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Abstract

We establish the existence of solutions to systems of second-order differential equations in time
scales. The problem is of type nabla differential of order two with the member f being a
V —caratheodory function. We consider differential systems in which the nonlinearity f depends on
the derivative nabla u"V. The existence results are based on the notion of solution-tube and the

fixed point theorem.
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1. Introduction

In this paper, we study the existence of solution for nabla-differentiable systems of the second order:

uvV(t) = f(tu(p(t)),uV(t)) Vae teTe

(
(e (b)) @)
where the function f : T, Xx R" — R" is V— Caratheodory. Here T is a compact time scale where
a=minT,b = maxT and T ,> will be defined later.

We use the tube solution method for differential systems (1), cited in the works of H. Gilbert and
M. Frigon [7]. This notion makes it possible to obtain existence results for systems of second-order
differential equations of the type (1). It is a generalization of the method of under and over solutions
in a system of differential equations. The main objective is to show the existence of solutions for V-
differentiable systems (1). This article is organized as follows: first, a review of basic definitions and
theorem relating to V —differentiation and V —integration in time scale and some secondary results.

Then, we introduce the notion of tube solution for the differential system (1) and prove our main result.
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2. Preliminaries

Let T a time scale. For ¢t € T, we define the forward jump operator ¢ : T — T (resp the backward
jump operator p : T — T) by o(f) = inf{s € T : s > t} (respectively by p(t) = sup{s € T : s < t}).
In this definition, we put inf@ = sup T(i.e o(b) = b if T has a maximum b) and sup@ = infT (i.e
p(a) = a if T has a minimum a), where @ denotes the empty set.

If o(t) > t, we say that f is right-scattered, while if p(t) < t we say that f is left-scattered. Points that are
right-scattered and left-scattered at the same time are called isolated. Also if + < supT and o(t) = ¢,
then ¢ is called right-dense, and t > inf T and p(t) = ¢, then t is called left-dense. Thus, a point t € T
is called dense, if it’s right-dense and left-dense both.

Note: Lt = {t € T : p(t) < t}. The backwards graininess v : T,x — [0, o[ is defined by v(t) =t — p(t).

Denote

T T\ {m} =T, if m is right-scattered
K pum—
T,=T if m is right-dense

Since Ty is a time scale , denote T, = (Ty), and

{ To\ {m} ifmeTe
TO,KZ =

T, otherwise

Definition 2.1. For f : T — R and t € Ty, define nabla derivative of f at t, denoted fV (t), to be the number
(provided it exists) with the property that gives any € > 0, there is a neighborhood U of t such that

| Fo(8) = f(s) = fY (D) (p(t) =) [< el p(t) —s |

foralls € U.

If f is V —differentiable at t for all t € Ty, then f : T — R" is called V —derivative of f in T.

If f is V—differentiable and if fV is V —differentiable in t € Ty, on denote fVV (t) = (fV)V(t) the second
V —derivative of f at t.

Proposition 2.2. We suppose that f : T — R and t € Ty. then we have:
i) If f is V —differentiable at t, then f is continuous at t;

ii) If f is continuous at a left-scattered t, then f is V —differentiable at t with

iii) If t is left-dense, then fis NV —differentiable at t iff the limit

o £ = £(5)

s—t t—s
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exists as a finite number. In this case

iv) If f is V—differentiable at t, then f°(t) = f(t) —v(t)fV (t), where fP(t) = f(p)(t).
Proposition 2.3. If f : T — Rand g : T — R is V—differentiables at t € T. Then
i) f+ gis V—differentiable at t with (f + g)V (t) = fV(t) + gV (t).

ii) fgis V—differentiable at t and (fg)V (t) = £V (t)g(t) + fF(1)gV (t) = f(£)gV (t) + fV ()¢ (¢).

=1lan eniis —differentiable at t an i v _fv(t)g(t)—f(t)gv(t)
iii) If m = 1and g(t)g°(t) # 0, th g V —differentiable at t d(g) (1) = NOrao .

Theorem 2.4. Let W a open of R" and t € T a point left-dense. If g : T — R" is V —differentiable at t and f :
W — R is differentiable at g(t) € W, then f o g is V —differentiable at t with (f o g)V(t) = (f'(g(t)),g" (1)).

Example 2.5. We suppose the x : T — R" is V—differentiable at t € T. We know that ||.|| : R" \ {0} —
[0, +00) is differentiable if t = p(t). We prove that

e 0,27 (0)
Ix(0)] L
()l
We denote C(T,R") the space of continuous maps on T and C!(T,R") the space of continuous maps
on T with continuous V—derivative on T,. With the norm ||u|o = max{||u(t)|,t € T} (respectively

lulli = max{||u(t)|lo; [|uV (t)|| : t € Ty}), C(T,R") (respectively C!(T,R")) is a Banach space.

Definition 2.6. The function f : T — R" is left-dense continuous or Id—continuous provided it is continuous
at every point left-dense on T and its left limits exist (finite) at points right-denses on T. If T = R", then f is
ld—continuous iff f is continuous. The set of functions ld-continuous f : T — R" is denoted C;4(T,R"). The
set of the functions f : T — R" V —differentiable and the ¥ —derivative ld-continue is denoted C},(T,R"). If

f is ld-continuous, then there exists a function F such as F¥ = f. In the case,

/abf(t)Vt — F(b) — F(a).

Theorem 2.7. We have the following inequalities:

[ rwsovels [ 5wse | Vi< (max 1501 [ 15| Ve

o(a)<t<b

The notions of V-measure and of V-integral for the functions f : T — R are similar to those in the
case of A—mesurability and of A—integrality define in the chapter 5 of [1] or in the chapter dans le
chapter 2 in [8].
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Theorem 2.8. [1] For each ty € T\ {minT}, the single-point set {to} is V-measurable, and its V —measure
is given by
uv({to}) = to — p(to).

Ifa,beTanda <D, then
pv(la,b]) =b—a;pv(la,b]) =p(b) —a

Ifa,b e T\ min{T} and a < b then

pv([a, b)) = p(b) = p(a); pv([a,b]) = b —p(a)

Definition 2.9. Let E C T, V—measurable set and f : T — R, V—measurable function. We will say that
feLly(E)if

/ | £(s) | Vs < co.

E

We say that the function f : T — R"V —measurable is in the set LY, (E,R") provided

L 1) Vs < oo

The set Ly (To,IR") is a Banach space endowed with the norm

1£G) lly= [ 1) 1195

Proposition 2.10. Let f € LL(E,R"). Then

| [ £&Vsl < [1f)Vs.

Theorem 2.11 (Lebesgue dominated convergence theorem). Let {fx}rew be a sequence of functions in
Ly (To,R"). Assume that there exists a function f : To — R such as fi(t) — f(t), V—p.p t € Ty and
there exists a function § € LY (To) such as || fi(t) ||< g(t), V—p.p t € Tg and for every k € IN, then
fr = f dans LY (To, R").

Definition 2.12. We said that f : T — R" is absolute continuous function on T if for every e > 0, the exists
a6 > 0 such as if {|ax, b[}}_; with ay, by € T is a finite pairwise disjoint family of subintervals satisfying
Y= (b — ax) <6, then Y3y || f(b) — flax) |[<e.

Proposition 2.13. A function f : T — R is absolutely continuous on T if and only if f is V —differentiable

V —almost everywhere on T, f¥ € Ly (To) and

/[ AT fv(s)Vs = f(t)— f(a), for every teT.

We will define the Caratheodory function for arbitrary time scales.
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Definition 2.14. A function f : To x R*" — R" is a V—Caratheodory function if the following conditions is
satisfied:

(i) f(,u,w):To— R"is V—measure for all (u,w) € R¥";
(ii) f(t,.,.): R*" — R" is continuous for V —a.e t € Ty;

(iii) For each compact set K C R*", there exists a function hx € L& (T, [0, 00[) such as || f(t,u,w)|| < hx(t)
V —a.e teTyand for (u,w) € K.

We will now define the notion of Sobolev space with the functions defines on T is compacts, where

a=minT < maxT = b.

Definition 2.15. We will say that a function u : T — IR belongs to the set W%l("lf) if and only if u € LY ()
and that there exists a function g : T, — R such as g € LY () and

[ w@)9T Vs =~ [ s6)plp(E)Vs ¥ ¢ e ()

where

Cou(T) == {f: T > R: f € Cy(T), f(a) = 0= f(b)}.
We will say that a function f : T — IR" is on the W%’l(T, R") if each of its components f; are on Wé’l("Jl”).
Definition 2.16. We define the space Wé’l (T, R") by
W (T, R") = {u € Wg'(T,R" : u¥ € W' (T*,R") }.
Theorem 2.17. The sets W%’l (T) and W%’l (T) are the banach spaces with the norm
[y ey = g ey + 11 ¥ e cr)
1 gy =1 g eny + 1 gy + 117l -

Lemma 2.18. Let the function u : T — R" V —differentiable.

(1) On{t € T :||u(p(t))]| =0 and uVV(t) exist},

Hu(t) HVV > <u(p(t)/uvv(t)>

2) On {t € Ta\Ly : ||u(p(t))]| =0 and uVV(t) exist},

lu®)¥Y =

(u(t), u¥V (1)) + ¥ (B> _ (u(t),u¥ (1))?
t

[[u(t)] [u(®) [P
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Proof. Denote A = {t € T2 : |u(p(t)|| > 0 and uVV(t) exist}. By proposition 2.3, on the set

A\ Lt, we have:

(e = 0

(o]
vy _ 0T 1) g
()77 = ()
0,17 () T )] = (), () )7
[0l
gv _ (a7 (0) + [P (0,17 (1))
= Gl [0

Moreover, we have

ut),u¥ (1)) _ [lu¥ (0|

(u(t),u” (1)) < a7 (B = ¢

W@OF < 0]
thus oo oo
e o 0,7 0)  (ulp(t), uv (1)
IO = = e 0" AN
If t € A such as p?(t) = p(t) < t, then:
@ = Jute@)]¥
lu@[F = &
)l = o) (o), 17 (o(1)))
(0 lup ()T ()
O o) (o), w(0) | o] {ulo(1)), 677 (1)
(0 PO ZCZ0 o)
)W) _ (o) k() | (o]
TG Tae@)20) 20
(w(p(1), a7 ()
= G

If t € A such as p?(t) < p(t) < t, we obtain

_ Y = fu(p)Y

Juat) | 5
_ @I = eIl ule)I — llu(e*®)]]
v2(t) v(p(t))v(t)
we have ,
(ulp(t), u((D) _
ot — lafa? (o)1 — {up(1)), u(e(1)))
[u(e@)[| = lule=())] < o)
eI = DI [ule®)II? = (ulo(t), u(p?(£)))
v(p(t))v(t) h v(p()v(t) lulpe(t))]]
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o (ulp(®), ulp(t)) —u(p*(t)))

h v(p(0)v(#)[[u(o(t))]]
(ulp(t)), u¥ (p(t)))

RO IO

thus

v - @l = )l lp(), u¥ (p(1)))
D) V() ulp())]

and we conclude as in previous case.

Lemma 2.19. Let € > 0, the exponential function e(., to) is defined by

i) e ([ aue)vs),

where
) € ifh=0

gs =
log(1h+ he) i1 >0

It is the unique solution to the initial value problem

u¥ (t) = eu(t), u(ty) =1

Here is a result on times scales, analogous to Gronwall’s inequality by:

Theorem 2.20. Let « > 0, > 0and y € C(T,R), if
y(t) =a+ ey(s)Vs

then
y(t) <we(t,a) V teT

Lemma 2.21. Let f : T — R be a function with a local maximum at ty €)a, b|NT. If fVV (c(ty)) exists, then

fYV(o(ty)) < 0 provided tq is not the same time right dense and left scattered.

Lemma 2.22. Let f : T — R be a function with a local maximum at ty € Ty left dense. If f¥ (tp) = 0 and

FVV(to) exists, then ¥V (ty) < 0.

Theorem 2.23. Let r € W%’l (T) a function suchas ¥V >0 V.aeon {t € Ty :
r(o(a)) = r(c(b)) and rV(a) = rV (o (b)), then r(t) < 0 for every t € T.

Proof. Suppose there exist ty € T such as r(tg) = maxiep r(t) > 0.

Ist case : a <ty < 0(tg) < b, then rvv( (to)) exists since

r(p(t)) > 0}. If

0 < uv({c(to)}) = o(to) —p(c(to)) = o(to) — to car p(c(ty)) = to and r € W' (T). By the
previous lemma 2.21, rVV (o ( 0) < 0 which contradicts the fact that r(p(c(t9))) = r(tp) >0
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2nd case : a < top = 0(tg) < b then exist t; > tg such as r(c(t)) > 0 for every t € (to,t1) N'T. As r(to)

is a maximum then rV (ty) = 0 and there exist s € (o, t;) such as ¥ (s) < 0 thus
0> rV(s) — ¥ (t) = / VY (1)VT > 0,
[to,S)ﬂT

contradiction.

3rd case : t) =a (a) —r(p(a))
ra) —ripla))

a—p(a)
5 >0suchasforallt € [a,a+6),rV(t) >0, we have, for every t € [a,a+9),

Suppose that p(a) < a and that r(a) > r(po(a) then rV (a) = > 0. Then there exists

r(t) —r(a) = / rV(s)Vs > 0

[a,6)NT

which contradicts the fact that 4 is a maximum.
Suppose that p(a) = a and rV(a) > 0 then there exists t; > a such as rV(t) > 0 for every

t € [a,t1). Thus, for all s €]a, t;), we have

impossible because a is a maximum.
If a = p(a) and rV(a) = 0, there exists a t, such as r(p(t)) > 0 for every t € (a,0(t2)). So by
hypothesis, V — ppt € (a,0(t2)),rVV(t) > 0 and thus

rv(t) — rv(a) = rv(t) = / rvv(w)Vw >0 ()
[a,)NT

as r(a) is a maximum, there exists s € (a,0(t;)) such as 7V (s) < 0. Which contradicts (2)

4th case : tg=b
If b = o(b), we have r(p(a)) = r(b) = r(c(b)) if a > p(a) then suppose that

r(a) —r(p(a)

r(a) <r(p(a) = rv(a) = W <0

We have rV (¢(b)) < rV(a) < 0. Which contradicts the fact that b is a maximum. If a = p(a), then
V(o (b)) = rV(a) < 0. Because ty = a then rV(a) = rV(c(b)) = 0. There exists t; > a such as

r(p(t)) > 0. For every t € [a,0(t1)). Thus for all s € (a,t;), we have

V(s) =1V (s) — ¥ (a) = / PV () VE > 0 3)
[a,5]NT

As r(a) is a maximum, there exist a s € (a,t;) such as 7V (s) < 0. which contradicts (3). Thus So

in all cases whatever the condition, it is necessary that r(t) < 0, for every t € T.
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Lemma 2.24. The equation

admits only one solution which is trivial.

Proof. Suppose that the equation admits u a non-trivial solution. Let ¢ € T such as 0 < u(c) =
maxger u(f) If a < ¢ < b thus if ¢ is not both scattered on the left and dense on the right then,
by the Lemma 2.21, uVV(c(c)) < 0. So uVV(c(c)) — u(p(c(c)) = u¥V(c(c)) — u(c) < 0. Which
contradicts that u is solution of the equation. If p(c) < ¢ = o(c) then p(c) is not both scattered
on the left and dense on the right so we come back to the previous case. Suppose that ¢ = a. If
p(a) < a then we return to the previous case. If p(a) = a then u* = uV(c(b)) = 0, by Lemma
222, uVV(a) < 0. So uVV(a) — u(p(a)) < 0. Contradicts that u is solution of the equation. Suppose
that c = b. If b = p(b) then we come back to the two previous cases. If b < p(b) then o(b) is
not both scattered on the left and dense on the right then, by the Lemma 2.21, uVV(c (b)) < 0. So
uVV(o(b)) —u(p(c(b)) = uVV(c(b)) — u(b) < 0. Contradiction. O

Notice (BC) the conditions of boundary value following

(BC) : u(p(a)) = u(e(b));u¥ (a) = u¥ (c(b))

and

W&l = {u € Wg' : u € BC}.

Proposition 2.25. Let g(t) € LY, (To) then the tree equations are equivalents

uvV(t) — u(p(t)) =g(t) V.pp te Ty, 4)
uVV() +v(uN (t) —u(t) = g(t) V.pp t€ oy (5)
uv(t) — uv(u) — /[a,t)mr u(p(s))Vis) = /[u,t[mrg(s)V(s) Vopp teTo, (6)

We define the V differential operators L; and L, associated resp to the problems (4) and (5) define
Ly, Ly : W& (T, R") — LL(Tox, R") by

Li(u)(t) = u¥Y (t) = u(p(t))
Lo(u)(t) = u™™ (t) +v()u (1) — u(t)

Definition 2.26. For two nabla differentiable functions uy, u, we define the nabla Wronskian W = W (uq, uz)
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W(t) = det (”1(t) uz<t>>
uy (t) uy (t)

We say that two solutions uy and uy of Lou = 0 form a fondamental set of solutions for Lou = 0 provided

W (uq,up)(t) # 0 forall t € Ty.

by

Corollary 2.27. [2] The Wronskian of any two solutions of Lyu(t) = 0 is independant of t.

Proposition 2.28. [1] Let ty € Ty. Suppose that uy subject to conditions u(ty) = 1,u" (to) = 0 and u,
subject to conditions u(ty) = 0,uV (to) = 1 solutions of the homogeneous equation Ly(u)(t) = 0, u(to) = uy,
u¥ (to) = uy. We have W(uq, uz)(t) = W(u1,uz)(to) = 1, then uy and uy form a fundamental set of solution
of this homogeneous equation. Therefore the solution of the initial value problem Ly(u)(t) = g(t), u(to) = uo,

uV(to) = uy is given by

ut)= [ etn(pi) —n(0ulp)6) Vs

Proposition 2.29. [2] If ty € Ty, then the initial value problem Ly(u)(t) = g(t), u(to) = uo, u" (to) = uy

has a unique solution and this solution is defined on the whole time scale T.

3. Existence of Solutions

In this section, we prove the existence of a solution to the problem (1). A solution of the problem is a
function u € W%l (T;R") satisfying (1). Let us introduce the notion of solution-tube for the problem

(1) as follows.
Definition 3.1. Let (v, M) € W&' (T, R") x W&' (T, [0, +0o[). We say that (v, M) is solution-tube for (1) if

i) Vaete {t €Ty, :t=p(t)}, wehave
(u—o(t), f(t,u,w) =0V (1) + [[w =0V ()] > MMV (1) + (MY (1))?

and for all (1, w) € R2" such as ||u — v(t)|| = M(t) and (u —v(t),w — oV (£)) > M(E)MY ().
ii) For t € {t € Ty, : p(t) < t}, we have (u —v(p(t)), f(t,u,w) —oVV(t)) = M(p(t))MVY (t) for every
(u,w) € R*" such as |lu —o(p(t))|| = M(p(t)).
iii) v(p(a)) = v(c(b))) and M(p(a)) = M(c (b)) and || vV (¢(b)) — vV (a)|| < MY (c(b)) — MY (a),
Let T(v, M) = {u € WZ'(T,R") : ||u(t) — v(t)|| < M(t) for every t € T}.

Theorem 3.2. Let f : To, x R*" — R" a function V —Carathedory. Suppose that:
(Hy) : there exists (v, M) € W%l (T, R") x W%l (T,]0, c0]) a solution-tube for (1).
(Hp) : There exists the constants C,D > O such as || f(t,u,w)| < C+ D|w| V.p.p t € Ty, and for every
(u,w) € R?" such as ||u — v(t)|| < M(t). Then the problem (1) have a solution u € W%’l (T,R")N T (v, M).
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Let K > 0 a constant which will be defined later. Consider the following modified problem:

{uw(f)u(P(t)) = g(tup(t),u¥(t) Vpp teTy, )
u(p(a)) = u(o(b)) and u¥(a) =uv(c(b))
where
( M(p(t)) _ o
<H u —Ug\qit)()ty)f(t'”@(t) w(t)) u(ﬁ;)v)(t;r
— P oVV u—ov
st = (T apn) (77O gy o)
if  flu—o(p())] > M(p(t))
f(ta(p(t),@(t)) —a Otherwise.
and

MO o s, s |

u(p(t)), otherwise.

and

o)

B K MV (t) -
(t”<1 ||w—vV<>||)M<p<( (b®))
(1)

if t=p(t), [u—2o(p
@) if p(t) <t
w

otherwise

=l
I
D

e
a(t) =< llw—oV(t)]
w otherwise

oV(t)) + oV (t) if [[w—o(t)| > K;

Remark 3.3.

o If [u—o(p(t)| > M(p(t)), we have

Jp(0) = oo = s = gy (W0 = (o) = Mo
e Ifmore t = p(t), we have

a(t) = (@(p(t) —ov(p(t), @ (t) — vV (1))
M
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V 7
e [ —v(p(t))]
U MEM) i
= Tute) — ooy M Bl =2le®)ll]

So (ii(p(t)) —o(p(t)), 7 (t) — vV (t)) = M(p(t)) MY (t) and

1Y (8) = oV (D2 = 7Y (£) — oV (1> + (MY (1))

2 {u(t) —o(t), @V (t) — oV (t))?

[[u(t) —o(8)]>
Note also that |@(t)|| < 2K+ [0V (£)[| + MY (t) et [[@(p(t)) — v(p(t))]| < M(p(t)).

Lemma 3.4. Every solution u of (7) is in T(v, M)

Proof. Consider the set A = {t € Ty, : [[u(p(t)) —v(p(t))|| > M(p(t))}. The proof will be done in

three parts. First, we will show that for t € A

(lu(t) = o(8)]| = M(£))¥F = 4eB) — U(pg ,
Secondly (|[u(t) — v(t)|| = M())¥Y >0 V t € Aand third.

[u(a) —ov(a)|| = M(a) = [[u(b) = v(b)[| — M(b)
[u¥ (a) = 0¥ ()| = MY (a) = [[u¥ (b) = 0¥ (b)]| — MY (b)

Step 1: We prove thatt € A

() = o(8)|| = M(£)¥Y > (up(t)) — v(pg

e If t € Ais left dense i.e.o(t) = t, then we have

—o(t),u¥ (t) — oV (t))

[u(t) = o(t)]]

1 u(t) —o(r) || 7= 20

And

(u(t) —o(t),u" (t) — oV (t)) v

[u(t) = o(t)|]

[ u(t) —o(t) [NV = (
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>

lu(t) = o(O)]ICu(t) — v(t), u¥(t) — oV (1))¥
[u(t) = o(t)]]
[u(t) — o[V {u(t) —v(t), u¥ (t) — 0V (t))
[u(t) —o(t)]]
(u(t) —o(t),u¥V(t) —oVV(t) + u¥ (t) — oV (t)|?
[[u(t) = o(8)]]

{u(t) —o(t), u¥(t) — vV (1))?

[u(t) —o(6) [P
(u(t) —o(t),uvV(t) —oVV(t))

[[u(t) = o ()]
() =oY@ () — o012 = (u(t) — o(t), u¥(t) — 0V (1))

[u(t) —o()) [P

(u(t) —o(t),u¥V(t) —oVV(t))

[[u(t) = o ()]

o Ift € A is left-scattered (p(t) < t) and p?(t) = p(t), then

[[u(t) = o(®)| = [u(p(t)) = v(p(®)]

Ju(t) — o (1) ¥ = 0

with v(t) =t — p(t). We have

lu(t) =o(OIIVY =

v(t)

L (u(t) —o(t),u¥(t) — oV (1))
v(#) [[u(t) = o()]]

(ulp(t)) —o(p(t), u¥ (p(t)) — vv(p(f))>]

[up(£)) —v(p(t))]]

L Gult) = v(t),u¥ (1) — vV (1))
v(#) [u(t) —o(D)]
_{ulp(t) —v(p(t)), u¥ (t) — vV (t))

[up(£)) — v(p(t))]]
(o) — v(p(t)), u¥V(t) vw(f)>]
[up(£)) —v(p())]]
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thus

Also

v
—~
=
—~

)
—~
—
~—
~—
|
<
—

)
—~
~
~—
~—
—
=
—
o
—~
~

Thus, it follows that

(lu(t) — o(8)]| — M(£))7Y = 1408 —o(O)[IY = [lulp(t)) — o(p() IV MYV ()

v(t)

As

(Hu(t) _ U(t)”)v —_ Hu(t) — U(t)H — H(“gp(t)) — U(p(t))“

v(t

and o o

_ v o (ulp(t)) —o(o(t), u* (o(t)) — v (p(t))))
lu(o(1)) = (o) = o]
and
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thus

lu(t) —o(H)|7Y > [[u(t) — o) = lulp(t)) —o(p(®))l]

v

v
—~
=
~~

B=)
~—~
~
~—
~—
|
<
~~

=)
—~

v
—
=
e
=)
Y
—
SN—
N—
|
<
~/~
=)
~ [
—
S~—
~
= |
a4 Q
<
~— |~
~ | "
~— [ —
|
Q
<
<
~~
-
N~—
~

As a result

ot g E = () (), e
(et =eOll = M) = ulo () — op()] M
Step 2: We prove now (||u(t) —o(t)|| — M(t)))VY >0 V.ae surA
x If{teA:p(t) <t}
ot e ® o (0(0) (), 17T ~ 0TI oo
(e =e Ol = M) = (o () — oG ()] M

We have

» ) v B M(p(t))
(o()) +ulp(t)) () + (1 [u(o(t)) — o (t))H>

Ta(o(®) — o(p(0) '
) M) M) )
(p(®)+ (1 uu<p<t)>—v<p<t>>u> (nu(p(t» ~ (@ ) (P<t>)>)>
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V

+(u(p(t)) —v(p(t)), u(p(t)) — ﬁ(p<t))>w
M) MY (1) )
+< ||u<p<t>>—v<p<t>>r|>r| o) —o(e) ) —ele®)l
(@(0()) — o(o(0)), (F(t, (1)), 7% (£)) — 077 (1)) +
Mip(t)) ) lu(p(t)) — v(p(0) 2

0
_ (o(t)) Yy .
(1 (o) — oloe] ) M (B)[[ulo(t)) —v(p(t) ]l
)

( ( o) = v(p(1))]]]
M(p(E)MYY (£) + (lu(p(1)) = o(p(D)]| = M(p(£))) M7 (1)
( (

Flulo(8)) — olp()] ~ M(p(®)] [u(p(8)) — o(p(t))]
= Jlulp(t) — o) [MT7(8) + lu(p(t)) — olp(t)]| ~ M(p(e)]
Thus
— uVV _ ,VV
wlplt) et 5 M0+ fu(p(e)) — oo )] — M(p(0)
u — 0 Mvv — 'va
lpl) e MV () > u(p(e) — o(p(0) ] - M(p(1)) > 0
(u(p(t)) ~ (p(6)), 47 () ~ 07V (B) _, v
(o () — oG (0] M=o
x If{te A:t=p(t)} then
(Hu(t) _ ( )H _M(t))VV — <u(t) _U(t)ruvv( |)|u( ) (t()t>)|"|' H”V(t) ( )HZ
(u(t) — o) 47 (1) — ¥ (1)
T m—emp M
We have

(u(t) —o(t), ™Y (£) =¥V (1)) = (u(p(t)) — v(p(t)), g(t,

So thus

(fJu(t) =

tu(p(t)), u¥ (£)) — oV (1) + ulp(t)))
= (u(p(t)) = v(p(t), f(t,u(p(t)), @ (1)) — 0V (1))
+ [Julo(t)) —v(p(®))ll [Hu(p(t)) v(p(0)[l = M(p(t))

MY (1= oy ogect)

o(8)]| — M(t))7Y = SEO) = v(O), f(7(E), 37 (1) — 07V (1)) + [u7(E) — oV (B

[u(t) = o ()]
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{ut) —o(t),u¥(t) — oV (t)* MYV (1)

Tu(t) — (B

208 — ()] — vV R ON
T lue) — o(6)]| — M(t) + M <t><1 Hu(t)—v(t)||>
) — o(t), £, 7, 37 (1) — 077 (1)) + | (1)) — o7 ()P

(B —o(0)]
L IeT(0) — 0% ()2~ ¥ (1) — ¥ (1) 2
Tu(t) — o]
(u(t) —o(6), u¥ (1) — 0% (1))?
Tut) —o(®)F

28 — (D) — VY M(t)

+ ) = o(0)] - () - MY ()

M(MYY (1) + (MY (1))

> MO0 SR & (o) — ool - M)
vV M(t)
MO — ol
17 () — 0¥ ()2 — 2% (5)) — 0% (1)
lu(t) o]
() — o(5), 17 () — 0 (1)
Tu(t) —o(OF

2> [lu(t) —o(8)]| - M(#)
1Y (£) = oV ()2 = 17V (£)) — oV (1))|

_|_

[u(t) —o(t)]]
L (ut) —o(8), @V(8) = 0V (1)) — (u(t) —o(t), u¥ () — oV (t))?
[u(t) = o(B) [P

O If |uV(t) — oV (t)|| < K then
(lu(t) = o(8) ]| = M) = [Ju(t) = o(t)]| = M(£) > 0

O If |uV(t) — oV ()] > K then ||zV (t) — vV (t)|| = K and

KZ
V() =2V ()]
(u(t) = o(t),u™ () — 0¥ (£))% = (u(t) —v(t),u" (t) v (1))?

2
= <Huv(t) Ij SIOIE — 1) (u(t) — Z)(t),uv(t) _ Uv(t)>2

Thus

(llu(t) = o(B)] = M(£))¥Y
¥ (£)) — vV (1) — oV (1)

2_|1zV 2
> Jlu(t) —o(t)] — M(f) + H >(H) H(t)‘(’t» )|
fult) — o(8), 37 (1) — 0" ()2 = (6~ v(t) u¥ (1) — o7 (1))

u

+




Existence of Solutions for Nabla-differentiable Systems of the Second Order / Franck Steincy Peala 88

K2 uV () —oV(t)]?
> ) o= MO+ (1~ ) T ]
(1 K2 )<u<t>—v<t>,uV<t>—vV<t>>2
IMOEENOIE () —o(OF
> (e — oe) | - M(H) +

¥ (£)) =2V ()P (u(t) —o(t),u¥ (t) — oV (1))
[u(t) = o(t)|] lu(t) —o(B)[1°

KZ
<1 BDCE vV<t>||2>
> (lu(t) - o()] - M(t) > 0

Thus V.ae t€ A, (||lu(t) —o(t)|| — M(t))VY > 0. Denote r(t) = |lu(t) —v(t)|| — M(t), it follows
that rVV(t) >0 V.e te{teTy,e:r(p(t)) >0}

Step 3 : Prove that r(p(a)) = r(c (b)), rV(a) =rV(c(b)).
r(p(a)) = r(c(b)) (obvious).
Prove that rV(a) > rV(c(b)).

(u(a) —v(a),u¥(a) —v¥(a))

i) fa=p(a u(a) —o(a) ||V =
) Ifa=p(a) = |Ju(a) —o(a)| [u(p(a)) —v(p(a))]]

ii) If a > p(a) =

lu(a) — o(a)|¥ = 1@ =v@ll = lulpa)) = v(p(a))l]

v(a)
_ lu(a) —v(@)[[l[u(p(a)) — o(p(a)|| = [lu(p(a)) — v(p(a))|
v(a)[[uo(a)) —o(o(a))
- (u(a) —v(a),u(p(a)) —v(p(a))) — |lulp(a)) — v(p(a))|*
g v(a)[[u(p(a)) = o(p(a))|
S (@) —o¥(a),up(a)) —v(p(a))

e o (V@) — 0% (@), uo(a) — olp@)) o
Thus r*(a) > Tup(@) — o(p(a))] M* (@)
Also

iii) o(b) = p(c(b)) alors ||u(c (b)) —v(c(b))|V = (u¥ (o(b)) —

iv) If o(b) > p(o(b)) then

lu(e(v) — 2@ = ot
_ (o)) oo )2~ u(p(e(b))) — o(p(e®)) [ 1(e(b))) — o(e(B)]
v(o(®)) Ju(o () — o( (b))
_ (@5 (0) — 2% (o(b)), u(o(b)) — o(o(b))
s )

—
=
o
»
=

<

2

=
/N

(u¥(o(b)) — 0¥ (o(b),u(0(b)) —0(@(b)) _ v (o(b)). Tt follows that
o( .

o)) T < W) ¥ (@ (b)), ulo(0) ~o(e (b)) (w7 () — o (a), ulp(a) ~ olp(a)))

[u(o (D)) = v(e (b)) - [u(o(a)) —ov(p(a))]]
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s (o (@) — op(a))]

~ (MY (e(6)) — MY (a))

(0¥ (@) = 0¥ (b)), u(0(@) = 2(0(2) _ (117 (01— 1T
< @) — (@ (M7 (o) M (@)
< o (@) = o (e(®) - (M7 (o(6)) — MY (a) )

V(o) —rV(a) < 0.

Thus Therefore for the theorem 2.23 , we have r(t) < 0 = |lu(t) — v(t)|| < M(t) for every t € T. O

Let the operators:

Ly Wéch(T/ R") — Co(To,, R") N Wg! (T, R")

define by
La(u)(t) = u¥V (t) —u(p(t))
and
Lz : CY(T,R") N W& (T, R") = Co(To,, R") N W' (T, R")
define by and
_ .,V \Y%
La(u)(t) =u”(t) —u"(a) - / u(p(s))V(s)
[a,t)NT
N, : CY(T,R") N W' (T, R") — Co(To,, R") N W' (T, R")

define by

No(w(®)= [ gl ulp(s) a7 (9) V()

Remark 3.5. Since f is V—Caratheodory, then there is h € LY, (T, R") suchasV u, w € R", ||g(t,u, w)|| <
h(t) V—pp t € Toy.

Proposition 3.6. let f : To, x R" a V—Caratheodory function. Suppose that (Hy) is satisfied, then the

operator Ny defined is continuous and compact.

Proof. Let {u;} a sequence of C!(T,R") converging to u € C}(T,R").

Prove that the function sequence {gi}ren define by gi(t) = g(t, ux(p(t)), uy (t)) converges to the
function g define by g(t) = g(t,u(p(t)),u" (t)) LY (Tox, R").

It is easily shown that (t) — () et Liy(t) — ﬁ(t). On {t € T,p(t) < t}, we have
gtue(o(t), uy(t)) — g(t,u(p(t)),uv(t)) since f is V—Caratheodory. So, for V—ae on
= {t€ T t = plt), [u(p(t)) — o(p())]| £ M(p())}, we have ge(t) — g(t) as ¥ (t) — 7 (1
and f is V—Caratheodory.
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Notice S = {t € Tox : £ = p(t)and [ux(p(t) — oelp(t)] = M(p(r))}. We have (u(p(t)) —
o(p(t)),uV (t) —oV(t)) = M(p(t)) MV (t) V.ae t€S.So, we have:

- e (mlp(8) = (o), 8Y () — 0¥ (D)) wlp(t)) — o(olt)
e (8) = (1) + IME() lao () — oGO o) = o(o(®)]
o o (ule() — o(p(t), 2% (1) — 0 (1)), uo(t)) — (o)
= O+ M T () oG] Talo(®) —o(o(d])
B0+ 1 e K Do) ol 1S () 2 ()] > K
_ Mp() " Tav (0 — oV ()]
av () if ¥ (1) — 0¥ (1) < K
— (1)

It follows that V—ae on S, @#Y(t) — @V (t) and since f is V—Caratheodory, we have
flt,ue(p(t)), u (t) — f(t,u(p(t)),u" (t) and thus gix(t) — g(t). By the previous remark, we see there
exists a function h € Ly (T, [0,00[)such as ||gx(f)|| < h(t) V.a.e t € Typ. Since the assumptions of
the dominated convergence theorem are satisfied and thus g, — g in LY, (To,, R") The continuity is
verified. Prove now that Ng(C!(T,R")) is relatively compact in Co(Tx, R"). Let {yx }ren a sequence of
N (CH(T,R")). For all k € N, the exist u; € C'(T,R") such as yx = Ng(ux). From the above, we can
apply N, (ug)(t) = J| o, 8k(s) Vs and s0 {y }ken is uniformly bounded and equicontinuous. For the
d’Arzela-Ascoli theorem, {y;}ren has a convergent subsequence so Ng(C!(T,RR")) is relatively

compact in Co(Ty, R"). O
Proposition 3.7. The operator Ly is linear, continuous and invertible.

Proof. it's obvious that Ly is linear and continuous. Let’s ¢ € LL (T, R"). By the Proposition 2.27,

there exists the unique solution u & Wé}BC(TK,O, R") such as

w(t) —u(p(t) =g(t)  V.pp teTxy

By the Lemma 2.24, L, is injective. O
Proposition 3.8. The operator L3 is linear, continuous and invertible.

Proof. Tt's obvious that Lz is linear and continuous. Let's ¢ € Co(T,,R") N W%’l (T, R") then

gVLL (Tx0,R"). By the proposition 2.29,the equation
W () —u(p(t) =g¥(t)  V.pp te€Tey
have the unique solution u € W%}BC(TKIQ, R"). By integrating the equation on the set [a,{[NT, we have

u¥ () —u¥(@) — [ u(p(s))Vs=g() —gla)  V.pp teT,

[a,t)NT
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Since ¢ € Cy(Ty, R"), the operator is surjective. By the Lemma 2.24, L3 is injective.So, the invertible of
Ls. O

Lemma 3.9. Assume that (Hy) is satisfied. Let u a solution of the modified problem then 3K > 0 such as
[u¥ (t) =0V ()| <K Vte Ty

Proof. For the assumption (H;), Lemma 3.4 and the Proposition 2.13, for all u solution of modified

problem (7), we have V.a.e t € Ty,

ITOI < @I+ [ TS
< I T@I [ I ue), 7761V
< Q+AWWC+DW(QW
< Gt (CHDJaE))Ts
< Cot [ e+ D) = G)]) + [0V + MY ()] Vs
< G+ [C+me()WHMV®DVQ+DAﬂWWﬁ@MVs

< Q+D/ 117 (5)]| Vs

with Cy = 2||oV (a)|| + |[MV (a)| and C; = Cp + JuporlC+ D(2||oV ()| + MY (s)|)]Vs. By Gronwall’s
inequality, |u¥ (t)|| < Ciep(t,a). Fix K > [[oV]lo + Cillep(.,a)ll. So, [[u¥(t) —oV ()| < [lu¥(t)l +
oV (H)|| < |0V ()| + Ciep(t,a) < K, Vt € T O

Proof of Theorem 3.2. From the previous Lemma 3.9, let K defined previously, a solution of the modified

problem will be a fixed point of the operator:
T=L;'oNg:CY(T,R") — C'(T,R")

with L is linear, continuous, invertible and Ny is continuous then T is continuous. By Remark 3.5, there
exists h € LY (Toy, [0,00)) such that for every y € T(C'(T,IR")), the exists u € T(C'(T,R")) such that
y = Tu and

1N, (1) (5)| g/{uw Hg(s,u(s),uv(s))Hng/[ W(s)Vs V —ae. s¢€Tox

a,t)NT

Since L; ! is continuous and affine,they map bounded sets in bounded sets. Thus, there exists a constant

ko such that
lyll1 < ko.
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Moreover, y € Wé’l (T,R") and

So,for every t < T in Ty,

Iy¥ ) ¥ (@l < |

o (P (5)) + (s, (5), 7 (5)) [ V5 < [ (k+h(s)Vs.

[t,T)NT

Thus, T(C}(T,R") is bounded and equicontinuous in C!(T,R"). By an analogy of the Arzela-Ascoli
theorem for our context, T(C!(T,R") is relatively compact in T(C!(T,R"). By the Schauder fixed point
theorem, T has a fixed point, thus solution of modified problem. So any solution of modified problem

u € T(v,M) and ||[uV(t) — vV (t)|| < K Vt € T,. We deduce that u is a solution of problem (1). O
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