K-Idempotent Centro Symmetric Matrices

N. Elumalai ${ }^{\mathbf{1}}$, B. Arthi ${ }^{1, *}$, K. Ramaselvi ${ }^{\mathbf{1}}$
1 PG and Research Department of Mathematics, A.V.C.College (Autonomous), Mannampandal, Tamilnadu, India.

Abstract

The basic concepts and theorems of k-Idempotent Centro symmetric matrices are introduced with examples. MSC: 15A09, 15B05.

Keywords: Idempotent Matrix, Centro symmetric Matrix, k -Idempotent Centro symmetric Matrix.
(C) JS Publication.

1. Introduction and Preliminaries

Centrosymmetric matrix have practical applications are in information theory, linerar system theory, linear estimate theory and numerical analysis. The concept of centrosymmetric matrices introduced in $[1,3]$ and properties of K-centrosymmetric matrix are given in [2]. The concept of k -Idempotent matrices was introduced in [4]. In this paper, our intention is to define k-Idempotent Centrosymmetric matrix and also we discussed some results on k-Idempotent Centrosymmetric matrix. A is idempotent matrix, A^{T} is called Transpose of A. Let k be a fixed product of disjoint transposition in S_{n} and ' K ' be the permutation matrix associated with KI. Clearly K satisfies the following properties, $K^{2}=I, K^{T}=K$.

Definition 1.1. A Symmetric matrix $A=\left\langle a_{i j}\right\rangle$ in $C^{n \times n}$ is idempotent if $A^{2}=A$.

Definition 1.2. If a matrix $A=\left\langle a_{i j}\right\rangle$ in $C^{n \times n}$ is said to be k-Idempotent if $K A^{2} K=A$, where k is the associated permutation matrix of ' K '.

Definition 1.3. If a matrix $A=\left\langle a_{i j}\right\rangle$ in $C^{n \times n}$ is said to be Centro symmetric matrix if $A=A^{T}$.

Definition 1.4. If a matrix $A=\left\langle a_{i j}\right\rangle$ in $C^{n \times n}$ is said to be K-Idempotent Centro symmetric matrix if $K\left(A^{2}\right)^{T} K=A^{T}$.

2. Main Results

Theorem 2.1. Let $A \in C^{n \times n}$ is K-idempotent Centrosymmetric matrix then $\left(A^{2}\right)^{T}=K A^{T} K$.
Proof. Given A be k-idempotent Centrosymmetric matrix.

$$
K A K=A^{2}
$$

[^0]\[

$$
\begin{aligned}
K\left(A^{T}\right) K & =\left(A^{T}\right)^{2} \\
K\left(A^{T}\right) K & =\left(A^{2}\right)^{T} \\
\left(A^{2}\right)^{T} & =K\left(A^{T}\right) K
\end{aligned}
$$
\]

Theorem 2.2. Let A^{T} be a k-idempotent Centro symmetric matrix then $(I-A)^{T}$ is k-idempotent Centro symmetric if and only if A^{T} is idempotent.

Proof. Assume that, $(I-A)^{T}$ is k-idempotent Centro symmetric Matrix. Prove that, A^{T} is idempotent.

$$
\begin{aligned}
(I-A)^{T} & =K\left((I-A)^{2}\right)^{T} K \\
& =K\left(I-2 A+A^{2}\right)^{T} K \\
& =\left(I-2 A^{2}+A\right)^{T} \\
\Rightarrow-2\left(A^{2}\right)^{T}+A^{T}+A^{T} & =0 \\
\Rightarrow 2 A^{T} 2\left(A^{2}\right)^{T} & =0 \\
\Rightarrow 2\left(A^{T}-\left(A^{2}\right)^{T}\right) & =0
\end{aligned}
$$

Hence $2\left(A^{T}-\left(A^{2}\right)^{T}\right)=0$, which implies that A^{T} is idempotent.
Conversely, If A^{T} is idempotent then A^{T} commutes with the permutation matrix k .

$$
\begin{aligned}
K\left((I-A)^{2}\right)^{T} K & =K\left(\left(I^{2}-2 A+A^{2}\right)^{T}\right) K \\
& =K(I-A)^{T} K \\
K\left((I-A)^{2}\right)^{T} K & =(I-A)^{T}
\end{aligned}
$$

Theorem 2.3. Let A^{T} and B^{T} be k-idempotent Centrosymmetric matrix then $(A+B)^{T}$ is also k-idempotent centrosymmetric matrix.

Proof. Given A^{T} and B^{T} be two k-idempotent Centrosymmetric matrix. Therefore,

$$
\begin{aligned}
A+B & =K A^{2} K+K B^{2} K \\
K(A+B) K & =K A^{2} K+K B^{2} K \\
K\left(A^{T}+B^{T}\right) K & =K\left(A^{T}\right)^{2} K+K\left(B^{T}\right)^{2} K \\
(A+B)^{T} & =K\left(A^{2}\right)^{T} K+K\left(B^{2}\right)^{T} K \\
& =A^{T}+B^{T} \\
K(A+B)^{T} K & =A^{T}+B^{T}
\end{aligned}
$$

Theorem 2.4. Let A^{T} and B^{T} be two k-idempotent Centro symmetric matrix then $(A-B)^{T}$ is also k-idempotent Centro symmetric matrix.

Proof. Given A^{T} and B^{T} be two k-idempotent Centro symmetric matrix. Therefore,

$$
\begin{aligned}
A-B & =K A^{2} K-K B^{2} K \\
K(A-B) K & =K A^{2} K-K B^{2} K \\
K\left(A^{T}-B^{T}\right) K & =K\left(A^{T}\right)^{2} K-K\left(B^{T}\right)^{2} K \\
(A-B)^{T} & =K\left(A^{2}\right)^{T} K-K\left(B^{2}\right)^{T} K \\
& =A^{T}-B^{T} \\
K(A-B)^{T} K & =A^{T}-B^{T}
\end{aligned}
$$

Theorem 2.5. Let A^{T} be a k-idempotent Centro symmetric matrix then $(A *)^{T}$ is also k-idempotent Centro symmetric matrix.

Proof. Given A^{T} be a k-idempotent Centro symmetric matrix.

$$
\begin{aligned}
A^{*} & =\left(K A^{2} K\right)^{*} \\
\left(A^{T}\right)^{*} & =\left(K\left(A^{T}\right)^{2} K\right)^{*} \\
& =\left(K\left(A^{2}\right)^{T} K\right)^{*} \\
\left(A^{*}\right)^{T} & =\left(K\left(A^{2}\right)^{*} K\right)^{T}
\end{aligned}
$$

Therefore, $\left(A^{*}\right)^{T}$ is also k-idempotent centrosymmetric matrix.
Theorem 2.6. Let A^{T} be a k-idempotent Centrosymmetric matrix then $\left(A^{T}\right)^{4}$ is also k-idempotent centrosymmetric matrix.
Proof. Given A^{T} is k-idempotent centrosymmetric matrix.

$$
\begin{aligned}
A^{4} & =A^{2} A^{2} \\
& =K A K K A K \\
\left(A^{T}\right)^{4} & =K\left(A^{T}\right) K K\left(A^{T}\right) K \\
& =K\left(A^{T}\right)\left(A^{T}\right) K \\
& =K\left(A^{T}\right)^{2} K \\
& =K\left(A^{2}\right)^{T} K \\
& =A^{T} \\
\left(A^{T}\right)^{4} & =A^{T}
\end{aligned}
$$

$\left(A^{T}\right)^{4}$ is also k-idempotent centrosymmetric matrix.
Theorem 2.7. Let A^{T} be k-idempotent centrosymmetirc matrix then $K A^{T}$ and $A^{T} K$ are tripotent centrosymmetric matrix. Proof.

$$
\begin{aligned}
(K A)^{3} & =K A K A K A \\
& =K A A^{2} A
\end{aligned}
$$

$$
\begin{aligned}
\left(K A^{T}\right)^{3} & =K A^{T}\left(A^{T}\right)^{2} A^{T} \\
& =K\left(A^{T}\right)^{2}\left(A^{T}\right)^{2} \\
& =K\left(A^{T}\right)^{4} \\
\left(K A^{T}\right)^{3} & =K A^{T}
\end{aligned}
$$

Similarly, $\left(A^{T} K\right)^{3}=A^{T} K$.
Example 2.8. Let $A=\left(\begin{array}{rr}4 & -1 \\ 12 & -3\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right) ; K=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, then
(1). $K(A+B)^{T} K=A^{T}+B^{T}$
(2). $K(A-B)^{T} K=A^{T}-B^{T}$

Solution.
(1). $K(A+B)^{T} K=A^{T}+B^{T}$

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left[\left(\begin{array}{rr}
4 & -1 \\
12 & -3
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right)\right]^{T}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & =\left(\begin{array}{rr}
4 & -1 \\
12 & -3
\end{array}\right)^{T}+\left(\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right)^{T} \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
4 & -1 \\
14 & -2
\end{array}\right)^{T}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & =\left(\begin{array}{rr}
4 & 12 \\
-1 & -3
\end{array}\right)^{T}+\left(\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right)^{T} \\
\left(\begin{array}{rr}
4 & -1 \\
14 & -2
\end{array}\right)^{T} & =\left(\begin{array}{rr}
4 & 14 \\
-1 & -2
\end{array}\right) \\
\left(\begin{array}{rr}
4 & 14 \\
-1 & -2
\end{array}\right) & =\left(\begin{array}{rr}
4 & 14 \\
-1 & -2
\end{array}\right)
\end{aligned}
$$

(2). $K(A-B)^{T} K=A^{T}-B^{T}$

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left[\left(\begin{array}{rr}
4 & -1 \\
12 & -3
\end{array}\right)-\left(\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right)\right]^{T}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & =\left(\begin{array}{rr}
4 & -1 \\
12 & -3
\end{array}\right)^{T}-\left(\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right)^{T} \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
4 & -1 \\
10 & -4
\end{array}\right)^{T}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & =\left(\begin{array}{rr}
4 & 12 \\
-1 & -3
\end{array}\right)^{T}-\left(\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right)^{T} \\
\left(\begin{array}{rr}
4 & -1 \\
10 & -4
\end{array}\right)^{T} & =\left(\begin{array}{rr}
4 & 10 \\
-1 & -4
\end{array}\right) \\
\left(\begin{array}{rr}
4 & 10 \\
-1 & -4
\end{array}\right) & =\left(\begin{array}{rr}
4 & 10 \\
-1 & -4
\end{array}\right)
\end{aligned}
$$

Example 2.9. Let $A=\left(\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right)$ and $K=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then prove that $\left(A^{2}\right)^{T}=K A^{T} K$.

Solution. $K A^{T} K=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$$
\begin{align*}
K A^{T} K & =\left(\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right) \tag{1}\\
A^{2} & =\left(\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right) \\
\left(A^{2}\right)^{T} & =\left(\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right)^{T} \\
\left(A^{2}\right)^{T} & =\left(\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right) \tag{2}
\end{align*}
$$

From (1) and (2) we get, $\left(A^{2}\right)^{T}=K A^{T} K$.
Example 2.10. Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$ then prove that $\left(A^{T}\right)^{4}=A^{T}$
Solution. Given $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$

$$
\begin{align*}
A^{T} & =\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \tag{3}\\
\left(A^{T}\right)^{2}\left(A^{T}\right)^{2} & =\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)^{2}\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)^{2} \\
& =\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \\
\left(A^{T}\right)^{4} & =\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \tag{4}
\end{align*}
$$

from (3) and (4) we get, $\left(A^{T}\right)^{4}=A^{T}$.

References

[1] Anna Lee, Secondary symmetric and skew symmetric secondary orthogonal matrices, Periodica Mathematica Hungarica, 7(1)(1976), 63-70.
[2] N.Elumalai and B.Arthi, Properties of k-centrosymmetric and k-skew centrosymmetric matrices, International Journal of Pure and Applied Mathematical science, 10(2017), 99-106.
[3] R.James Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly, 92(1985), 711-717.
[4] S.Krishnamoorthy and T.Rajagopalan, On k-idempotent matrices, Int. Rev. Pure Appl. Math., 5(1)(2009), 97101.

[^0]: * E-mail: rabdulrajak@mail.com

