ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Global Cototal Domination in Graphs

T. Nicholas¹ and T. Sheeba Helen^{2,*}

- 1 Department of Mathematics, St.Judes College, Thoothoor, Tamil Nadu, India.
- 2 Department of Mathematics, Holy Cross College (Autonomous), Nagercoil, Tamil Nadu, India.

Abstract:

A set of vertices D in a graph G is a dominating set, if each vertex of G is dominated by some vertices of D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set D of a graph G is a global dominating set if D is also a dominating set of \bar{G} . The global domination number $\gamma_g(G)$ is the minimum cardinality of a global dominating set of G. A dominating set D of a graph G is a cototal dominating set if the induced sub graph, $\langle V-D\rangle$ has no isolated vertices. The cototal domination number $\gamma_{cot}(G)$ is the minimum cardinality of a cototal dominating set of G. In this paper we introduce a new concept, the global cototal domination number $\gamma_{gcot}(G)$. A dominating set D of a graph G is a global cototal dominating set if D is both a global dominating set and a cototal dominating set. The global cototal domination number $\gamma_{gcot}(G)$ is the minimum cardinality of a global cototal domination set of G. We initiate the study of global cototal domination number and present bounds and some exact values of $\gamma_{gcot}(G)$ for some classes of graphs.

MSC: 05C69

Keywords: Domination number, Global domination number, Total domination number, Cototal domination number, Global cototal domination number.

© JS Publication.

1. Introduction

All graphs considered in this paper are simple, finite, undirected and connected. For all graph theoretic terminology not defined here, the reader is referred to [7]. Domination is a flourishing branch in graph theory and it has numerous applications to distributed computing, the web graph and ad hoc networks. For a comprehensive introduction to theoretical and applied facts of domination in graphs the reader is directed to the book [8]. Many variants of the domination number have been studied. For instance, a dominating set D of a graph G is a global dominating set if D is also a dominating set of \bar{G} . The global domination number $\gamma_g(G)$ is the minimum cardinality of a global dominating set of G. This concept was introduced independently by Brigham and Dutton [2] (the term factor domination number was used) and Sampathkumar [7]. A dominating set D of a graph G is a total dominating set if the induced sub graph $\langle D \rangle$ has no isolated vertices. The total domination number $\gamma_t(G)$ is the minimum cardinality of a total dominating set of G. A dominating set D of a graph G is a cototal dominating set if the induced subgraph $\langle V - D \rangle$ has no isolated vertices. The cototal domination number $\gamma_{cot}(G)$ is the minimum cardinality of a cototal dominating set of G. This concept was introduced by Kulli, Janakiram and Iyer in [6]. In this paper, we introduce a new graph parameter the global cototal domination number for a connected graph G.

 $^{^*}$ E-mail: iamsheen@rediffmail.com

2. Main Results

Definition 2.1. A global cototal dominating set of a graph G is a set D of vertices of G such that D is both global dominating set and cototal dominating set. The global cototal domination number $\gamma_{gcot}(G)$ is the minimum cardinality of a global cototal dominating set of G.

Theorem 2.2. Every graph with no isolated vertex has a global cototal dominating set and hence a global cototal domination number.

Proof. Without loss of generality let G = (V, E) be connected. Then V itself is a global cototal dominating set in G as well as \bar{G} , as each vertex is considered to dominate itself. When we remove the vertices of the cototal dominating set D from G, then we get a induced sub graph $\langle V - D \rangle$ which has no isolated vertex. Now we know that G has a global cototal dominating set, we may remove one vertex at a time from V if and only if the resulting subset of V is still a global cototal dominating set. This will give a minimal global cototal dominating set. Among all the global cototal dominating sets, each of the smallest sets has cardinality $\gamma_{gcot}(G)$. Hence forth we consider only graphs with no isolated vertices.

Theorem 2.3. For any positive integer $m \geq 2n \geq 2$, $\gamma_{gcot}(k_{m,n}) = 2$.

Proof. Let G be a complete bipartite graph with partitions V_1 and V_2 . Let $u \in V_1$ and $v \in V_2$. Since G is a complete bipartite graph, each vertex in one partition can dominate all vertices in the other partition. Let $D = \{u, v\}$ be the dominating set. Now V-D will be a connected graph with no isolated vertex. Also in \bar{G} , the dominating S will dominate all vertices in its own partition. Hence $D = \{u, v\}$ is both global and cototal dominating set in G. Hence $\gamma_{gcot}(K_{m,n}) = 2$.

Definition 2.4. A leaf of a tree T is a vertex of degree one, while a support vertex of T is a vertex adjacent to a leaf.

Theorem 2.5. If $T \neq K_{1,n}$ is a tree of order n > 3, then $\gamma_{gcot}(T) \geq |L|$, where L is the set of leaf vertices of T.

Proof. Let $T \neq K_{1,n}$ be a tree of order n > 3. Let D be any global cototal dominating set with $|D| = \gamma_{gcot}(T)$. Let L be the set of leaf vertices of T. If T contains only leaf and support vertices then D = L. Hence $\gamma_{gcot}(T) = |L|$. If T contains vertices other than leaf and support vertices then D must contain all the leaf vertices and at least one vertex other than the leaf vertices. Therefore |D| > |L|. Hence $\gamma_{gcot}(T) > |L|$. We calculate the global cototal dominating number in specific families of graphs.

Proposition 2.6. For a path P_n on n vertices,

$$\gamma_{gcot}(P_n) = \begin{cases} \frac{n}{3} + 2, n \equiv 0 \pmod{3}; \\ \frac{n+2}{3}, n \equiv 1 \pmod{3}; \\ \lceil \frac{n}{3} \rceil + 1, n \equiv 2 \pmod{3}. \end{cases}$$

Proof. Let P_n be the path of order n. $V(P_n) = \{v_0, v_1, v_2, v_3, ..., v_{n-1}\}$. Since D is a global cototal dominating set in G, $i+3 \le n$ is the least positive integer such that $v_i, v_{i+3} \in D$. D must contain v_0 and v_{n-1} , the end vertex of P_n . If $n \equiv 0 \pmod{3}$ then D contains v_{3i} where $i=0,1,...,\frac{n-3}{3}$ and the vertices v_{n-2} and v_{n-1} . Hence $|D| = \frac{n-3}{3} + 1 + 2 = \frac{n}{3} + 2$. If $n \equiv 1 \pmod{3}$ then D contains v_{3i} where $i=0,1,...,\frac{n-1}{3}$. Thus $|D| = \frac{n-1}{3} + 1 = \frac{n+2}{3}$. If $n \equiv 2 \pmod{3}$ then D has v_{3i} where $i=0,1,...,\frac{n-2}{3}$ and also v_{n-1} . In this case $|D| = \frac{n-2}{3} + 1 + 1 = \frac{n+1}{3} + 1 = \lceil \frac{n}{3} \rceil + 1$. Hence the result follows. \square

Proposition 2.7. For the cycle C_n , $n \geq 6$,

$$\gamma_{gcot}(C_n) = \begin{cases} \frac{n}{3}, & n \equiv 0 \pmod{3}; \\ \lceil \frac{n}{3} \rceil, & n \equiv 1 \pmod{3}; \\ \lceil \frac{n}{3} \rceil + 1, & n \equiv 2 \pmod{3}. \end{cases}$$

Proof. Let $V(C_n) = \{v_0, v_1, v_2, v_3, ..., v_{n-1}\}$ and $E(C_n) = v_i v_{i+1}/i = 0, 1, 2, ..., n-1$, subscript modulo n. Consider the sets.

$$D_1 = \left\{ v_{3i}/i = 0, 1, 2, ..., \frac{n-3}{3} \right\}$$
 when $n \equiv 0 \pmod{3}$.

$$D_2 = \left\{ v_{3i}/i = 0, 1, 2, ..., \frac{n-1}{3} \right\}$$
 when $n \equiv 1 \pmod{3}$.

$$D_3 = \left\{ v_{3i}/i = 0, 1, 2, ..., \frac{n-2}{3} \right\} \cup \{v_{n-1}\}$$
 when $n \equiv 2 \pmod{3}$.

The above three sets achieve the global cototal property of C_n in the respective parity conditions.

Proposition 2.8. For any complete graph K_n , $\gamma_{gcot}(K_n) = n, n \geq 3$.

Proof. All the vertices are isolated in the complementary graph of the complete graph. Therefore, the global cototal dominating set must contain all the vertices of K_n . Hence $\gamma_{gcot}(K_n) = n, n \geq 3$.

Proposition 2.9. For any star graph $K_{1,n}$, $\gamma_{qcot}(K_{1,n}) = n+1$, $n \geq 3$.

Proof. Let $V(G) = v, v_1, v_2, v_3, ..., v_n$, where v is the only vertex of degree n and each v_i is a pendant vertex adjacent to v. The complement of $K_{1,n}$ contains two components K_1 and K_n . Hence D = V(G) is the global cototal dominating set of $K_{1,n}$. Thus $\gamma_{gcot}(K_{1,n}) = n+1, n \geq 3$.

Proposition 2.10. For any wheel
$$W_n$$
, $\gamma_{gcot}(W_n) = \begin{cases} 4 & \text{if } n = 3 \\ 3 & \text{otherwise} \end{cases}$

Proof. Since W_3 is nothing but K_4 , from Proposition 2.8 it is obvious that $\gamma_{gcot}(W_3) = 4$. $V(W_n) = \{v_0, u = v_1, v_2, v_3, ..., v_n = v\}$, be the vertex set of the wheel W_n . Let $D = \{v_0, u, v\}$ be the global cototal dominating set of W_n . The complement of W_n contains an isolated vertex. Hence v_0 certainly belongs to the set D. Also the vertices u, v dominate all the other vertices. Hence D is the minimal global cototal dominating set of W_n . Hence $\gamma_{gcot}(W_n) = 3$ if $v \ge 4$.

Theorem 2.11. Let G = T be any nontrivial tree. Then $\gamma_{gcot}(G) \geq \Delta(G) + 1$.

Proof. Let G be any nontrivial tree. If $T = K_{1,n}$, then equality holds. Let D be a global cototal dominating set of T. Clearly D contains L, where L is the set of leaf vertices. Since $\Delta(G) < |L|$ for any tree $T \neq P_n$ or $T \neq K_{1,n}$, the result follows from Theorem 2.5. Next theorem relates the global cototal domination number to the maximum degree and the order of the graph.

Theorem 2.12. For any connected graph $G \neq K_n$ with $\delta(G) > 2$, $\gamma_{gcot}(G) \ge \frac{n}{\Lambda(G)-1}$.

Proof. Let t denote the number of edges in G having exactly one vertex in D. Since $\Delta(G) \geq deg(v) \geq \delta(G)$ for all $v \in D$ and each vertex in D is adjacent to at least one member of D, we have $t \leq (\Delta(G) - 2)|D|$, which equals $(\Delta(G) - 2)\gamma_{gcot}(G)$. That is,

$$t \le (\Delta(G) - 2)\gamma_{qcot}(G) \tag{1}$$

Also, each vertex in V-D is adjacent to at least one vertex of V-D. So we have $t \ge |V-D|$ which equals $n-\gamma_{gcot}(G)$. That is,

$$n - \gamma_{gcot}(G) \le t \tag{2}$$

From (1) and (2), it follows that $n - \gamma_{gcot}(G) \le t \le (\Delta(G) - 2)\gamma_{gcot}(G)$, which implies $n \le (\Delta(G) - 1)\gamma_{gcot}(G)$. Hence, $\frac{n}{(\Delta(G)-1)} \le \gamma_{gcot}(G)$. Thus the theorem follows.

Next theorem gives the upper bound for the global cototal domination number in terms of order and size.

Theorem 2.13. Let G be a graph of order n and size m, $\delta(G) > 2$. Then $\gamma_{gcot}(G) \leq m - \frac{n}{2}$.

Proof. Let D be any γ_{gcot} -set of G. Consider $A = \langle V - D \rangle$, $B = \langle D \rangle$. Let n_1 and n_2 be the order of A and B respectively. Thus $m_1 = \frac{1}{2} \sum_{v \in V - S} deg_A(v) \geq \frac{1}{2} (n - \gamma_{gcot}(G))$ and $m_2 = \frac{1}{2} \sum_{v \in S} deg_B(v) \geq \frac{1}{2} \gamma_{gcot}(G)$. Let m_3 denote the number of edges between D and V - D. Since D is a γ_{gcot} -set, it is a cototal dominating set and every vertex is adjacent to at least one vertex in D. Thus $m_3 \geq \gamma_{gcot}(G)$. $m = m_1 + m_2 + m_3 \geq \frac{1}{2} (n - \gamma_{gcot}(G)) + \frac{1}{2} \gamma_{gcot}(G) + \gamma_{gcot}(G) = \frac{n}{2} + \gamma_{gcot}(G)$. Therefore, $m \geq \frac{n}{2} + \gamma_{gcot}(G)$. Hence, $\gamma_{gcot}(G) \leq \frac{m-n}{2}$.

Theorem 2.14. Let $G \neq C_n$ be any connected graph. Then $\gamma_{gcot}(G) \leq 2m - n + 2$. Further equality holds if and only if $G = K_{1,n}$.

Proof. Obviously $\gamma_{gcot}(G) \leq n = 2(n-1) - n + 2$ and since G is connected and $G \neq C_n$, $m \geq n-1$. Thus $\gamma_{gcot}(G) \leq 2m-n+2$. Assume every edge of a tree is incident with a single support vertex, then m = n-1 and $\gamma_{gcot}(G) = n = 2m-n+2$. Conversely, assume $\gamma_{gcot}(G) = 2m - n + 2$. Then $2m - n + 2 \leq n$ which implies that $m \leq n-1$. Let m = n-1, then $\gamma_{gcot}(G) = n$. Hence by Proposition 2.6, $G = K_1, n$.

Theorem 2.15. Let G be any nontrivial connected graph. If both G and \bar{G} have no isolated vertices then

- (1). $\gamma_{gcot}(G) + \gamma_{gcot}(\bar{G}) \leq 2n$
- (2). $\gamma_{qcot}(G) \cdot \gamma_{qcot}(\bar{G}) \leq n^2$.

3. Lotus Inside Circle [6]

The graph Lotus Inside Circle, denoted by LIC_n , $n \geq 3$, is defined as follows: Let S_n be the star graph with vertices $b_0, b_1, ..., b_n$ whose center is b_0 . Let C_n be the cycle of length n whose vertices are $a_1, a_2, ..., a_n$. We join a_i with b_i and b_{i+1} for each $i \geq 1$ and join an with b_1 and b_n .

Example 3.1.

Theorem 3.2. For
$$n \geq 4$$
, $\gamma_{gcot}(LIC_n) = \begin{cases} \frac{n}{3} + 1 & n \equiv 0 \pmod{3} \\ \lceil \frac{n}{3} \rceil + 1 & n \equiv 0 \pmod{3} \end{cases}$

Proof. Let C_n be the cycle of length n whose vertices are $a_1, a_2, ..., a_n$ in the graph LIC_n . Let S_n be the star graph with the vertices $b_0, b_1, b_2, ..., b_n$ with apex vertex b_0 such that each a_i is adjacent to b_i and b_{i+1} taken modulo n, i = 1, 2, ..., n.

Case 1: $n \equiv 0 \pmod{3}$. Consider the set $D = \{b_0, a_{3i-2}/i = 1, 2, ..., n/3\}$. From Proposition 2.7, we have $\gamma_{gcot}(C_n) = \frac{n}{3}$ for $n \equiv 0 \pmod{3}$. Therefore $D = \{b_0, a_{3i-2}/i = 1, 2, ..., n/3\}$ is a cototal dominating set for LIC_n . Further, in $\overline{LIC_n}$, b_0 dominates all the vertices of the cycle. Also $a_1 \in D$ dominates all b_i 's except b_1 and b_2 which are dominated by $a_{n-2} \in D$. Since D is minimal, we conclude $\gamma_{gcot}(LIC_n) = \frac{n}{3} + 1$.

Case 2: $n \equiv 1 \pmod{3}$. Let $D = \{b_0, a_{3i-2}/i = 1, 2, ..., \frac{n+2}{3}\}$. By Proposition 2.7 we have, $\gamma_{gcot}(C_n) = \lceil \frac{n}{3} \rceil$ for $n \equiv 1 \pmod{3}$. Therefore D is a cototal dominating set for LIC_n . In a similar argument as in Case 1, we can conclude that $\gamma_{gcot}(LIC_n) = \lceil \frac{n}{3} \rceil + 1$.

Case 3: $n \equiv 2 \pmod{3}$. The set $D = \{b_0, a_{3i-2}/i = 1, 2, ..., \frac{n+1}{3}\}$ achieves the result that $\gamma_{gcot}(LIC_n) = \lceil \frac{n}{3} \rceil + 1$.

References

- [1] B.Basavanagoud and S.M Hosamani, Complete Cototal Domination Number of a Graph, Journal of Scientific Research, 3(3)(2011), 547-555.
- [2] R.C.Brigham and R.D.Dutton, Factor domination in graphs, Discrete Math., 86(1990), 127-136.
- [3] C.J.Cockayne, R.M.Dawes and S.T.Hedetniemi, Total Domination in graphs, Networks, 10(1980), 211-219.
- [4] J.Deva Raj and V.Sujin Flower, A note on Global Total Domination in Graphs, Bulletin of Pure and Applied Sciences, 30E(1)(2011), 63-70.
- [5] G.S.Domke, J.H.Hattingh, S.T.Hedetniemi, R.C.Laskar and L.R.Markus, Restrained Domination in graphs, Discrete Math., 203(1999).
- [6] J.A.Gallian, A Dynamic Survey of graph labeling, The Electronic J. Combin., 16(2009), #DS6.
- [7] F.Harary, Graph Theory, Addison-Wesley, Reading, MA, (1972).
- [8] T.W.Haynes, S.T.Hedetneimi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1988).
- [9] V.R.Kulli, B.Janakiram and R.R.Iyer, The cototal domination number of a graph, J. Discrete Mathematical Sciences and Cryptography, 2(1999), 179-184.
- [10] E.Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci., 23(1989), 377-385.