ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

A Study on Q-Intuitionistic L-Fuzzy Submerging of a Semiring Under Homomorphism and Anti-Homomorphism

S. Sampathu^{1,*}, S. Anita Shanthi² and A. Praveen Prakash³

- 1 Department of Mathematics, Sri Muthukumaran College of Education, Chikkarayapuram, Chennai, Tamil Nadu, India.
 - 2 Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu, India.
 - 3 Department of Mathematics, Hindustan University, Poder, Chennai, Tamil Nadu, India.

Abstract: In this paper, we made an attempt to study the algebraic nature of Q-intuitionistic L-fuzzy subsemiring of a semiring

under homomorphism and anti-homomorphism.

MSC: 03F55, 06D72, 08A72.

Keywords: fuzzy subset, (Q, L)-fuzzy subset, (Q,L)-fuzzy subsemiring, Q-intuitionistic L-fuzzy subset, Q-intuitionistic L-fuzzy subs

semiring, Q-intuitionistic L-fuzzy relation, Q-level subset Q-intuitionistic L-fuzzy subsets, Product of Q-intuitionistic L-fuzzy subsets.

© JS Publication.

1. Introduction

After the introduction of fuzzy sets by L.A.Zadeh [27], several researchers explored on the generalization of the concept of fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T.Atanassov [5, 6], as a generalization of the notion of fuzzy set. The notion of fuzzy subnearrings and ideals was introduced by S.Abou Zaid [1]. A.Solairaju and R.Nagarajan [23, 24] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. In this paper, we introduce the some theorems in Q-intuitionistic L-fuzzy subsemiring of a semiring under Homomorphism and Anti-homomorphism and established some results.

1.1. Preliminaries

Definition 1.1 ([27]). Let X be a non-empty set. A fuzzy subset A of X is a function $A: X \to [0,1]$.

Definition 1.2 ([23, 24]). Let X be a non-empty set and $L = (L, \leq)$ be a lattice with least element 0 and greatest element 1 and Q be a non-empty set. A(Q, L)-fuzzy subset A of X is a function $A: X \times Q \to L$.

Definition 1.3 ([18]). Let $(R, +, \cdot)$ be a semiring and Q be a non empty set. A(Q, L)-fuzzy subset A of R is said to be a (Q, L)-fuzzy subsemiring (QLFSSR) of R if the following conditions are satisfied:

(1). $A(x + y, q) \ge A(x, q) \land A(y, q)$,

 $^{^*}$ E-mail: sampathugokul@yahoo.in

(2). $A(xy,q) \ge A(x,q) \land A(y,q)$, for all x and y in R and q in Q.

Example 1.4. Let $(N, +, \cdot)$ be a semiring and $Q = \{p\}$, Then the (Q, L)-Fuzzy Set A of N is defined by

$$A(x) = \begin{cases} 0.63 & \text{if } x \text{ is even} \\ 0.27 & \text{if } x \text{ is odd} \end{cases}$$

Clearly A is an (Q,L)-Fuzzy subsemiring.

Definition 1.5 ([5, 6]). An intuitionistic fuzzy subset (IFS) A in X is defined as an object of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$, where $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $0 \le \mu_A(x) + \nu_A(x) \le 1$.

Definition 1.6. Let (L, \leq) be a complete lattice with an involutive order reversing operation $N: L \to L$ and Q be a nonempty set. A Q-intuitionistic L-fuzzy subset (QILFS) A in X is defined as an object of the form $A = \{\langle (x,q), \mu_A(x,q), \nu_A(x,q) \rangle / x$ in X and q in Q, where $\mu_A: X \times Q \to L$ and $\nu_A: X \times Q \to L$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $\mu_A(x) \leq N(\nu_A(x))$.

Definition 1.7. Let A and B be any two Q-intuitionistic L-fuzzy subsets of a set X. We define the following operations:

- (1). $A \cap B = \{\langle x, \mu_A(x,q) \wedge \mu_B(x,q), \nu_A(x,q) \vee \nu_B(x,q) \rangle\}, \text{ for all } x \in X \text{ and } q \text{ in } Q.$
- (2). $A \cup B = \{\langle x, \mu_A(x,q) \lor \mu_B(x,q), \nu_A(x,q) \land \nu_B(x,q) \rangle\}, \text{ for all } x \in X \text{ and } q \text{ in } Q.$
- (3). $\Box A = \{\langle x, \mu_A(x,q), 1 \mu_A(x,q) \rangle / x \in X \}$, for all x in X and q in Q.
- (4). $\diamond A = \{\langle x, 1 \nu_A(x, q), \nu_A(x, q) \rangle / x \in X\}$, for all x in X and q in Q.

Definition 1.8 ([20]). Let R be a semiring. A Q-intuitionistic L-fuzzy subset A of R is said to be a Q-intuitionistic L-fuzzy subsemiring (QILFSSR) of R if it satisfies the following conditions:

- (1). $\mu_A(x+y,q) \ge \mu_A(x,q) \wedge \mu_A(y,q)$,
- (2). $\mu_A(xy,q) \ge \mu_A(x,q) \wedge \mu_A(y,q)$,
- (3). $\nu_A(x+y,q) \le \nu_A(x,q) \lor \nu_A(y,q),$
- (4). $\nu_A(xy,q) \leq \nu_A(x,q) \wedge \nu_A(y,q)$, for all x and y in R and q in Q.

Definition 1.9. Let $(Z_3, +, \cdot)$ be a semiring. Then Q-intuitionistic L-fuzzy subset $A = \{((x, q), \mu_A(x, q), \nu_A(x, q)) | x \in Z_3 \}$ and q in Q of Z_3 , where

$$\mu_A(x) = \begin{cases} 0.6 & \text{if } x = 0 \\ 0.3 & \text{if } x = 1, 2 \end{cases}$$

and

$$\nu_A(x) = \begin{cases} 0.2 & \text{if } x = 0 \\ 0.4 & \text{if } x = 1, 2 \end{cases}$$

Clearly A is a Q-Intuitionistic L-fuzzy subsemiring.

Definition 1.10. Let A and B be any two Q-intuitionistic L-fuzzy subsemiring of a semiring G and H, respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B = \{\langle (x,y),q \rangle, \mu_{A \times B}((x,y),q), \nu_{A \times B}((x,y),q) \rangle / \text{ for all } x \text{ in } G$ and y in H and q in Q \}, where $\mu_{A \times B}((x,y),q) = \mu_A(x,q) \wedge \mu_B(y,q)$ and $\nu_{A \times B}((x,y),q) = \nu_A(x,q) \vee \nu_B(y,q)$.

Definition 1.11. Let A be an Q-intuitionistic L-fuzzy subset in a set S, the strongest Q-intuitionistic L-fuzzy relation on S, that is a Q-intuitionistic L-fuzzy relation on A is V given by $\mu_V((x,y),q) = \mu_A(x,q) \wedge \mu_A(y,q)$ and $\nu_V((x,y),q) = \nu_A(x,q) \wedge \nu_A(y,q)$, for all x and y in S and q in Q.

Definition 1.12. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings. Let $f: R \to R'$ be any function and A be an Q-intuitionistic L-fuzzy subsemiring in R, V be an Q-intuitionistic L-fuzzy subsemiring in R, R defined by R by R and R and R and R is called a preimage of R under R and R is denoted by R.

Definition 1.13. Let A be an Q-intuitionistic L-fuzzy subsemiring of a semiring $(R, +, \cdot)$ and a in R. Then the pseudo Q-intuitionistic L-fuzzy coset $(aA)^p$ is defined by $((a\mu_A)^p)(x,q) = p(a)\mu_A(x,q)$ and $((a\nu_A)^p)(x,q) = p(a)\nu_A(x,q)$, for every x in R and for some p in P and q in Q.

$$\mu_A(x) = \begin{cases} 0.6 & \text{if } x = 0 \\ 0.3 & \text{if } x = 1, 2 \end{cases}$$

and

$$\nu_A(x) = \begin{cases} 0.2 & \text{if } x = 0 \\ 0.4 & \text{if } x = 1, 2 \end{cases}$$

Clearly A is a Q-Intuitionistic L-fuzzy subsemiring. Now taking p(a) = 0.1 for every a in Z_3 . Then the pseudo Q-intuitionistic L-fuzzy coset $(aA)^p$ is defined by

$$\mu_A(x) = \begin{cases} 0.06 & \text{if } x = 0 \\ 0.03 & \text{if } x = 1, 2 \end{cases}$$

and

$$\nu_A(x) = \begin{cases} 0.02 & \text{if } x = 0\\ 0.04 & \text{if } x = 1, 2 \end{cases}$$

Clearly (aA)p is a Q-Intuitionistic L-fuzzy subsemiring.

Definition 1.15. Let A be a Q-intuitionistic L-fuzzy subset of X. For α, β in L, the Q-level subset of A is the set $A_{(\alpha,\beta)} = \{x \in X : \mu_A(x,q) \geq \alpha, \nu_A(x,q) \leq \beta\}$.

2. Properties of Q-Intuitionistic L-Fuzzy Subsemiring of A Semiring Under Homomorphism and Anti-Homomorphism

Theorem 2.1. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings and Q be a non-empty set. The homomorphic image of a Q-intuitionistic L-fuzzy subsemiring of R is an Q-intuitionistic L-fuzzy subsemiring of R'.

Proof. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings Q be a non-empty set. Let $f: R \to R'$ be a homomorphism. Then f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y), for all x and y in R. Let A be a Q-intuitionistic L-fuzzy subsemiring of R. We

have to prove that V is a Q-intuitionistic L-fuzzy subsemiring of R'. Now, for f(x), f(y) in R' and q in Q, $\mu_v(f(x)+f(y),q)=\mu_v(f(x+y),q)\geq \mu_A(x+y,q)\geq \mu_A(x,q)\wedge \mu_A(y,q)$ which implies that $\mu_v(f(x)+f(y),q)\geq \mu_v(f(x,q))\wedge \mu_v(f(y,q))$. Again, $\mu_v(f(x)f(y),q)=\mu_v(f(xy),q)\geq \mu_A(xy,q)\geq \mu_A(x,q)\wedge \mu_A(y,q)$ which implies that $\mu_v(f(x)f(y),q)\geq \mu_v(f(x,q))\wedge \mu_v(f(y,q))$. Now, for f(x), f(y) in R', $\nu_v(f(x)+f(y),q)=\nu_v(f(x+y),q)\leq \nu_A(x+y,q)\leq \nu_A(x,q)\vee \nu_A(y,q)$ which implies that $\nu_v(f(x)+f(y),q)\leq \nu_v(f(x),q)\vee \nu_v(f(y,q))$. Again, $\nu_v(f(x)f(y),q)=\nu_v(f(xy),q)\leq \nu_A(xy,q)\leq \nu_A(x,q)\vee \nu_A(y,q)$ which implies that $\nu_v(f(x)+f(y),q)\leq \nu_v(f(x,q))\vee \nu_v(f(y,q))$, for all f(x) and f(y) in R' and q in Q. Hence V is a Q-intuitionistic L-fuzzy subsemiring of R'.

Theorem 2.2. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings and Q be a non-empty set. The homomorphic preimage of a Q-intuitionistic L-fuzzy subsemiring of f(R) = R' is a Q-intuitionistic L-fuzzy subsemiring of R.

Proof. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings Q be a non-empty set. Let $f: R \to R'$ be a homomorphism. Then i) f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y), for all x and y in R. Let V be a Q-intuitionistic L-fuzzy subsemiring of f(R) = R'. We have to prove that A is an Q-intuitionistic L-fuzzy subsemiring of R. Let x and y in R. Then, $\mu_A(x+y,q) = \mu_v(f(x+y),q)$, since $\mu_v(f(x,q)) = \mu_A(x,q) = \mu_v(f(x) + f(y),q) \ge \mu_v(f(x,q)) \wedge \mu_v(f(y,q)) = \mu_A(x,q) \wedge \mu_A(y,q)$, since $\mu_v(f(x,q)) = \mu_A(x,q)$ which implies that $\mu_A(x+y,q) \ge \mu_A(x,q) \wedge \mu_A(y,q)$. Again, $\mu_A(xy,q) = \mu_v(f(xy),q)$, since $\mu_v(f(x)) = \mu_A(x,q) = \mu_v(f(x),q) = \mu_A(x,q) \wedge \mu_A(y,q)$, since $\mu_v(f(x)) = \mu_A(x,q) = \mu_v(f(x),q) = \mu_A(x,q) \wedge \mu_A(y,q)$, since $\mu_v(f(x)) = \mu_A(x,q) = \mu_v(f(x),q) = \mu_A(x,q) \wedge \mu_A(y,q)$, since $\mu_v(f(x)) = \mu_A(x,q) = \mu_v(f(x),q) = \mu_A(x,q) \wedge \mu_A(y,q) = \mu_v(f(x),q) = \mu_A(x,q) \wedge \mu_A(y,q)$, since $\mu_v(f(x)) = \mu_A(x,q) + \mu_A(x,q) = \mu_v(f(x),q) = \mu_A(x,q) + \mu_A(x,q) + \mu_A(x,q) = \mu_v(f(x),q) = \mu_A(x,q) + \mu_A(x,q) +$

Theorem 2.3. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings Q be a non-empty set. The anti-homomorphic image of a Q-intuitionistic L-fuzzy subsemiring of R is an Q-intuitionistic L-fuzzy subsemiring of R'.

Proof. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings Q be a non-empty set. Let $f: R \to R'$ be an anti-homomorphism. Then f(x+y)=f(y)+f(x) and f(xy)=f(y)f(x), for all $x,y\in R$. Let A be a Q-intuitionistic L-fuzzy subsemiring of R. We have to prove that V is an Q-intuitionistic L-fuzzy subsemiring of f(R)=R'. Now, for f(x), f(y) in R' and q in Q, $\mu_v(f(x)+f(y),q)=\mu_v(f(y+x),q)\geq \mu_A(y+x,q)\geq \mu_A(y,q)\wedge \mu_A(x,q)=\mu_A(x,q)\wedge \mu_A(y,q)$ which implies that $\mu_v(f(x)+f(y),q)\geq \mu_v(f(x,q))\wedge \mu_v(f(y,q))$. Again, $\mu_v(f(x)f(y),q)=\mu_v(f(yx,q))\geq \mu_A(yx,q)\geq \mu_A(y,q)\wedge \mu_A(x,q)=\mu_A(x,q)\wedge \mu_A(y,q)$, which implies that $\mu_v(f(x)f(y),q)\geq \mu_v(f(x,q))\wedge \mu_v(f(y,q))$. Now, for f(x),f(y) in R' and q in Q, $\nu_v(f(x)+f(y),q)=\nu_v(f(y+x),q)\leq \nu_A(y+x,q)\leq \nu_A(y,q)\vee \nu_A(x,q)=\nu_A(x,q)\vee \nu_A(y,q)$ which implies that $\nu_v(f(x)f(y),q)=\nu_v(f(x)f(y),q)=\nu_v(f(yx,q))\leq \nu_A(y,q)\vee \nu_A(y,q)=\nu_A(y,q)\vee \nu_A(y,q)$ which implies that $\nu_v(f(x)f(y),q)\leq \nu_v(f(x)f(y),q)=\nu_v(f(y,q))$. Hence V is a Q-intuitionistic L-fuzzy subsemiring of R'.

Theorem 2.4. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings Q be a non-empty set. The anti-homomorphic preimage of a Q-intuitionistic L-fuzzy subsemiring of R' is an Q-intuitionistic L-fuzzy subsemiring of R.

Proof. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings Q be a non-empty set. Let $f: R \to R'$ be an anti-homomorphism. Then f(x+y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R. Let V be a Q-intuitionistic L-fuzzy subsemiring of f(R) = R'. We have to prove that A is an Q-intuitionistic L-fuzzy subsemiring of R. Let x and y in R. Then $\mu_A(x+y,q) = \mu_v(f(x+y),q)$, since $\mu_v(f(x,q)) = \mu_A(x,q) = \mu_v(f(y) + f(x),q) \ge \mu_v(f(y,q)) \land \mu_v(f(x,q)) = \mu_v(f(x,q)) \land \mu_v(f(y,q)) = \mu_v(f(y,q)) \land \mu_v(f(y,q)) = \mu_v(f(y,$

 $\mu_A(x,q) \wedge \mu_A(y,q), \text{ since } \mu_v(f(x,q)) = \mu_A(x,q) \text{ which implies that } \mu_A(x+y,q) \geq \mu_A(x,q) \wedge \mu_A(y,q). \text{ Again, } \mu_A(xy,q) = \mu_v(f(xy),q), \text{ since } \mu_v(f(x,q)) = \mu_A(x,q) = \mu_v(f(y)f(x),q) \geq \mu_v(f(y,q)) \wedge \mu_v(f(x,q)) = \mu_v(f(x,q)) \wedge \mu_v(f(y,q)) = \mu_A(x,q) \wedge \mu_A(y,q), \text{ since } \mu_v(f(x,q)) = \mu_A(x,q) \text{ which implies that } \mu_A(xy,q) \geq \mu_A(x,q) \wedge \mu_A(y,q). \text{ Then } \nu_A(x+y,q) = \nu_v(f(x+y),q), \text{ since } \nu_v(f(x,q)) = \nu_A(x,q) = \nu_v(f(y)+f(x),q) \leq \nu_v(f(y,q)) \vee \nu_v(f(x,q)) = \nu_v(f(x,q)) \vee \nu_v(f(y,q)) = \nu_A(x,q) \vee \nu_A(y,q), \text{ since } \nu_v(f(x,q)) = \nu_A(x,q) \text{ which implies that } \nu_A(x+y) \leq \nu_A(x,q) \vee \nu_A(y,q). \text{ Again, } \nu_A(xy,q) = \nu_v(f(xy),q), \text{ since } \nu_v(f(x,q)) = \nu_A(x,q) = \nu_v(f(y)f(x),q) \leq \nu_v(f(y,q)) \vee \nu_v(f(x,q)) = \nu_v(f(x,q)) \vee \nu_v(f(y,q)) = \nu_A(x,q) \vee \nu_A(y,q), \text{ since } \nu_v(f(x,q)) = \nu_A(x,q) \text{ which implies that } \nu_A(xy,q) \leq \nu_A(x,q) \vee \nu_A(y,q). \text{ Hence A is a Q-intuitionistic L-fuzzy subsemiring of R.}$

In the following Theorem \circ is the Composition Operation of Functions:

Theorem 2.5. Let A be a Q-intuitionistic L-fuzzy subsemiring of a semiring H and f is an isomorphism from a semiring R onto H. Then $A \circ f$ is a Q-intuitionistic L-fuzzy subsemiring of R.

Proof. Let x and y in R and A be a Q-intuitionistic L-fuzzy subsemiring of a semiring H and Q be a non-empty set. Then we have, $(\mu_A \circ f)(x+y,q) = \mu_A(f(x+y),q) = \mu_A(f(x)+f(y),q) \geq \mu_A(f(x,q)) \wedge \mu_A(f(y,q)) \geq (\mu_A \circ f)(x,q) \wedge (\mu_A \circ f)(y,q)$, which implies that $(\mu_A \circ f)(x+y,q) \geq (\mu_A \circ f)(x,q) \wedge (\mu_A \circ f)(y,q)$. And $(\mu_A \circ f)(xy,q) = \mu_A(f(xy,q)) = \mu_A(f(x,q)f(y,q)) \geq \mu_A(f(x,q)) \wedge \mu_A(f(y,q)) \geq (\mu_A \circ f)(x,q) \wedge (\mu_A \circ f)(y,q)$, which implies that $(\mu_A \circ f)(xy,q) \geq (\mu_A \circ f)(x,q) \wedge (\mu_A \circ f)(y,q)$. Then we have, $(\nu_A \circ f)(x+y,q) = \nu_A(f(x+y),q) = \nu_A(f(x)+f(y),q) \leq \nu_A(f(x),q) \vee \nu_A(f(y),q) \vee (\nu_A \circ f)(x,q) \vee (\nu_A \circ f)(y,q)$, which implies that $(\nu_A \circ f)(x+y,q) \leq (\nu_A \circ f)(x,q) \vee (\nu_A \circ f)(y,q)$. And $(\nu_A \circ f)(xy,q) = \nu_A(f(xy),q) = \nu_A(f(x)f(y),q) \leq \nu_A(f(x),q) \vee \nu_A(f(y),q) \leq (\nu_A \circ f)(x,q) \vee (\nu_A \circ f)(y,q)$, which implies that $(\nu_A \circ f)(xy,q) \leq (\nu_A \circ f)(x,q) \vee (\nu_A \circ f)(y,q)$, for all x and y in R and q in Q. Therefore $(A \circ f)$ is a Q-intuitionistic L-fuzzy subsemiring of a semiring R.

Theorem 2.6. Let A be an Q-intuitionistic L-fuzzy subsemiring of a semiring H and f is an anti-isomorphism from a semiring R onto H. Then $A \circ f$ is a Q-intuitionistic L-fuzzy subsemiring of R.

Proof. Let x and y in R and A be a Q-intuitionistic L-fuzzy subsemiring of a semiring H and Q be a non-empty set. Then we have, $(\mu_A \circ f)(x+y,q) = \mu_A(f(x+y),q) = \mu_A(f(y)+f(x),q) \geq \mu_A(f(x,q)) \wedge \mu_A(f(y,q)) \geq (\mu_A \circ f)(x,q) \wedge (\mu_A \circ f)(y,q)$, which implies that $(\mu_A \circ f)(x+y,q) \geq (\mu_A \circ f)(x,q) \wedge (\mu_A \circ f)(y,q)$. Again $(\mu_A \circ f)(xy,q) = \mu_A(f(xy),q) = \mu_A(f(y)f(x),q) \geq \mu_A(f(x,q)) \wedge \mu_A(f(y,q)) \geq (\mu_A \circ f)(x,q) \wedge (\mu_A \circ f)(y,q)$, which implies that $(\mu_A \circ f)(xy,q) \geq (\mu_A \circ f)(x,q) \wedge (\mu_A \circ f)(y,q)$. Then we have, $(\nu_A \circ f)(x+y,q) = \nu_A(f(x+y),q) = \nu_A(f(y)+f(x),q) \leq \nu_A(f(x,q)) \vee \nu_A(f(y,q)) \leq (\nu_A \circ f)(x,q) \vee (\nu_A \circ f)(y,q)$, which implies that $(\nu_A \circ f)(x+y,q) \leq (\nu_A \circ f)(x,q) \vee (\nu_A \circ f)(y,q)$. Again, $(\nu_A \circ f)(xy,q) = \nu_A(f(xy),q) = \nu_A(f(y)f(x),q) \leq \nu_A(f(x,q)) \vee \nu_A(f(y,q)) \leq (\nu_A \circ f)(x,q) \vee (\nu_A \circ f)(y,q)$, which implies that $(\nu_A \circ f)(xy,q) \leq (\nu_A \circ f)(x,q) \vee (\nu_A \circ f)(y,q)$. Therefore $A \circ f$ is a Q-intuitionistic L-fuzzy subsemiring of a semiring R.

Theorem 2.7. Let A be a Q-intuitionistic L-fuzzy subsemiring of a semiring $(R, +, \cdot)$, then the pseudo Q-intuitionistic L-fuzzy coset $(aA)^p$ is a Q-intuitionistic L-fuzzy subsemiring of a semiring R, for every a in R and p in P.

Proof. Let A be a Q-intuitionistic L-fuzzy subsemiring of a semiring R. For every x and y in R and q in Q, we have, $((a\mu_A)^p)(x+y,q)=p(a)\mu_A(x+y,q)\geq p(a)\{(\mu_A(x,q)\wedge\mu_A(y,q)\}=\{p(a)\mu_A(x,q)\wedge p(a)\mu_A(y,q)\}=\{((a\mu_A)^p)(x,q)\wedge((a\mu_A)^p)(y,q)\}$. Therefore, $((a\mu_A)^p)(x+y,q)\geq \{((a\mu_A)^p)(x,q)\wedge((a\mu_A)^p)(y,q)\}$. Now, $((a\mu_A)^p)(xy,q)=p(a)\mu_A(xy,q)\geq p(a)\{\mu_A(x,q)\wedge\mu_A(y,q)\}=\{p(a)\mu_A(x,q)\wedge p(a)\mu_A(y,q)\}=\{((a\mu_A)^p)(x,q)\wedge((a\mu_A)^p)(y,q)\}$. Therefore, $((a\mu_A)^p)(xy,q)\geq \{((a\mu_A)^p)(x,q)\wedge((a\mu_A)^p)(y,q)\}$. For every x and y in R and q in Q, we have, $((a\nu_A)^p)(x+y,q)=p(a)\nu_A(x+y,q)\leq p(a)\{(\nu_A(x,q)\vee\nu_A(y,q)\}=\{p(a)\nu_A(x,q)\vee p(a)\nu_A(y,q)\}=\{((a\nu_A)^p)(x,q)\vee((a\nu_A)^p)(y,q)\}$. Therefore, $((a\nu_A)^p)(x+y,q)\leq p(a)\{((a\nu_A)^p)(x,q)\vee((a\nu_A)^p)(y,q)\}$. Now, $((a\nu_A)^p)(x,q)=p(a)\nu_A(xy,q)\leq p(a)\{\nu_A(x,q)\vee\nu_A(y,q)\}=\{p(a)\nu_A(x,q)\vee p(a)\nu_A(x,q)\vee p(a)\nu_A(x,$

 $p(a)\nu_A(y,q)$ = { $((a\nu_A)^p)(x,q)\vee((a\nu_A)^p)(y,q)$ }. Therefore, $((a\nu_A)^p)(xy,q) \leq \{((a\nu_A)^p)(x,q)\vee((a\nu_A)^p)(y,q)\}$. Hence $(aA)^p$ is a Q-intuitionistic L-fuzzy subsemiring of a semiring R.

Theorem 2.8. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings and Q be a non-empty set. If $f: R \to R'$ is a homomorphism, then the homomorphic image of a Q-level subsemiring of an Q-intuitionistic L-fuzzy subsemiring of R is a Q-level subsemiring of a Q-intuitionistic L-fuzzy subsemiring of R'

Proof. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings and Q be a non-empty set. $f: R \to R'$ be a homomorphism. That is, f(x+y) = f(x) + f(y), for all x and y in R and f(xy) = f(x)f(y), for all x and y in R. Let V = f(A), where A is an Q-intuitionistic L-fuzzy subsemiring of R'. If x and y in R, then f(x) and f(y) in R'. Let $A_{(\alpha,\beta)}$ be a Q-level subsemiring of A. Suppose x and y in $A_{(\alpha,\beta)}$, then x+y and xy in $A_{(\alpha,\beta)}$. That is, $\mu_A(x,q) \ge \alpha$ and $\nu_A(x,q) \le \beta$, $\mu_A(y,q) \ge \alpha$ and $\nu_A(y,q) \le \beta$, $\mu_A(x+y,q) \ge \alpha$, $\mu_A(xy,q) \ge \alpha$ and $\nu_A(x+y,q) \le \beta$, $\nu_A(xy,q) \le \beta$. We have to prove that $f(A_{(\alpha,\beta)})$ is a Q-level subsemiring of V. Now, $\mu_V(f(x),q) \ge \mu_A(x,q) \ge \alpha$, implies that $\mu_V(f(x),q) \ge \alpha$, which implies that $\mu_V(f(x) + f(y),q) \ge \alpha$, for all f(x) and f(y) in R'. $\mu_V(f(x)f(y),q) = \mu_V(f(xy),q) \ge \mu_A(xy,q) \ge \alpha$, which implies that $\mu_V(f(x)f(y),q) \ge \alpha$, for all f(x) and f(y) in R'. And, $\nu_V(f(x),q) \ge \nu_A(x,q) \le \beta$, implies that $\nu_V(f(x),q) \le \beta$, which implies that $\nu_V(f(x),q) \le \beta$, for all f(x) and f(y) in R'. $\nu_V(f(x)f(y),q) = \nu_V(f(xy),q) \le \nu_A(x+y,q) \le \beta$, which implies that $\nu_V(f(x),q) \le \beta$, for all f(x) and f(y) in R'. $\nu_V(f(x)f(y),q) = \nu_V(f(xy),q) \le \nu_A(xy,q) \le \beta$, which implies that $\nu_V(f(x),q) \le \beta$, for all f(x) and f(y) in R'. Therefore, $\mu_V(f(x),q) \le \alpha$, for all f(x) and f(y) in R' and $\nu_V(f(x),q) \le \beta$, for all f(x) and f(y) in R' and $\nu_V(f(x),q) \le \beta$, for all f(x) and f(y) in R' and $\nu_V(f(x),q) \le \beta$, for all f(x) and f(y) in R' and $\nu_V(f(x),q) \le \beta$, for all f(x) and f(y) in R'. Hence $f(A_{(\alpha,\beta)})$ is a Q-level subsemiring of a Q-intuitionistic L-fuzzy subsemiring V of a semiring R'.

Theorem 2.9. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings and Q be a non-empty set. If $f: R \to R'$ is a homomorphism, then the homomorphic pre-image of a Q-level subsemiring of a Q-intuitionistic L-fuzzy subsemiring of R' is a Q-level subsemiring of R.

Proof. Let $(R,+,\cdot)$ and $(R',+,\cdot)$ be any two semirings and Q be a non-empty set. $f:R\to R'$ be a homomorphism. That is, f(x+y) = f(x) + f(y), for all x and y in R and f(xy) = f(x)f(y), for all x and y in R. Let V = f(A), where V is an Q-intuitionistic L-fuzzy subsemiring of R'. Clearly A is an Q-intuitionistic L-fuzzy subsemiring of R. Let x and y in R and q in Q. Let $f(A_{(\alpha,\beta)})$ be a Q-level subsemiring of V. Suppose f(x) and f(y) in $f(A_{(\alpha,\beta)})$, then f(x)+f(y) and f(x)f(y)in $f(A_{(\alpha,\beta)})$. That is, $\mu_V(f(x),q) \geq \alpha$ and $\nu_V(f(x),q) \leq \beta$; $\mu_V(f(y),q) \geq \alpha$ and $\nu_V(f(y),q) \leq \beta$; $\mu_V(f(x)+f(y),q) \geq \alpha$ $\alpha, \mu_V(f(x)f(y), q) \geq \alpha$ and $\nu_V(f(x)+f(y), q) \leq \beta, \nu_V(f(x)f(y), q) \leq \beta$. We have to prove that $A_{(\alpha,\beta)}$ is a Q-level subsemiring of A. Now, $\mu_A(x,q) = \mu_V(f(x),q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$; $\mu_A(y,q) = \mu_V(f(y),q) \ge \alpha$, implies that $\mu_A(y,q) \ge \alpha$, we have $\mu_A(x+y,q) = \mu_V(f(x+y),q) = \mu_V(f(x)+f(y),q) \ge \alpha$, which implies that $\mu_A(x+y,q) \ge \alpha$, for all x and y in R and q in Q. And $\mu_A(xy,q) = \mu_V(f(xy),q) = \mu_V(f(x)f(y),q) \ge \alpha$, which implies that $\mu_A(xy,q) \ge \alpha$, for all x and y in R and q in Q. And, $\nu_A(x,q) = \nu_V(f(x),q) \le \beta$, implies that $\nu_A(x,q) \le \beta$; $\nu_A(y,q) = \nu_V(f(y),q) \le \beta$, implies that $\nu_A(y,q) \le \beta$, we have $\nu_A(x+y,q) = \nu_V(f(x+y),q) = \nu_V(f(x)+f(y),q) \le \beta$ which implies that $\nu_A(x+y,q) \le \beta$, for all x and y in R and q in Q. And $\nu_A(xy,q) = \nu_V(f(xy),q) = \nu_V(f(x)f(y),q) \le \beta$ which implies that $\nu_A(xy,q) \le \beta$, for all x and y in R and q in Q. Therefore, $\mu_A(x+y,q) \ge \alpha$, for all x and y in R and $\mu_A(xy,q) \ge \alpha$, for all x and y in R and $\nu_A(x+y,q) \le \beta$, for all x and y in R and $\nu_A(xy,q) \leq \beta$, for all x and y in R and q in Q. Hence $A_{(\alpha,\beta)}$ is a Q-level subsemiring of a Q-intuitionistic L-fuzzy subsemiring A of R. **Theorem 2.10.** Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings and Q be a non-empty set. If $f: R \to R'$ is an anti-homomorphism, then the anti-homomorphic image of a Q-level subsemiring of a Q-intuitionistic L-fuzzy subsemiring of R'.

Proof. Let $(R,+,\cdot)$ and $(R',+,\cdot)$ be any two semirings and Q be a non-empty set and $f:R\to R'$ be an antihomomorphism. That is, f(x+y)=f(y)+f(x), for all x and y in R and f(xy)=f(y)f(x), for all x and y in R. Let V = f(A), where A is an Q-intuitionistic L-fuzzy subsemiring of R. Clearly V is a Q-intuitionistic L-fuzzy subsemiring of R'. If x and y in R, then f(x) and f(y) in R'. Let $A_{(\alpha,\beta)}$ be a Q-level subsemiring of A. Suppose x and y in $A_{(\alpha,\beta)}$, then y+x and yx in $A_{(\alpha,\beta)}$. That is, $\mu_A(x,q) \geq \alpha$ and $\nu_A(x,q) \leq \beta, \mu_A(y,q) \geq \alpha$ and $\nu_A(y,q) \leq \beta, \mu_A(y+x,q) \geq \alpha, \mu_A(yx,q) \geq \alpha \text{ and } \nu_A(y+x,q) \leq \beta, \nu_A(yx,q) \leq \beta.$ We have to prove that $f(A_{(\alpha,\beta)})$ is a Q-level subsemiring of V. Now, $\mu_V(f(x), q) \ge \mu_A(x, q) \ge \alpha$, implies that $\mu_V(f(x), q) \ge \alpha$; $\mu_V(f(y), q) \le \mu_A(y, q) \ge \alpha$, implies that $\mu_V(f(x), q) \ge \alpha$; $\mu_V(f(y), q) \le \mu_A(y, q) \ge \alpha$, implies that $\mu_V(f(x), q) \ge \alpha$; $\mu_V(f(y), q) \le \mu_A(y, q) \ge \alpha$, implies that $\mu_V(f(x), q) \ge \alpha$; $\mu_V(f(y), q) \le \mu_A(y, q) \ge \alpha$. plies that $\mu_V(f(y), q) \ge \alpha$, $\mu_V(f(x) + f(y), q) = \mu_V(f(y+x), q) \ge \mu_A(y+x, q) \ge \alpha$, which implies that $\mu_V(f(x) + f(y), q) \ge \alpha$, for all f(x) and f(y) in R'. $\mu_V(f(x)f(y),q) = \mu_V(f(yx),q) \ge \mu_A(yx,q) \ge \alpha$, which implies that $\mu_V(f(x)f(y),q) \ge \alpha$, for all f(x) and f(y) in R'. And, $\nu_V(f(x), q) \leq \nu_A(x, q) \leq \beta$, implies that $\nu_V(f(x), q) \leq \beta$; $\nu_V(f(y), q) \leq \nu_A(y, q) \leq \beta$, implies that $\nu_V(f(y),q) \leq \beta$, $\nu_V(f(x)+f(y),q) = \nu_V(f(y+x),q) \leq \nu_A(y+x,q) \leq \beta$, which implies that $V(f(x)+f(y),q) \leq \beta$, for all f(x) and f(y) in R'. $V(f(x)f(y),q) = \nu_V(f(yx),q) \le \nu_A(yx,q) \le \beta$, which implies that $\nu_V(f(x)f(y),q) \le \beta$, for all f(x)and f(y) in R'. Therefore, $\mu_V(f(x) + f(y), q) \ge \alpha$, for all f(x) and f(y) in R' and $\mu_V(f(x)f(y), q) \ge \alpha$, for all f(x) and f(y)in R' and $\nu_V(f(x)+f(y),q) \leq \beta$, for all f(x) and f(y) in R' and $\nu_V(f(x)f(y),q) \leq \beta$, for all f(x) and f(y) in R'. Hence f $(A_{(\alpha,\beta)})$ is a Q-level subsemiring of a Q-intuitionistic L-fuzzy subsemiring V of a semiring R'.

Theorem 2.11. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two semirings and Q be a non-empty set. If $f: R \to R'$ is an anti-homomorphism, then the anti-homomorphic pre-image of a Q-level subsemiring of a Q-intuitionistic L-fuzzy subsemiring of R' is a Q-level subsemiring of R.

Proof. Let $(R,+,\cdot)$ and $(R',+,\cdot)$ be any two semirings and Q be a non-empty set and $f:R\to R'$ be an antihomomorphism. That is, f(x+y) = f(y) + f(x), for all x and y in R and f(xy) = f(y)f(x), for all x and y in R. Let V = f(A), where V is a Q-intuitionistic L-fuzzy subsemiring of R'. Clearly A is a Q-intuitionistic L-fuzzy subsemiring of R. Let x and y in R and q in Q. Let $f(A_{(\alpha,\beta)})$ be a Q-level subsemiring of V. Suppose f(x) and f(y) in $f(A_{(\alpha,\beta)})$, then f(y)+f(x) and f(y)f(x) in $f(A_{(\alpha,\beta)})$. That is, $\mu_V(f(x),q)\geq \alpha$ and $\nu_V(f(x),q)\leq \beta$; $\mu_V(f(y),q)\geq \alpha$ and $\nu_V(f(y),q)\leq \alpha$ β ; $\mu_V(f(y)+f(x),q) \geq \alpha$, $\mu_V(f(y)f(x),q) \geq \alpha$ and $\nu_V(f(y)+f(x),q) \leq \beta$, $\nu_V(f(y)f(x),q) \leq \beta$. We have to prove that $A_{(\alpha,\beta)}$ is a Q-level subsemiring of A. Now, $\mu_A(x,q) = \mu_V(f(x),q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$; $\mu_A(y,q) = \mu_V(f(y),q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$; $\mu_A(y,q) = \mu_V(f(y),q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$; $\mu_A(y,q) = \mu_V(f(y),q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$; $\mu_A(y,q) = \mu_V(f(y),q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$; $\mu_A(y,q) = \mu_V(f(y),q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$; $\mu_A(y,q) = \mu_V(f(y),q) \ge \alpha$. plies that $\mu_A(y,q) \geq \alpha$, we have $\mu_A(x+y,q) = \mu_V(f(x+y),q) = \mu_V(f(y)+f(x),q) \geq \alpha$, which implies that $\mu_A(x+y,q) \geq \alpha$, for all x and y in R. And $\mu_A(xy,q) = \mu_V(f(xy),q) = \mu_V(f(y)f(x),q) \ge \alpha$, which implies that $\mu_A(xy,q) \ge \alpha$, for all x and y in R. And, $\nu_A(x,q) = \nu_V(f(x),q) \leq \beta$, implies that $\nu_A(x,q) \leq \beta$; $\nu_A(y,q) = \nu_V(f(y),q) \leq \beta$, implies that $\nu_A(y,q) \leq \beta$, we have $\nu_A(x+y,q) = \nu_V(f(x+y),q) = \nu_V(f(y)+f(x),q) \le \beta$ which implies that $\nu_A(x+y,q) \le \beta$, for all x and y in R. And $\nu_A(xy,q) = \nu_V(f(xy),q) = \nu_V(f(y)f(x),q) \le \beta$ which implies that $\nu_A(xy,q) \le \beta$, for all x and y in R. Therefore, $\mu_A(x+y,q) \geq \alpha$, for all x and y in R and q in Q and $\mu_A(xy,q) \geq \alpha$, for all x and y in R and $\nu_A(x+y,q) \leq \beta$, for all x and y in R and $\nu_A(xy,q) \leq \beta$, for all x and y in R and q in Q. Hence $A_{(\alpha,\beta)}$ is a Q-level subsemiring of a Q-intuitionistic L-fuzzy subsemiring A of R.

References

- [2] M.Akram and K.H.Dar, On fuzzy d-algebras, Punjab university journal of mathematics, 37(2005), 61-76.
- [3] M.Akram and K.H.Dar, Fuzzy left h-ideals in hemirings with respect to a s-norm, International Journal of Computational and Applied Mathematics, 2(1)(2007), 714.
- [4] Asok Kumer Ray, On product of fuzzy subgroups, Fuzzy sets and systems, 105(1999), 181-183.
- [5] K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20(1)(1986), 87-96.
- [6] K.T.Atanassov, Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag company, Bulgaria, (1999).
- [7] B.Banerjee and D.K.Basnet, Intuitionistic fuzzy subrings and ideals, J. Fuzzy Math., 11(1)(2003), 139-155.
- [8] K.Chakrabarty, R.Biswas and Nanda, A note on union and intersection of Intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3(4)(1997).
- [9] F.P.Choudhury, A.B.Chakraborty and S.S.Khare, A note on fuzzy subgroups and fuzzy homomorphism, Journal of Mathematical Analysis and Applications, 131(1988), 537-553.
- [10] B.Davvaz, A.Wieslaw and Dudek, Fuzzy n-ary groups as a generalization of rosenfeld fuzzy groups, ARXIV-0710.3884VI (MATH.RA) 20 OCT (2007), 1-16.
- [11] K.De, R.Biswas and A.R.Roy, On intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3(4)(1997).
- [12] K.De, R.Biswas and A.R.Roy, On intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 4(2)(1998).
- [13] V.N.Dixit, Rajesh Kumar and Naseem Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy sets and systems, 37(1990), 359-371.
- [14] K.Hur, H.W.Kang and H.K.Song, Intuitionistic fuzzy subgroups and subrings, Honam Math. J., 25(1)(2003), 19-41.
- [15] K.H.Kim, On intuitionistic Q-fuzzy semi prime ideals in semi groups, Advances in fuzzy mathematics, 1(1)(2006), 15-21.
- [16] N.Palaniappan and K.Arjunan, Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1)(2007), 59-64.
- [17] Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, (1993).
- [18] S.Sampathu, S.Anita Shanthi and A. Praveen Prakash, A Study on (Q,L)-fuzzy Subsemiring of a Semiring, General. Math. Notes, 28(2)(2015), 55-63.
- [19] S.Sampathu, S.Anita Shanthi and A. Praveen Prakash, A Study on (Q,L)-fuzzy Normal Subsemiring of a Semiring, American Journal of Applied Mathematics, 3(4)(2015), 185-188.
- [20] S.Sampathu, S.Anita Shanthi and A. Praveen Prakash, A study on Q-intuitionistic L-fuzzy subsemiring of a semiring, Global Journal of Pure and Applied Mathematics, 12(4)(2016), 0973-1768.
- [21] A.S.Shakaya and K.Arjunan, Note on (Q,L)-Fuzzy subgroups of a group, Indian Journal of Research, 1(2012), 3-5.
- [22] P.Sivaramakrishna Das, Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84(1981), 264-269.
- [23] A.Solairaju and R.Nagarajan, A New Structure and Construction of Q-Fuzzy Groups, Advances in Fuzzy Mathematics, 4(1)(2009), 23-29.
- [24] A.Solairaju and R.Nagarajan, *Q-fuzzy left R-subgroups of near rings w.r.t T-norms*, Antarctica Journal of Mathematics, 5(2008), 1-2.
- [25] J.Tang and X.Zhang, Product Operations in the Category of L fuzzy groups, J. Fuzzy Math., 9(2001), 1-10.
- [26] W.B.Vasantha kandasamy, Smarandache fuzzy algebra, American research press, Rehoboth, (2003).
- [27] L.A.Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.