constant of $E_{k}-S V M L$ of G. A graph that admits an E_{k}-SVML is called E_{k}-super vertex magic ($E_{k}-S V M$). Let k be an integer such that $1 \leq k \leq \operatorname{diam}(G)$. For $e \in E(G)$, we define $E_{k}(e)$ as the set of all vertices which are at distance at most k from e. Note that if $u v$ is an edge, then the vertices u and v are at distance 1 from the edge $u v$. The graph G is said to be E_{k}-regular with regularity r if and only if $\left|E_{k}(e)\right|=r$ for some integer $r \geq 1$ and for all $e \in E(G)$. Note that all nontrivial graphs are E_{1}-regular. Consider the following graph $G(V, E)$, with $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$.

The following table gives the values of $E_{k}(v)$ and $E_{k}(e)$ when $k=2$.

$E_{2}(v)$	$E_{2}(e)$
$E_{2}\left(v_{1}\right)=\left\{e_{1}, e_{2}\right\}$	$E_{2}\left(e_{1}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$
$E_{2}\left(v_{2}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$	$E_{2}\left(e_{2}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
$E_{2}\left(v_{3}\right)=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$	$E_{2}\left(e_{3}\right)=\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$
$E_{2}\left(v_{4}\right)=\left\{e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$	$E_{2}\left(e_{4}\right)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$
$E_{2}\left(v_{5}\right)=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\}$	$E_{2}\left(e_{5}\right)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$
$E_{2}\left(v_{6}\right)=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\}$	$E_{2}\left(e_{6}\right)=\left\{v_{4}, v_{5}, v_{6}\right\}$

Table 1. $\quad E_{2}(v)$ and $E_{2}(e)$ in G

This paper contain several properties of E_{k}-SVML in graphs. A necessary and sufficient condition for the existence of E_{k}-SVML in graphs has been obtained. Also, the magic constant for E_{k}-regular graphs has been obtained. Further, we establish E_{2}-SVML of some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs.

2. Main Section

This section will explore the basic properties of E_{k}-SVML. Let G be a graph of order $p(\geq 2)$. Suppose $E_{k}(u)=E_{k}(v)$ for a pair of vertices u and $v(u \neq v)$ of G. Then $f(u)+w_{k}(u) \neq f(v)+w_{k}(v)$ for any E_{k}-SVML f of G (since f is one to one). In this case, G does not admit E_{k}-SVML and hence the next result follows.

Lemma 2.1. Let G be a graph of order $p(\geq 2)$. If $E_{k}(u)=E_{k}(v)$ for some $u, v \in V(G)(u \neq v)$, then G is not E_{k}-SVM.

If a graph G admits E_{k}-SVML, then $1 \leq k \leq \operatorname{diam}(G)$ (If $k>\operatorname{diam}(G)$, then $E_{k}(u)=E_{k}(v)$ for any two different vertices $u, v \in V(G))$.

Corollary 2.2. The star graph S_{n} does not admit E_{k}-SVML for $k \geq 2$.

Proof. Suppose there exists an E_{k}-SVML f on S_{n}. Since $\operatorname{diam}\left(S_{n}\right)=2, S_{n}$ does not admit E_{k}-SVML for $k>3$. When $k=2$, we get $E_{k}(u)=E_{k}(v)$ for any two different vertices $u, v \in V\left(S_{n}\right)$. Then by Lemma 2.1, S_{n} does not admit E_{k}-SVML for $k \geq 2$.

Theorem 2.3. Let G be a graph and g is a bijection from $E(G)$ onto $\{1,2, \ldots, q\}$. Then g can be extended to an $E_{k}-S V M L$ of G if and only if $\left\{w_{k}(u) / u \in V(G)\right\}$ consists of p sequential integers.

Proof. Assume that $\left\{w_{k}(u) / u \in V(G)\right\}$ consists of p sequential integers. Let $t=\min \left\{w_{k}(u) / u \in V(G)\right\}$. Define $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ as $f(x y)=g(x y)$ for $x y \in E(G)$ and $f(x)=t+p+q-w_{k}(x)$. Then $f(E(G))=\{1,2, \ldots, q\}$ and $f(V(G))=\{p+q, p+q-1, \ldots, q+1\}$ (since $\left\{w_{k}(x)-t: x \in V(G)\right\}$ is a set of sequential integers). Hence f is an E_{k}-SVML with magic constant $M=t+p+q$.
Conversely, suppose that g can be extended to an E_{k}-SVML f of G with a magic constant M. Since $f(u)+w_{k}(u)=M$ for every $u \in V(G),\left\{w_{k}(u) / u \in V(G)\right\}=\{M-q-p, M-q-p+1, \ldots, M-q-1\}$ is a set of p sequential integers.

Lemma 2.4. If a graph $G(p, q)$ is $E_{k}-S V M$ and E_{k}-regular with regularity r, then the magic constant is given by $M=$ $q+\frac{p+1}{2}+\frac{r}{p} \frac{q(q+1)}{2}$.

Proof. Let f be an E_{k}-SVML of G with the magic constant M. Then $f(E(G))=\{1,2, \ldots, q\}, f(V(G))=\{q+1, q+$ $2, \ldots, q+p\}$ and $M=f(v)+w_{k}(v)$ for all $v \in V(G)$. By summing over all $v \in V(G)$, we get

$$
\begin{aligned}
p M & =\sum_{v \in V(G)} f(v)+\sum_{v \in V(G)} w_{k}(v) \\
& =\sum_{v \in V(G)} f(v)+\sum_{v \in V(G)} \sum_{e \in E_{k}(v)} f(e) \\
& =(q+1)+(q+2)+\ldots+(q+p)+r \sum_{e \in E(G)} f(e)
\end{aligned}
$$

(since each edge is counted exactly r times in the sum $\sum_{v \in V(G)} \sum_{e \in E_{k}(v)} f(e)$). Thus $p M=p q+\frac{p(p+1)}{2}+r \frac{q(q+1)}{2}$ and hence $M=q+\frac{p+1}{2}+\frac{r}{p} \frac{q(q+1)}{2}$.

Lemma 2.4 gives the magic constant only for E_{k}-regular graphs which admit E_{k}-SVML for $k \geq 1$. In 2003, Swaminathan and Jeyanthi [8] obtained the following result which gives the magic constant for all non trivial graphs which admit E-SVML.

Lemma 2.5 ([8]). If a nontrivial graph G is super vertex magic then the magic number M is given by $M=q+\frac{p+1}{2}+\frac{q(q+1)}{p}$.
When $k=1$, we have $r=\left|E_{1}(e)\right|=2$ for all $e \in E(G)$. The above result is a corollary of Lemma 2.4, when $k=1$.

Lemma 2.6. For $k \geq 2$, there is no tree which is E_{k}-regular and E_{k}-SVM.
Proof. Let T be a tree and $\operatorname{diam}(T)=d(\geq 3)$. Let $P: u_{0} u_{1} \ldots u_{d-1} u_{d}$ be a path of length d. Then $u_{0} u_{1}$ and $u_{d-1} u_{d}$ must be pendent edges. When $k=d$, we have $E_{k}\left(u_{0}\right)=E_{k}\left(u_{d}\right)$ and hence T is not E_{k}-SVM. Also when $k \leq d-1$, we have $E_{k}\left(u_{1} u_{2}\right)>E_{k}\left(u_{0} u_{1}\right)$ and hence T is not E_{k}-regular. Thus $\operatorname{diam}(T) \leq 2$ and hence T is a star graph. Thus by Corollary 2.2, T is not E_{k}-SVM for $k \geq 2$.

Theorem 2.7. Let G be a connected E_{k}-regular graph with regularity r. If G is $E_{k}-S V M$, then $M \geq \frac{5 p-3}{2}$ when $k=1$ and $M \geq \frac{(p+1)(r+3)}{2}-1$ when $k \geq 2$.

Proof. For $k=1$, we have $r=2$. Since G is connected, $q \geq p-1$. Thus by Lemma $2.4, M \geq(p-1)+\frac{p+1}{2}+\frac{(p-1) p}{p}$ $=\frac{5 p-3}{2}$ (This part is proved in [5]). Let $k \geq 2$. Suppose $q=p-1$. Then G is a tree and by Lemma 2.6, there is no tree which is E_{k}-regular and E_{k}-SVM. If $q \geq p$, then by Lemma 2.4, $M \geq p+\frac{p+1}{2}+\frac{r}{p} \frac{p(p+1)}{2}=\frac{(p+1)(r+3)}{2}-1$.

Remark 2.8. The lower bounds obtained in Theorem 2.7 are sharp.
(i) The path P_{5} is E-SVM and $M=\frac{5 p-3}{2}=11$.

Figure 2: E-SVML of P_{5}

Figure 3: E_{2}-SVML of C_{5}
(ii) The cycle C_{5} is E_{2}-regular with regularity $r=4$ and C_{5} is E_{2}-SVM with $M=\frac{(p+1)(r+3)}{2}-1=20$.

Remark 2.9. P_{5} dose not admit $E_{2}-S V M L$.

Figure 4: The graph P_{5}

Suppose P_{5} admits an E_{2}-SVML, say' f^{\prime}. Then $f(E(G))=\left\{f\left(e_{1}\right), f\left(e_{2}\right), f\left(e_{3}\right), f\left(e_{4}\right)\right\}=\{1,2,3,4\}$ and hence $w_{2}\left(v_{3}\right)=10$. Thus by Theorem 2.3, $\left\{w_{2}(v) / v \in V(G)\right\}=\{10,9,8,7,6\}$. Since $w_{2}\left(v_{3}\right)=10$, we have $w_{2}\left(v_{1}\right)=f\left(e_{1}\right)+f\left(e_{2}\right) \in\{6,7,8,9\}$. Thus either $f\left(e_{1}\right)$ or $f\left(e_{2}\right)$ must be 4 . In this case $w_{2}\left(v_{5}\right) \leq 5$, a contradiction.

Marimuthu and Kumar [6] proved the following result.

Theorem 2.10 ([6]). Let G be a regular graph having an E-super vertex magic labeling in which the label 1 is assigned to some edge e. Then the graph $G-\{e\}$ has an E-super vertex magic labeling.

Remark 2.11. The above result fails in the case of $E_{2}-S V M L$. For example, consider the cycle C_{5}. By Remark 2.8, the cycle C_{5} is $E_{2}-S V M$ and by Remark 2.9, $C_{5}-e\left(\cong P_{5}\right)$ is not $E_{2}-S V M$.

3. E_{2}-SVML of Cycles and Prism Graphs

In this section, we identified some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs which admit E_{2}-SVML. Since $E_{2}(u)$ is same for all $u \in V\left(C_{3}\right)$, by Lemma 2.1, C_{3} does not admit E_{2} SVML.

Lemma 3.1 ([9]). For any integers a and b, we have $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)=\operatorname{gcd}(\pm a, \pm b)=\operatorname{gcd}(a, b-a)=\operatorname{gcd}(a, b+a)$.

Theorem 3.2. Let $n(\geq 5)$ be an integer. Then the cycle C_{n} is $E_{2}-S V M$ if and only if n is odd.
Proof. Suppose there exists an E_{2}-SVML f of C_{n}. Since $\left|E_{2}(e)\right|=r=4$ for all $e \in E\left(C_{n}\right)$, by taking $k=2, p=q=n$ and $r=4$ in Lemma 2.4, we get $M=\frac{7 n+5}{2}$. Since M is an integer, n must be odd.

Conversely, assume that n is odd and $n \geq 5$. Let $V\left(C_{n}\right)=\left\{a_{i} / 1 \leq i \leq n\right\}$ and $E\left(C_{n}\right)=\left\{a_{i} a_{i \oplus n 1} / 1 \leq i \leq n\right\}$, where the operation \oplus_{n} stands for addition modulo n .

Case A: Suppose $n=4 \ell+1$ for some integer $\ell \geq 1$. Define a function $f: V\left(C_{n}\right) \cup E\left(C_{n}\right) \rightarrow\{1,2, \ldots, 2 n\}$ as follows: $f\left(a_{i}\right)=n-3+i$ when $4 \leq i \leq n$ and $f\left(a_{i}\right)=2 n-3+i$ when $1 \leq i \leq 3 ; f\left(a_{i} a_{i \oplus_{n} 1}\right)=[(i-1) \ell+1](\bmod n)$, where $[(i-1) \ell+1](\bmod n)$ is the positive residue when $(i-1) \ell+1$ divides n.

Next we prove that $\operatorname{gcd}(\ell, 4 \ell+1)=1$. By taking $b=4 \ell+1$ and $a=\ell$ in Lemma 3.1, we get $\operatorname{gcd}(\ell, 4 \ell+1)=\operatorname{gcd}(\ell, 3 \ell+1)=$ $\operatorname{gcd}(\ell, 2 \ell+1)=\operatorname{gcd}(\ell, \ell+1)=\operatorname{gcd}(\ell, 1)=1$. Thus ℓ is a generator for the finite cyclic group $\left(Z_{n}, \oplus_{n}\right)$ and hence $f\left(E\left(C_{n}\right)\right)=\{1,2, \ldots, n\}$.

Claim 1: $w_{2}\left(a_{i}\right)=10 \ell+8-i$ for $4 \leq i \leq n$ and $w_{2}\left(a_{i}\right)=(\ell+1) 6-(i-1)$ for $1 \leq i \leq 3$.
Case i: Suppose $i=4 x$ for some $1 \leq x \leq \ell$. Now

$$
\begin{aligned}
w_{2}\left(a_{i}\right) & =f\left(a_{i-2} a_{i-1}\right)+f\left(a_{i-1} a_{i}\right)+f\left(a_{i} a_{i+1}\right)+f\left(a_{i+1} a_{i+2}\right) \\
& =\left[(i-3) \frac{n-1}{4} \oplus_{n} 1\right]+\left[(i-2) \frac{n-1}{4} \oplus_{n} 1\right]+\left[(i-1) \frac{n-1}{4} \oplus_{n} 1\right]+\left[(i) \frac{n-1}{4} \oplus_{n} 1\right] \\
& =\left[n x-x-\frac{3 n}{4}+\frac{3}{4} \oplus_{n} 1\right]+\left[n x-x-\frac{n}{2}+\frac{1}{2} \oplus_{n} 1\right]+\left[n x-x-\frac{n}{4}+\frac{1}{4} \oplus_{n} 1\right]+\left[n x-x \oplus_{n} 1\right] \\
& =\left[-x-\frac{3 n}{4}+\frac{3}{4} \oplus_{n} 1\right]+\left[-x-\frac{n}{2}+\frac{1}{2} \oplus_{n} 1\right]+\left[-x-\frac{n}{4}+\frac{1}{4} \oplus_{n} 1\right]+\left[-x \oplus_{n} 1\right] .
\end{aligned}
$$

Since $1 \leq x \leq \ell$, the above four terms (brackets) are not positive. Thus

$$
w_{2}\left(a_{i}\right)=\left[n-x-\frac{3 n}{4}+\frac{3}{4}+1\right]+\left[n-x-\frac{n}{2}+\frac{1}{2}+1\right]+\left[n-x-\frac{n}{4}+\frac{1}{4}+1\right]+[n-x+1] .
$$

Since $n=4 \ell+1$, we get $w_{2}\left(a_{i}\right)=10 \ell+8-i$.
Case ii: Suppose $i=4 x+1$ for some $1 \leq x \leq \ell$. In this case,

$$
w_{2}\left(a_{i}\right)=\left[-x-\frac{n}{2}+\frac{1}{2} \oplus_{n} 1\right]+\left[-x-\frac{n}{4}+\frac{1}{4} \oplus_{n} 1\right]+\left[-x \oplus_{n} 1\right]+\left[-x+\frac{n}{4}-\frac{1}{4} \oplus_{n} 1\right] .
$$

Here the first three terms are not positive (since $1 \leq x \leq \ell$). Thus

$$
w_{2}\left(a_{i}\right)=\left[n-x-\frac{n}{2}+\frac{1}{2}+1\right]+\left[n-x-\frac{n}{4}+\frac{1}{4}+1\right]+[n-x+1]+\left[-x+\frac{n}{4}-\frac{1}{4}+1\right]=10 \ell+8-i .
$$

Similarly, we can show that $w_{2}\left(a_{i}\right)=10 \ell+8-i$ when $i=4 x+2$ and $i=4 x+3$ for $1 \leq x \leq \ell-1$. Consider the vertex a_{1}.

$$
\begin{aligned}
w_{2}\left(a_{1}\right) & =f\left(a_{1} a_{2}\right)+f\left(a_{2} a_{3}\right)+f\left(a_{n} a_{1}\right)+f\left(a_{n-1} a_{n}\right) \\
& =1+\left[\frac{n-1}{4} \oplus_{n} 1\right]+\left[(n-1) \frac{(n-1)}{4} \oplus_{n} 1\right]+\left[(n-2) \frac{(n-1)}{4} \oplus_{n} 1\right] \\
& =1+\left[\frac{n-1}{4} \oplus_{n} 1\right]+\left[(4 \ell) \frac{(n-1)}{4} \oplus_{n} 1\right]+\left[(4 \ell-1) \frac{(n-1)}{4} \oplus_{n} 1\right] \\
& =1+\left[\frac{n}{4}-\frac{1}{4} \oplus_{n} 1\right]+\left[-\ell \oplus_{n} 1\right]+\left[-\ell-\frac{n}{4}+\frac{1}{4} \oplus_{n} 1\right] \\
& =1+\left[\frac{n}{4}-\frac{1}{4}+1\right]+[n-\ell+1]+\left[n-\ell-\frac{n}{4}+\frac{1}{4}+1\right] \text { (since the last two terms are not positive) } \\
& =6 \ell+6 .
\end{aligned}
$$

Similarly, we can prove $w_{2}\left(a_{2}\right)=6 \ell+5$ and $w_{2}\left(a_{3}\right)=6 \ell+4$.
Note that $\ell=\frac{n-1}{4}$. Thus by Claim 1, $f\left(a_{i}\right)+w_{2}\left(a_{i}\right)=n-3+i+10 l+8-i=\frac{7 n+5}{2}=M$ for $4 \leq i \leq n$. Again by Claim $1, f\left(a_{i}\right)+w_{2}\left(a_{i}\right)=n-3+i+6 l+7-i=\frac{7 n+5}{2}=M$ for $i=1,2,3$.
Case B: Suppose $n=4 \ell+3$ for some integer $\ell \geq 1$. Define $f: V\left(C_{n}\right) \cup E\left(C_{n}\right) \rightarrow\{1,2, \ldots, 2 n\}$ as follows: $f\left(a_{i}\right)=2 n-i$ when $1 \leq i \leq n-1$ and $f\left(a_{n}\right)=2 n ; f\left(a_{i} a_{i \oplus n}\right)=[(i-1)(\ell+1)+1](\bmod n)$, where $[(i-1)(\ell+1)+1](\bmod n)$ is the positive residue when $(i-1)(\ell+1)+1$ divides n. By Lemma 3.1, $\operatorname{gcd}(\ell+1,4 \ell+3)=\operatorname{gcd}(\ell+1,3 \ell+2)=\operatorname{gcd}(\ell+1,2 \ell+1)=\operatorname{gcd}(\ell+1, \ell)=$ $\operatorname{gcd}(\ell, \ell+1)=\operatorname{gcd}(\ell, 1)=1$. Hence $\ell+1$ is a generator for the finite cyclic group $\left(Z_{n}, \oplus_{n}\right)$ and hence $f\left(E\left(C_{n}\right)\right)=\{1,2, \ldots, n\}$. As proved in Case A, we can prove that the above labeling is an E_{2}-SVML with magic constant $M=\frac{7 n+5}{2}$.

Theorem 3.3. Let $G=\overline{C_{n}}$ be the complement of the cycle C_{n}, where $n(\geq 5)$ is an integer. Then G is $E_{2}-S V M$ with the magic constant $\frac{n^{4}-6 n^{3}+15 n^{2}-18 n}{8}$

Proof. Define $f: V\left(\overline{C_{n}}\right) \cup E\left(\overline{C_{n}}\right) \rightarrow\left\{1,2, \ldots, \frac{n^{2}-n}{2}\right\}$ as follows:
First we label the n edges $\left\{a_{1} a_{3}, a_{2} a_{4}, \ldots, a_{n} a_{2}\right\}$ by $f\left(a_{i \oplus n-1} a_{i \oplus 1}\right)=i$ for $1 \leq i \leq n$. And the remaining $\frac{n^{2}-3 n}{2}-n$ edges are randomly labeled with the labels $\left\{n+1, n+2, \ldots, \frac{n^{2}-3 n}{2}\right\}$. The vertices are labeled as $f\left(a_{i}\right)=\frac{n^{2}-3 n}{2}+i$. Then for each a_{i} with $1 \leq i \leq n$, we have $f\left(a_{i}\right)+w_{2}\left(a_{i}\right)=\left[\frac{n^{2}-3 n}{2}+i\right]+\left[1+2+\ldots+\frac{n^{2}-3 n}{2}-i\right]=\frac{n^{4}-6 n^{3}+15 n^{2}-18 n}{8}$.

Theorem 3.4. Let $n(\geq 3)$ be an integer. Then the prism D_{n} is $E_{2}-S V M$ if and only if n is even.

Proof. Suppose there exists an E_{2}-SVML f of D_{n} with the magic constant M. Since $\left|E_{2}(e)\right|=r=6$ for all $e \in E\left(D_{n}\right)$, by taking $k=2, p=2 n, q=3 n$ and $r=6$ in Lemma 2.4, we get $M=\frac{35 n+10}{2}$. Since M is an integer, n must be even.
Conversely, suppose n is even. Let $V\left(D_{n}\right)=\left\{a_{i}, b_{i} / 1 \leq i \leq n\right\}$ and $E\left(D_{n}\right)=\left\{\left(a_{i} b_{i}\right) / 1 \leq i \leq n\right\} \cup\left\{\left(a_{i} a_{i \oplus_{n} 1}\right),\left(b_{i} b_{i \oplus_{n} 1}\right) / 1 \leq\right.$ $i \leq n\}$. Define $f: V\left(D_{n}\right) \cup E\left(D_{n}\right) \rightarrow\{1,2, \ldots, 5 n\}$ as follows:
$f\left(a_{i}\right)=4 n+\frac{n}{2}-\frac{i-1}{2}$ if i is odd; The range is given by $\left\{4 n+1,4 n+2, \ldots, 4 n+\frac{n}{2}\right\}$,
$f\left(a_{i}\right)=5 n-\left(\frac{i}{2}-2\right)$ if $i \geq 4 \forall i$ is even; $\left\{4 n+\frac{n}{2}+2,4 n+\frac{n}{2}+3, \ldots, 5 n\right\}$,
$f\left(a_{2}\right)=4 n+\frac{n}{2}+1 ;\left\{4 n+\frac{n}{2}+1\right\}$,
$f\left(b_{i}\right)=3 n+\frac{i+1}{2}$ if i is odd; $\left\{3 n+1,3 n+2, \ldots, 3 n+\frac{n}{2}\right\}$,
$f\left(b_{i}\right)=3 n+\frac{n}{2}+\frac{i}{2}-1$ if $i \geq 4 \forall i$ is even; $\left\{3 n+\frac{n}{2}+1,3 n+\frac{n}{2}+2, \ldots, 4 n-1\right\}$,
$f\left(b_{2}\right)=4 n ;\{4 n\}$,
$f\left(a_{i} b_{i}\right)=\frac{i+1}{2}$ if i is odd; $\left\{1,2, \ldots, \frac{n}{2}\right\}$,
$f\left(a_{i} b_{i}\right)=\frac{n}{2}+\frac{i}{2}$ if i is even; $\left\{\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n\right\}$,
$f\left(a_{i} a_{i \oplus_{n} 1}\right)=n+\frac{n}{2}-\frac{i-1}{2}$ if i is odd; $\left\{n+1, n+2, \ldots, n+\frac{n}{2}\right\}$,
$f\left(b_{i} b_{i \oplus_{n} 1}\right)=2 n-\left(\frac{i}{2}-1\right)$ if i is even; $\left\{n+\frac{n}{2}+1, n+\frac{n}{2}+2, \ldots, 2 n\right\}$,
$f\left(a_{i} a_{i \oplus_{n} 1}\right)=2 n+\frac{i}{2}$ if i is even; $\left\{2 n+1,2 n+2, \ldots, 2 n+\frac{n}{2}\right\}$,
$f\left(b_{i} b_{i \oplus_{n} 1}\right)=3 n-\frac{i-1}{2}$ if i is odd; $\left\{2 n+\frac{n}{2}+1,2 n+\frac{n}{2}+2, \ldots, 3 n\right\}$.
It is easily seen that f is an E_{2}-SVML with the magic constant $M=\frac{35 n+10}{2}$.
Let Γ be a finite group with e as the identity. A generating set of Γ is a subset A such that every element of Γ can be expressed as a product of finitely many elements of A. Assume that $e \notin A$ and $a \in A$ implies $a^{-1} \in A$ (A is called as symmetric generating set). A Cayley graph is a graph $G=(V, E)$, where $V(G)=\Gamma$ and $E(G)=\{(x, a) / x \in V(G), a \in A\}$ and it is denoted by $\operatorname{Cay}(\Gamma, A)$. Since A is a generating set for Γ, G is a connected regular graph of degree $|A|$. When $\Gamma=Z_{n}$, the corresponding Cayley graph is called as a circulant graph, denoted by $\operatorname{Cir}(n, A)$.

In Lemma 2.4, we find the magic constant of E_{k}-regular graphs which admit E_{k}-SVML. When $A=\{1,2, n-1, n-2\}$, the circulant graph $\operatorname{Cir}(n, A)$ is not E_{2}-regular. In the next Theorem, we find the magic constant of this family of circulant graphs.

Theorem 3.5. Let $n(\geq 7)$ be an integer. Then $G=\operatorname{Cir}(n,\{1,2, n-1, n-2\})$ is E_{2}-SVM with the magic constant $16 n+7$.
Proof. Let $V(G)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $E(G)=\left\{a_{i} a_{i \oplus 1}, a_{i} a_{i \oplus 2} / 1 \leq i \leq n\right\}$. Define $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, 3 n\}$ as follows:
$f\left(a_{i}\right)=2 n+i-4$ for $5 \leq i \leq n ; f\left(a_{i}\right)=3 n+i-4$ for $1 \leq i \leq 4 ; f\left(a_{i} a_{i \oplus 1}\right)=i$ for $1 \leq i \leq n$ and $f\left(a_{i} a_{i \oplus 2}\right)=2 n+1-i$ for $1 \leq i \leq n$. Let $v \in V(G)$. Suppose $v=a_{i}, 5 \leq i \leq n-2$. Then $f\left(a_{i}\right)+w_{2}\left(a_{i}\right)=f\left(a_{i}\right)+f\left(a_{i-3} a_{i-2}\right)+f\left(a_{i-2} a_{i-1}\right)+$ $f\left(a_{i-1} a_{i}\right)+f\left(a_{i} a_{i \oplus 1}\right)+f\left(a_{i \oplus 1} a_{i \oplus 2}\right)+f\left(a_{i \oplus 2} a_{i \oplus 3}\right)+f\left(a_{i-4} a_{i-2}\right)+f\left(a_{i-3} a_{i-1}\right)+f\left(a_{i-2} a_{i}\right)+f\left(a_{i-1} a_{i \oplus 1}\right)+f\left(a_{i} a_{i \oplus 2}\right)+$ $f\left(a_{i \oplus 1} a_{i \oplus 3}\right)+f\left(a_{i \oplus 2} a_{i \oplus 4}\right)=[2 n+i-4]+[i-3]+[i-2]+[i-1]+i+[i+1]+[i+2]+[2 n+1-(i-4)]+[2 n+1-(i-$ $3)]+[2 n+1-(i-2)]+[2 n+1-(i-1)]+[2 n+1-i]+[2 n+1-(i+1)]+[2 n+1-(i+2)]=16 n+7$. Similarly, we can prove that $f\left(a_{i}\right)+w_{2}\left(a_{i}\right)=16 n+7$ for $i=1,2,3,4, n-1, n$.

4. Some Results on E-SVML

In this section, we obtained some results on E-SVML.

Lemma 4.1. Any connected graph on four vertices is not E-SVM.
Proof. Suppose there exists an E-SVML with magic constant M. All the non-isomorphic connected graphs on four vertices are given below.

A

B

C

D

E

F

Then by Lemma 2.5, $M=q+\frac{p+1}{2}+\frac{q(q+1)}{p}$. Thus for the graphs A, B, C and D, the magic constant is not an integer and hence they are not E-SVM. Suppose the graph E admits an E-SVML, say f. Then $M=15, f(E(E))=\{1,2,3,4,5\}$ and $f(V(E))=\{6,7,8,9\}$.

Case 1: Suppose $f\left(v_{1} v_{2}\right)=1$. Since $f\left(v_{1}\right)+w\left(v_{1}\right)=15$, we must have $f\left(v_{1}\right)=9$ and $f\left(v_{1} v_{4}\right)=5$. Since $f\left(v_{4}\right)+w\left(v_{4}\right)=15$, we must have $f\left(v_{2} v_{4}\right), f\left(v_{3} v_{4}\right) \in\{2,3,4\}$ and $f\left(v_{4}\right) \in\{6,7,8\}$ such that $f\left(v_{4}\right)+f\left(v_{2} v_{4}\right)+f\left(v_{3} v_{4}\right)=10$, which is not possible. Similarly, the cases $f\left(v_{2} v_{3}\right)=1, f\left(v_{3} v_{4}\right)=1$ and $f\left(v_{4} v_{1}\right)=1$ are not possible.

Case 2: Suppose $f\left(v_{2} v_{4}\right)=1$. Since $5 \in f(E)$, with out loss of generality, assume that $f\left(v_{1} v_{2}\right)=5$. Suppose $f\left(v_{2} v_{3}\right)=2$, then $w\left(v_{2}\right)=w\left(v_{4}\right)=8$, a contradiction by Lemma 2.1. Suppose $f\left(v_{1} v_{4}\right)=2$, then $w\left(v_{1}\right)=w\left(v_{3}\right)=7$, a contradiction by Lemma 2.1. Thus $f\left(v_{3} v_{4}\right)$ must be equal to 2. Since $f\left(v_{2}\right)+w\left(v_{2}\right)=15$, we must have $f\left(v_{2}\right)=6$ and $f\left(V_{2} v_{3}\right)=3$. Thus $f\left(v_{3}\right)$ must be equal to 10 , which is not possible. Hence the graph E is not E-SVM.

Next, we consider the graph F. Suppose the graph F admits E-SVML, say f. Then $M=19, f(E(F))=\{1,2,3,4,5,6\}$ and $f(V(F))=\{7,8,9,10\}$ and hence $w(v) \leq 12$ for all $v \in V(F)$.

Claim : $f\left(v_{4} v_{2}, v_{4} v_{3}, v_{4} v_{1}\right)=\{2,3,4\}$ or $\{1,3,5\}$. Suppose $f\left(v_{4} v_{3}\right)=6$ or $f\left(v_{4} v_{1}\right)=6$, then $w\left(v_{3}\right) \geq 13$ or $w\left(v_{1}\right) \geq 13$, which is not possible. Suppose $f\left(v_{4} v_{2}\right)=6$, then $w\left(v_{2}\right) \geq 13$, which is not possible. Thus any edge adjacent with v_{4} must not receive the label 6 . Since $f\left(v_{4}\right)+w\left(v_{4}\right)=19$ and $f\left(v_{4}\right)=10$, from the above fact, we must have $f\left(v_{4} v_{2}, v_{4} v_{3}, v_{4} v_{1}\right)=\{2,3,4\}$ or $\{1,3,5\}$. Suppose $f\left(v_{1} v_{3}\right)=6$. Since $f\left(v_{3}\right)+w\left(v_{3}\right)=19$, by above claim, we must have $f\left(v_{3} v_{4}\right)=3$ and $f\left(v_{2} v_{3}\right)=1$. Since $f\left(v_{2}\right)+w\left(v_{2}\right)=19$, we must have $f\left(v_{1} v_{2}\right)+f\left(v_{2} v_{4}\right)=10$ and $f\left(v_{1} v_{2}\right), f\left(v_{2} v_{4}\right) \in\{2,4,5\}$, which is not possible. Suppose $f\left(v_{2} v_{3}\right)=6$. Since $f\left(v_{3}\right)+w\left(v_{3}\right)=19$, by above claim, we must have $f\left(v_{3} v_{4}\right)=3$ and $f\left(v_{1} v_{3}\right)=1$. Since $f\left(v_{1}\right)+w\left(v_{1}\right)=19$, we must have $f\left(v_{1} v_{2}\right)+f\left(v_{1} v_{4}\right)=11$ and $f\left(v_{1} v_{2}\right), f\left(v_{1} v_{4}\right) \in\{2,4,5\}$, which is not possible. Suppose $f\left(v_{1} v_{2}\right)=6$. Since $f\left(v_{1}\right)+w\left(v_{1}\right)=19$ and $f\left(v_{1}\right)=7$, we must have $f\left(v_{1} v_{3}, v_{1} v_{4}\right)=\{1,5\}$ or $\{2,4\}$, which is not possible by the above claim. Thus we proved that we cannot label any edge by the label 6 , which is a contradiction to $f(E(F))=\{1,2,3,4,5,6\}$.

Theorem 4.2. Let G be $a(p, q)$ graph. If $q=p+1$, then G is not $E-S V M$.
Proof. Suppose $q=p+1$. Then by Lemma 2.5, $M=p+1+\frac{p+1}{2}+\frac{(p+1)(p+2)}{p}=\frac{5 p+9}{2}+\frac{2}{p}$ which is an integer only when $p=4$. Thus by Lemma 4.1, G is not E-SVM.

Corollary 4.3. For $n \geq 4$, the cycle with one chord is not E-SVM.

References

[^1][2] F.Harary, Graph Theory, Addison-Wesley, (1969).
[3] J.A.MacDougall, M.Miller, Slamin and W.D.Wallis, Vertex-magic total labelings of graphs, Util. Math., 61(2002), 3-21.
[4] J.A.MacDougall, M.Miller and K.A.Sugeng, Super vertex-magic total labelings of graphs, Proceedings of the 15th Australian Workshop on Combinatorial Algorithms, (2004), 222-229.
[5] G.Marimuthu and M.Balakrishnan, E-super vertex magic labeling of graphs, Discrete Appl. Math., 160(2012), 1766-1774.
[6] G.Marimuthu and G.Kumar, Solution to some Open problems On E-Super Vertex magic labeling of disconnected graphs, Appl. Math. Comput., 268(2015), 657-663.
[7] J.Sedláček, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, June (1963), 163-167.
[8] V.Swaminathan and P.Jeyanthi, Super vertex - magic labeling, Indian J. Pure Appl. Math., 34(6)(2003), 935-939.
[9] W.Stein, Elementary Number Theory, (2011).

[^0]: * E-mail: dkumarcnc@gmail.com

[^1]: [1] J.A.Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin., (2017), \#DS6.

