ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Fixed Point Theorems in Quasi Semi linear 2-Normed Space

B. Stephen John¹ and S. N. Leena Nelson^{2,*}

- 1 Department of Mathematics, Annai Velankanni College, Tholayavattom, Tamil Nadu, India.
 - 2 Department of Mathematics, Women's Christian College, Nagercoil, Tamil Nadu, India.

Abstract: C. Park [9] introduced the term of a quasi 2-normed space. Also he proved some properties of quasi 2-norm and M. Kir

and M. Acikgoz [7] elaborated the procedure for completing the quasi 2-normed space. In this paper, we introduced quasi semi linear 2-normed spaces and φ' -contraction mapping in these spaces are defined. It is investigated that under suitable

conditions, φ' -contraction mapping have fixed points in quasi semi linear 2-normed spaces.

MSC: 05C69.

Keywords: Linear 2-normed space, quasi semi linear 2-normed space, φ' -contraction mapping, fixed points.

© JS Publication.

1. Introduction

Theory of 2-Banach spaces was investigated by S. Gahler [5] and K. Iseki [6] who had proved some fixed point theorems in 2-Banach spaces. Y.J. Cho, N. Huang and X. Long proved some fixed point theorems for nonlinear mappings in 2-Banach spaces. M.S. Khan and M.D. Khan [8] worked for Involutions with fixed points in 2-Banach spaces. In this paper we have proved some fixed point theorems in quasi semi linear 2-normed space by working with φ' -contraction.

1.1. Preliminaries

Definition 1.1. Let X be a linear space of dimension greater than 1 and let $\|\cdot,\cdot\|$ be a real-valued function on $X\times X$ satisfying the following conditions:

(1). ||x,y|| = 0 if and only if x and y are linearly dependent.

(2). ||x,y|| = ||y,x|| for all $x, y \in X$.

(3). ||x, ay|| = |a|||x, y||, a being real, for all $x, y \in X$.

(4). $||x, y + z|| \le ||x, y|| + ||x, z||$, for all $x, y, z \in X$.

Then $\|.,.\|$ is called a 2-norm and the pair $(X,\|.,.\|)$ is called a linear 2-normed space.

 $^{^*}$ E-mail: leena.wcc@gmail.com

Definition 1.2. A nonempty set X, together with a nonnegative function $\|.,.\|: X^3 \to R$ is called a quasi semi linear 2-normed space such that

- (1). to each pair of distinct points $x, y \in X$, there exists a point $z \in X$ such that $||x y, z|| \neq 0$.
- (2). ||x-y,z|| = 0 if at least two of x,y,z are equal.

Definition 1.3. φ' -contraction in Quasi Semi linear 2-Normed spaces Consider the set φ' , the set of all real valued functions $\varphi': R_+^3 \to R_+$ satisfying the following properties:

- (a). $\varphi'(1,1,1) = h < 1$, where $h \in R_+$.
- (b). Let $u, v \in R_+$ be such that if either $u \le \varphi'(u, v, v)$ or $u \le \varphi'(v, u, v)$ or $u \le \varphi(v, v, u)$, then $u \le kv$, for some $k \in [h, 1)$.

Definition 1.4. A self mapping T on a quasi semi linear 2-normed space $(X, \|., .\|)$ is called a φ' -contraction, if

$$||Tx - Ty, a|| \le \varphi'[||x - y, a||, ||x - Tx, a||, ||y - Ty, a||] \quad \forall \quad x, y, a \in X.$$
(1)

Throughout this paper, $(X, \|., .\|)$ is the quasi semi linear 2-normed space and using φ' -contraction mapping, we proved the following theorems.

2. Main Results

Theorem 2.1. Let $(X, \|., .\|)$ be a quasi semi linear 2-normed space and T is a φ' -contraction. If there exists a point $x_0 \in X$ such that for all $a \in X$

$$||x_0 - Tx_0, a|| = \inf\{||x - Tx, a|| : x \in X\}$$
(2)

then T has a unique fixed point.

Proof. Suppose $x_0 \neq Tx_0$, put $x = x_0$, $y = Tx_0$ in (1). Therefore, $||Tx_0 - T^2x_0, a|| \leq \varphi'[||x_0 - Tx_0, a||, ||x_0 - Tx_0, a||, ||Tx_0 - T^2x_0, a||]$. $||Tx_0 - T^2x_0, a|| \leq k||x_0 - Tx_0, a||$ for some $k \in [h, 1)$ [From φ' -contraction] Since k < 1, we have $||Tx_0 - T^2x_0, a|| \leq ||x_0 - Tx_0, a||$, which is a contradiction to (2). Hence, $Tx_0 = x_0$. Therefore, x_0 is the fixed point of T.

Uniqueness: Let y_0 be another fixed point of T. That is $y_0 = Ty_0$. Now,

$$||x_0 - y_0, a|| = ||Tx_0 - Ty_0, a|| \le \varphi'(||x_0 - y_0, a||, ||x_0 - Tx_0, a||, ||y_0 - Ty_0, a||)$$

$$\le \varphi'(||x_0 - y_0, a||, ||x_0 - x_0, a||, ||y_0 - y_0, a||)$$

$$\le \varphi'(||x_0 - y_0, a||, 0, 0)$$

Therefore by φ' -contraction, we obtain $||x_0-y_0,a|| \leq 0$ (or) $||x_0-y_0,a|| = 0 \Rightarrow x_0 = y_0$. That is, the fixed point is unique. \square

Remark 2.2. The Example 2.3 shows that the conditions (1) and (2) are essential in Theorem 2.1.

Example 2.3. Let $X = \{1, 2, 3, 4\}$ be a finite set with a 2-normed linear space defined as follows: ||x - y, z|| = 0, if at least any two of x, y, z are equal. Take

$$||1-2,3||=3$$

$$\|1-2,4\|=4$$

$$||2-3,4||=5$$

$$||1-3,4||=6.$$

We define $T: X \to X$ by T(1) = 2; T(2) = 3; T(3) = 4; T(4) = 1. Clearly, $\inf \|x - Tx, T^2x\|$ exists. The property $\|Tx - Ty, a\| \le \varphi'(\|x - y, a\|, \|x - Tx, a\|, \|y - Ty, a\|)$ for all $x, y, a \in X$ does not exists. Since T is not a φ' -contraction. So, in particular, let us take x = 1; y = 2; a = 4, we have $\|T(1) - T(2), 4\| \le \varphi'(\|1 - 2, 4\|, \|1 - T(1), 4\|, \|2 - T(2), 4\|)$. That is, $\|2 - 3, 4\| \le \varphi'(\|1 - 2, 4\|, \|1 - 2, 4\|, \|2 - 3, 4\|)$. Using φ' -contraction, we get $\|2 - 3, 4\| \le k\|1 - 2, 4\|$ or $5 \le k.4$ which is not possible since k < 1. From this, T has no fixed point.

Corollary 2.4. Let $(X, \|., .\|)$ be a quasi semi linear 2-normed space and T a self map of $(X, \|., .\|)$ satisfying the following conditions:

- (c). there exists an integer n such that $||T^nx T^ny, a|| \le \varphi'(||x y, a||, ||x T^nx, a||, ||y T^ny, a||)$ for all $x, y, a \in X$.
- (d). there exists a point $x_0 \in X$ such that $||x_0 T^n x_0, a|| = \inf\{||x T^n x, a|| : x \in X\}$, then T has a unique fixed point.

Proof. Suppose $S = T^n$, then by the above theorem, S has a unique fixed point. Hence, T^n has a unique fixed point Let x_0 be the unique fixed point of T^n . So, $T^n(Tx_0) = T(T^nx_0) = Tx_0$. Therefore, Tx_0 is a fixed point of T^n . If $Tx_0 \neq x_0$, then it is a contradiction to the existence of unique fixed point of T^n . Thus $Tx_0 = x_0$.

Theorem 2.5. Let S and T be self mappings of a quasi semi linear 2-normed space $(X, \|., .\|)$ satisfying the condition:

$$||Tx - Sy, a|| \le \varphi'(||x - y, a||, ||x - Tx, a||, ||y - Sy, a||)$$
(3)

for all $x, y, a \in X$. If there exists a point $x_0 \in X$ such that for all $x, a \in X$

$$||x_0 - Tx_0, a|| \le ||x - Sx, a|| \tag{4}$$

then S and T has a unique common fixed point.

Proof. Let $Tx_0 \neq x_0$. Put $x = x_0$, $y = Tx_0$ in (3), we obtain

$$||Tx_0 - S(Tx_0), a|| \le \varphi'(||x_0 - Tx_0, a||, ||x_0 - Tx_0, a||, ||Tx_0 - S(Tx_0), a||)$$

By φ' -contraction, we get $||Tx_0 - S(Tx_0), a|| \le k||x_0 - Tx_0, a|| < ||x_0 - Tx_0, a||$. This is a contradiction to (4). Therefore $Tx_0 = x_0$, which implies x_0 is also a fixed point of S. Let $Sx_0 \ne x_0$, then

$$||x_0 - Sx_0, a|| = ||Tx_0 - Sx_0, a|| \le \varphi'(||x_0 - x_0, a||, ||x_0 - Tx_0, a||, ||x_0 - Sx_0, a||)$$

That is,

$$||x_0 - Sx_0, a|| \le \varphi'(0, 0, ||x_0 - Sx_0, a||)$$

 $||x_0 - Sx_0, a|| \le 0$

Hence, $Sx_0 = x_0$.

For uniqueness, let y_0 be another fixed point of S and T. That is, $Sy_0 = Ty_0 = y_0$. Then,

$$||x_0 - y_0, a|| = ||Tx_0 - Ty_0, a|| \le \varphi'(||x_0 - y_0, a||, ||x_0 - Tx_0, a||, ||y_0 - Ty_0, a||)$$

$$\leq \varphi'(\|x_0 - y_0, a\|, \|x_0 - x_0, a\|, \|y_0 - y_0, a\|)$$

$$\leq \varphi'(\|x_0 - y_0, a\|, 0, 0)$$

Therefore by φ' -contraction, we obtain $||x_0 - y_0, a|| \le 0$ or $||x_0 - y_0, a|| = 0 \Rightarrow x_0 = y_0$. Which implies that the fixed point is unique.

Corollary 2.6. Let $(X, \|., .\|)$ be a quasi semi linear 2-normed space and let S and T be self maps of $(X, \|., .\|)$ satisfies the following conditions:

- $(e). \ \ there \ exists \ an \ integer \ m \ and \ n \ such \ that \ \|T^nx-S^my,a\| \leq \varphi'(\|x-y,a\|,\|x-T^nx,a\|,\|y-S^my,a\|) \ \ for \ all \ x,y,a \in X.$
- (f). if there exists a point $x_0 \in X$ such that for all $x, a \in X ||x_0 T^n x_0, a|| \le ||x S^m x, a||$, then S and T has a unique fixed point.

Corollary 2.7. Let $(X, \|., .\|)$ be a quasi semi linear 2-normed space and T be a self map of $(X, \|., .\|)$ satisfying the following conditions:

- $(g). \ \ There \ exists \ an \ integer \ m \ and \ n \ such \ that \ \|T^nx-T^my,a\| \leq \varphi'(\|x-y,a\|,\|x-T^nx,a\|,\|y-T^my,a\|) \ for \ all \ x,y,a \in X.$
- (h). For all $x, a \in X$, there exists a point $x_0 \in X$ such that $||x_0 T^n x_0, a|| \le ||x T^m x, a||$, then T has a unique fixed point.

Theorem 2.8. Let $(X, \|., \|)$ be a quasi semi linear 2-normed space and T be a self map of X.

$$||Tx - Ty, a|| < {||x - Tx, a|| ||x - y, a||}^{1/2} \quad \forall \quad x, y, a \in X.$$
 (5)

if there exists a real valued function F defined by F(x) = ||x - Tx, a|| for all $x \in X$ such that F(x) < F(Tx), then T has a unique fixed point in X.

Proof. Suppose for some $x_0 \in X, x_0 \neq Tx_0$. Then $F(Tx_0) = ||Tx_0 - T(Tx_0), a|| < {||x_0 - Tx_0, a|| ||x_0 - Tx_0, a||}^{1/2} \Rightarrow F(Tx_0) < ||x_0 - Tx_0, a|| \Rightarrow F(Tx_0) < F(x_0)$, which is a contradiction. Hence, $Tx_0 = x_0$.

Uniqueness: Let y_0 be another point of X different from x_0 such that $Ty_0 = y_0$. Then

$$||x_0 - y_0, a|| = ||Tx_0 - Ty_0, a|| < {||x_0 - Tx_0, a|| ||x_0 - y_0, a||}^{1/2}$$
$$= {||x_0 - x_0, a|| ||x_0 - y_0, a||}^{1/2}$$
$$= 0$$

Hence $||x_0 - y_0, a|| < 0$ which implies that $||x_0 - y_0, a|| = 0$ or $x_0 = y_0$.

2.1. Expansion Mappings in Quasi Semi Linear 2-normed Space

In the case of expansion mappings, we have the following theorem:

Theorem 2.9. Let $(X, \|., .\|)$ be a quasi semi linear 2-normed space and let T be a surjective self map of X such that for all $x, y, a \in X$.

$$||Tx - Ty, a|| \ge \min\{||x - y, a|| \ ||x - Ty, a||\}^{1/2}$$
(6)

for all $x, y, a \in X$. If there exists a real valued function F defined by F(x) = ||x - Tx, a|| such that F(x) < F(Tx), then T has a unique fixed point of X.

Proof. Suppose for some $x_0 \in X, x_0 \neq Tx_0$. Then

$$F(Tx_0) = ||Tx_0 - T^2x_0, a|| = ||Tx_0 - T(Tx_0), a||$$

$$\geq \min\{||x_0 - Tx_0, a||, ||x_0 - Tx_0, a||\}^{1/2}$$

$$= ||x_0 - Tx_0, a||$$

$$= F(x_0)$$

Thus $F(Tx_0) \ge F(x_0)$, which is a contradiction. Hence, $Tx_0 = x_0$. Thus T has a fixed point of X.

Uniqueness: Let y_0 be another point of X different from x_0 such that $Ty_0 = y_0$. Then $F(Ty_0) = ||Ty_0 - T^2y_0, a|| = ||Ty_0 - T(Ty_0)|| \ge F(y_0)$. Thus T has a unique fixed point of X.

References

- [1] Aleksa Malceski, Risto Malceski, Katerina Anevska and Samoil Malceski, A Remark about Quasi 2-Normed Space, Applied Mathematical Sciences, 9(55)(2015), 2717-2727.
- [2] Amalendu Choudhury and T.Som, 2-Banach space and some fixed point results, Journal of Indian Acad. Math., 33(2)(2011), 411-418.
- [3] V.H.Badshah, Rekha Jain and Saurabh Jain, Common fixed point theorem for four mappings in Complete Spaces, Journal of Indian Acad. Math., 33(1)(2011), 97-103.
- [4] V.Berinde, Approximating fixed point of weak contractions using the Picard iteration, Nonlinear Analysis Forum, 9(1)(2004), 43-53.
- [5] S.Gahler, Linear 2-normierte Raume, Math. Nachr., 28(1-2)(1965), 1-43.
- [6] K.Iseki, Fixed Point theorems in Banach Spaces, Math. Sem. Notes, Kobe Univ., (1976), 211-213.
- [7] M.Kir and M.Acikgoz, A study involving the completion of quasi 2-normed space, International Journal of Analysis, 2013(2013).
- [8] M.S.Khan and M.D.Khan, Involutions with fixed points in 2-Banach Spaces, Int. J. Math & Math. Sci., 16(1993), 429-434
- [9] C.Park, Generalized quasi-Banach spaces and quasi-(2;p) normed spaces, Journal of the Chungcheong Mathematical Society, 19(2)(2006), 197-206.
- $[10] \ \text{T.Som, Some fixed point results in 2-Banach Space, International Jour. Math. Sci., 4(2)(2005), 323-328.$