Available Online: http://ijmaa.in

Existence of Solutions for Nabla-differentiable Systems of the Second Order

Franck Steincy Peala^{1,*}, Konan Charles Etienne Goli², Assohoun Adje¹

Abstract

We establish the existence of solutions to systems of second-order differential equations in time scales. The problem is of type nabla differential of order two with the member f being a ∇ -caratheodory function. We consider differential systems in which the nonlinearity f depends on the derivative nabla u^{∇} . The existence results are based on the notion of solution-tube and the fixed point theorem.

Keywords: nabla derivative; solution-tube; forward and backward jump operator; left-scattered; right-dense.

2020 Mathematics Subject Classification: 34A34, 34B15, 34N05, 26E70.

1. Introduction

In this paper, we study the existence of solution for nabla-differentiable systems of the second order:

$$\begin{cases} u^{\nabla\nabla}(t) &= f(t, u(\rho(t)), u^{\nabla}(t)) \quad \nabla a.e \quad t \in \mathbb{T}_{0,\kappa^2} \\ u(\rho(a)) &= u(\sigma(b)) \\ u^{\nabla}(a) &= u^{\nabla}(\sigma(b)) \end{cases}$$
(1)

where the function $f: \mathbb{T}_{0,\kappa^2} \times \mathbb{R}^n \to \mathbb{R}^n$ is $\nabla-$ Caratheodory. Here \mathbb{T} is a compact time scale where $a = \min \mathbb{T}, b = \max \mathbb{T}$ and \mathbb{T}_{0,κ^2} will be defined later.

We use the tube solution method for differential systems (1), cited in the works of H. Gilbert and M. Frigon [7]. This notion makes it possible to obtain existence results for systems of second-order differential equations of the type (1). It is a generalization of the method of under and over solutions in a system of differential equations. The main objective is to show the existence of solutions for ∇ -differentiable systems (1). This article is organized as follows: first, a review of basic definitions and theorem relating to ∇ -differentiation and ∇ -integration in time scale and some secondary results. Then, we introduce the notion of tube solution for the differential system (1) and prove our main result.

¹University Félix Houphouët-Boigny, Abidjan, Ivory Coast

²African Graduate School of Information and communication Technologies (ESATIC)

^{*}Corresponding author (steincy_fp@yahoo.fr)

2. Preliminaries

Let \mathbb{T} a time scale. For $t \in \mathbb{T}$, we define the forward jump operator $\sigma : \mathbb{T} \to \mathbb{T}$ (resp the backward jump operator $\rho : \mathbb{T} \to \mathbb{T}$) by $\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}$ (respectively by $\rho(t) = \sup\{s \in \mathbb{T} : s < t\}$). In this definition, we put $\inf \emptyset = \sup \mathbb{T}$ (i.e $\sigma(b) = b$ if \mathbb{T} has a maximum b) and $\sup \emptyset = \inf \mathbb{T}$ (i.e $\rho(a) = a$ if \mathbb{T} has a minimum a), where \emptyset denotes the empty set.

If $\sigma(t) > t$, we say that t is right-scattered, while if $\rho(t) < t$ we say that t is left-scattered. Points that are right-scattered and left-scattered at the same time are called isolated. Also if $t < \sup \mathbb{T}$ and $\sigma(t) = t$, then t is called right-dense, and $t > \inf \mathbb{T}$ and $\rho(t) = t$, then t is called left-dense. Thus, a point $t \in \mathbb{T}$ is called dense, if it's right-dense and left-dense both.

Note: $L_{\mathbb{T}} = \{t \in \mathbb{T} : \rho(t) < t\}$. The backwards graininess $\nu : \mathbb{T}_{\kappa} \to [0, \infty[$ is defined by $\nu(t) = t - \rho(t)$. Denote

$$\mathbb{T}_{\kappa} = \left\{ egin{array}{ll} \mathbb{T} \setminus \{m\} = \mathbb{T}_0 & ext{if } m ext{ is right-scattered} \\ \mathbb{T}_{\kappa} = \mathbb{T} & ext{if } m ext{ is right-dense} \end{array} \right.$$

Since \mathbb{T}_κ is a time scale , denote $\mathbb{T}_\kappa=(\mathbb{T}_\kappa)_\kappa$ and

$$\mathbb{T}_{0,\kappa^2} = \left\{ \begin{array}{ll} \mathbb{T}_{\kappa^2} \setminus \{m\} & \text{if } m \in \mathbb{T}_{\kappa^2} \\ \mathbb{T}_{\kappa^2} & \text{otherwise} \end{array} \right.$$

Definition 2.1. For $f: \mathbb{T} \to \mathbb{R}$ and $t \in \mathbb{T}_{\kappa}$, define nabla derivative of f at t, denoted $f^{\nabla}(t)$, to be the number (provided it exists) with the property that gives any $\varepsilon > 0$, there is a neighborhood U of t such that

$$\mid f(\rho(t)) - f(s) - f^{\nabla}(t)(\rho(t) - s) \mid \leq \varepsilon \mid \rho(t) - s \mid$$

for all $s \in U$.

If f is ∇ -differentiable at t for all $t \in \mathbb{T}_{\kappa}$, then $f : \mathbb{T} \to \mathbb{R}^n$ is called ∇ -derivative of f in \mathbb{T}_{κ} . If f is ∇ -differentiable and if f^{∇} is ∇ -differentiable in $t \in T_{\kappa}$, on denote $f^{\nabla\nabla}(t) = (f^{\nabla})^{\nabla}(t)$ the second ∇ -derivative of f at t.

Proposition 2.2. We suppose that $f : \mathbb{T} \to \mathbb{R}$ and $t \in \mathbb{T}_{\kappa}$. then we have:

- *i)* If f is ∇ -differentiable at t, then f is continuous at t;
- ii) If f is continuous at a left-scattered t, then f is ∇ -differentiable at t with

$$f^{\nabla}(t) = \frac{f(t) - f(\rho(t))}{\nu(t)};$$

iii) If t is left-dense, then f is ∇ -differentiable at t iff the limit

$$\lim_{s \to t} \frac{f(t) - f(s)}{t - s}$$

exists as a finite number. In this case

$$f^{\nabla}(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s};$$

iv) If f is ∇ -differentiable at t, then $f^{\rho}(t) = f(t) - v(t)f^{\nabla}(t)$, where $f^{\rho}(t) = f(\rho)(t)$.

Proposition 2.3. *If* $f : \mathbb{T} \to \mathbb{R}$ *and* $g : \mathbb{T} \to \mathbb{R}$ *is* ∇ -differentiables at $t \in \mathbb{T}_{\kappa}$. Then

- i) f + g is ∇ -differentiable at t with $(f + g)^{\nabla}(t) = f^{\nabla}(t) + g^{\nabla}(t)$.
- ii) fg is ∇ -differentiable at t and $(fg)^{\nabla}(t) = f^{\nabla}(t)g(t) + f^{\rho}(t)g^{\nabla}(t) = f(t)g^{\nabla}(t) + f^{\nabla}(t)g^{\rho}(t)$.

$$\textit{iii) If } m=1 \textit{ and } g(t)g^{\rho}(t) \neq 0 \textit{, then } \frac{f}{g} \textit{ is } \nabla-\textit{differentiable at } t \textit{ and } \left(\frac{f}{g}\right)^{\nabla}(t) = \frac{f^{\nabla}(t)g(t) - f(t)g^{\nabla}(t)}{g(t)g^{\rho}(t)}.$$

Theorem 2.4. Let W a open of \mathbb{R}^n and $t \in \mathbb{T}$ a point left-dense. If $g : \mathbb{T} \to \mathbb{R}^n$ is ∇ -differentiable at t and $f : W \to \mathbb{R}$ is differentiable at $g(t) \in W$, then $f \circ g$ is ∇ -differentiable at t with $(f \circ g)^{\nabla}(t) = \langle f'(g(t)), g^{\nabla}(t) \rangle$.

Example 2.5. We suppose the $x : \mathbb{T} \to \mathbb{R}^n$ is ∇ -differentiable at $t \in \mathbb{T}$. We know that $\|.\| : \mathbb{R}^n \setminus \{0\} \to [0, +\infty)$ is differentiable if $t = \rho(t)$. We prove that

$$||x(t)||^{\nabla} = \frac{\langle x(t), x^{\nabla}(t) \rangle}{||x(t)||}.$$

We denote $C(\mathbb{T}, \mathbb{R}^n)$ the space of continuous maps on \mathbb{T} and $C^1(\mathbb{T}, \mathbb{R}^n)$ the space of continuous maps on \mathbb{T} with continuous ∇ -derivative on \mathbb{T}_{κ} . With the norm $\|u\|_0 = \max\{\|u(t)\|, t \in \mathbb{T}\}$ (respectively $\|u\|_1 = \max\{\|u(t)\|_0; \|u^{\nabla}(t)\| : t \in \mathbb{T}_{\kappa}\}$), $C(\mathbb{T}, \mathbb{R}^n)$ (respectively $C^1(\mathbb{T}, \mathbb{R}^n)$) is a Banach space.

Definition 2.6. The function $f: \mathbb{T} \to \mathbb{R}^n$ is left-dense continuous or ld—continuous provided it is continuous at every point left-dense on \mathbb{T} and its left limits exist (finite) at points right-denses on \mathbb{T} . If $\mathbb{T} = \mathbb{R}^n$, then f is ld—continuous iff f is continuous. The set of functions ld-continuous $f: \mathbb{T} \to \mathbb{R}^n$ is denoted $C_{ld}(\mathbb{T}, \mathbb{R}^n)$. The set of the functions $f: \mathbb{T} \to \mathbb{R}^n \ \nabla$ —differentiable and the ∇ —derivative ld-continuous is denoted $C_{ld}^1(\mathbb{T}, \mathbb{R}^n)$. If f is ld-continuous, then there exists a function f such as $F^{\nabla} = f$. In the case,

$$\int_{a}^{b} f(t)\nabla t = F(b) - F(a).$$

Theorem 2.7. We have the following inequalities:

$$|\int_a^b f(t)g(t)\nabla t| \leq \int_a^b |f(t)g(t)| \nabla t \leq (\max_{\sigma(a) < t < b} |f(t)|) \int_a^b |g(t)| \nabla t.$$

The notions of ∇ -measure and of ∇ -integral for the functions $f: \mathbb{T} \to \mathbb{R}$ are similar to those in the case of Δ -mesurability and of Δ -integrality define in the chapter 5 of [1] or in the chapter dans le chapter 2 in [8].

Theorem 2.8. [1] For each $t_0 \in \mathbb{T} \setminus \{\min \mathbb{T}\}$, the single-point set $\{t_0\}$ is ∇ -measurable, and its ∇ -measure is given by

$$\mu_{\nabla}(\{t_0\}) = t_0 - \rho(t_0).$$

If $a, b \in \mathbb{T}$ *and* $a \leq b$, then

$$\mu_{\nabla}(|a,b|) = b - a; \mu_{\nabla}(|a,b|) = \rho(b) - a$$

If $a, b \in \mathbb{T} \setminus \min{\mathbb{T}}$ and $a \leq b$ then

$$\mu_{\nabla}([a,b]) = \rho(b) - \rho(a); \mu_{\nabla}([a,b]) = b - \rho(a)$$

Definition 2.9. Let $E \subset \mathbb{T}$, ∇ -measurable set and $f : \mathbb{T} \to \mathbb{R}$, ∇ -measurable function. We will say that $f \in L^1_{\nabla}(E)$ if

$$\int_{F} |f(s)| \nabla s < \infty.$$

We say that the function $f: \mathbb{T} \to \mathbb{R}^n \nabla$ -measurable is in the set $L^1_{\nabla}(E, \mathbb{R}^n)$ provided

$$\int_{F} |f(s)| \nabla s < \infty$$

The set $L^1_{\nabla}(\mathbb{T}_0,\mathbb{R}^n)$ is a Banach space endowed with the norm

$$||f(s)||_{L^1_{\nabla}} = \int_{\mathbb{T}_0} ||f(s)|| \nabla s$$

Proposition 2.10. *Let* $f \in L^1_{\nabla}(E, \mathbb{R}^n)$. *Then*

$$\|\int_{E} f(s)\nabla s\| \leq \int_{E} \|f(s)\|\nabla s.$$

Theorem 2.11 (Lebesgue dominated convergence theorem). Let $\{f_k\}_{k\in\mathbb{N}}$ be a sequence of functions in $L^1_{\nabla}(\mathbb{T}_0,\mathbb{R}^n)$. Assume that there exists a function $f:\mathbb{T}_0\to\mathbb{R}$ such as $f_k(t)\to f(t)$, $\nabla-p.p$ $t\in\mathbb{T}_0$ and there exists a function $g\in L^1_{\nabla}(\mathbb{T}_0)$ such as $||f_k(t)||\leq g(t)$, $\nabla-p.p$ $t\in\mathbb{T}_0$ and for every $k\in\mathbb{N}$, then $f_k\to f$ dans $L^1_{\nabla}(\mathbb{T}_0,\mathbb{R}^n)$.

Definition 2.12. We said that $f: \mathbb{T} \to \mathbb{R}^n$ is absolute continuous function on \mathbb{T} if for every $\varepsilon > 0$, the exists $a \delta > 0$ such as if $\{[a_k, b_k]\}_{k=1}^n$ with $a_k, b_k \in \mathbb{T}$ is a finite pairwise disjoint family of subintervals satisfying $\sum_{k=1}^n (b_k - a_k) < \delta$, then $\sum_{k=1}^n || f(b_k) - f(a_k) || < \varepsilon$.

Proposition 2.13. A function $f: \mathbb{T} \to \mathbb{R}$ is absolutely continuous on \mathbb{T} if and only if f is ∇ -differentiable ∇ -almost everywhere on \mathbb{T}_0 , $f^{\nabla} \in L^1_{\nabla}(\mathbb{T}_0)$ and

$$\int_{[a,t)\cap\mathbb{T}} f^{\nabla}(s) \nabla s = f(t) - f(a), \quad \text{for every} \quad t \in \mathbb{T}.$$

We will define the Caratheodory function for arbitrary time scales.

Definition 2.14. A function $f: \mathbb{T}_0 \times \mathbb{R}^{2n} \to \mathbb{R}^n$ is a ∇ -Caratheodory function if the following conditions is satisfied:

- (i) $f(.,u,w): \mathbb{T}_0 \to \mathbb{R}^n$ is ∇ -measure for all $(u,w) \in \mathbb{R}^{2n}$;
- (ii) $f(t,.,.): \mathbb{R}^{2n} \to \mathbb{R}^n$ is continuous for $\nabla a.e$ $t \in \mathbb{T}_0$;
- (iii) For each compact set $K \subset \mathbb{R}^{2n}$, there exists a function $h_K \in L^1_{\nabla}(\mathbb{T}_0, [0, \infty[) \text{ such as } || f(t, u, w)|| \le h_K(t))$ $\nabla - a.e \quad t \in \mathbb{T}_0 \text{ and for } (u, w) \in K.$

We will now define the notion of Sobolev space with the functions defines on \mathbb{T} is compacts, where $a = \min \mathbb{T} < \max \mathbb{T} = b$.

Definition 2.15. We will say that a function $u: \mathbb{T} \to \mathbb{R}$ belongs to the set $W^{1,1}_{\nabla}(\mathbb{T})$ if and only if $u \in L^1_{\nabla}(\mathbb{T}_0)$ and that there exists a function $g: \mathbb{T}_{\kappa} \to \mathbb{R}$ such as $g \in L^1_{\nabla}(\mathbb{T}_0)$ and

$$\int_{\mathbb{T}_0} u(s) \phi^{\nabla}(s) \nabla s = -\int_{\mathbb{T}_0} g(s) \phi(\rho(s)) \nabla s \quad \forall \quad \phi \in C^1_{0,ld}(\mathbb{T})$$

where

$$C^1_{0,ld}(\mathbb{T}):=\{f:\mathbb{T}\to\mathbb{R}:f\in C^1_{ld}(\mathbb{T}), f(a)=0=f(b)\}.$$

We will say that a function $f: \mathbb{T} \to \mathbb{R}^n$ is on the $W^{1,1}_{\nabla}(\mathbb{T}, \mathbb{R}^n)$ if each of its components f_i are on $W^{1,1}_{\nabla}(\mathbb{T})$.

Definition 2.16. We define the space $W^{2,1}_{\nabla}(\mathbb{T},\mathbb{R}^n)$ by

$$W^{2,1}_\nabla(\mathbb{T},\mathbb{R}^n)=\{u\in W^{1,1}_\nabla(\mathbb{T},\mathbb{R}^n:u^\nabla\in W^{1,1}_\nabla(\mathbb{T}^\kappa,\mathbb{R}^n)\}.$$

Theorem 2.17. The sets $W^{1,1}_{\nabla}(\mathbb{T})$ and $W^{2,1}_{\nabla}(\mathbb{T})$ are the banach spaces with the norm

$$\begin{split} &||\; u\;||_{W^{1,1}_{\nabla}(\mathbb{T})} = ||\; u\;||_{L^1_{\nabla}(\mathbb{T})} + ||\; u^{\nabla}\;||_{L^1_{\nabla}(\mathbb{T})} \\ &||\; u\;||_{W^{2,1}_{\nabla}(\mathbb{T})} = ||\; u\;||_{L^1_{\nabla}(\mathbb{T})} + ||\; u^{\nabla}\;||_{L^1_{\nabla}(\mathbb{T})} + ||\; u^{\nabla\nabla}\;||_{L^1_{\nabla}(\mathbb{T})} \;. \end{split}$$

Lemma 2.18. *Let the function* $u : \mathbb{T} \to \mathbb{R}^n \nabla$ *-differentiable.*

(1) On $\{t \in \mathbb{T}_{\kappa^2} : \|u(\rho(t))\| \geqslant 0$ and $u^{\nabla\nabla}(t)$ exist $\}$,

$$||u(t)||^{\nabla\nabla} \geqslant \frac{\langle u(\rho(t), u^{\nabla\nabla}(t))\rangle}{||u(\rho(t))||}$$

(2) On $\{t \in \mathbb{T}_{\kappa^2} \setminus L_{\mathbb{T}} : \|u(\rho(t))\| \geqslant 0 \text{ and } u^{\nabla\nabla}(t) \text{ exist}\},$

$$||u(t)||^{\nabla\nabla} = \frac{\langle u(t), u^{\nabla\nabla}(t)\rangle + ||u^{\nabla}(t)||^2}{||u(t)||} - \frac{\langle u(t), u^{\nabla}(t)\rangle^2}{||u(t)||^3}.$$

Proof. Denote $A = \{t \in \mathbb{T}_{\kappa^2} : |u(\rho(t))| > 0 \text{ and } u^{\nabla\nabla}(t) \text{ exist}\}$. By proposition 2.3, on the set $A \setminus L_T$, we have:

$$\begin{aligned} \|u(t)\|^{\nabla} &= \frac{\langle u(t), u^{\nabla}(t)}{\|u(t)\|} \\ \|u(t)\|^{\nabla\nabla} &= (\frac{\langle u(t), u^{\nabla}(t) \rangle}{\|u(t)\|})^{\nabla} \\ &= \frac{\langle u(t), u^{\nabla}(t) \rangle^{\nabla} \|u(t)\| - \langle u(t), u^{\nabla}(t) \rangle \|u(t)\|^{\nabla}}{\|u(t)\|^{2}} \\ \|u(t)\|^{\nabla\nabla} &= \frac{\langle u(t), u^{\nabla\nabla}(t) \rangle + \|u(t)\|^{2}}{\|u(t)\|} - \frac{\langle u(t), u^{\nabla}(t) \rangle^{2}}{\|u(t)\|^{3}} \end{aligned}$$

Moreover, we have

$$\langle u(t), u^{\nabla}(t) \rangle^{2} \leq \|u(t)\|^{2} \|u^{\nabla}(t)\|^{2} \Rightarrow \frac{\langle u(t), u^{\nabla}(t) \rangle^{2}}{\|u(t)\|^{3}} \leq \frac{\|u^{\nabla}(t)\|^{2}}{\|u(t)\|}$$

thus

$$\|u(t)\|^{\nabla\nabla} \geqslant \frac{\langle u(t), u^{\nabla\nabla}(t)\rangle}{\|u(t)\|} = \frac{\langle u(\rho(t), u^{\nabla\nabla}(t))\rangle}{\|u(\rho(t))\|}$$
 on $A \setminus L_T$

If $t \in A$ such as $\rho^2(t) = \rho(t) < t$, then:

$$\begin{split} \|u(t)\|^{\nabla\nabla} &= \frac{\|u(t)\|^{\nabla} - \|u(\rho(t))\|^{\nabla}}{\nu(t)} \\ &= \frac{\|u(t)\| - \|u(\rho(t))\|}{\nu^{2}(t)} - \frac{\langle u(\rho(t)), u^{\nabla}(\rho(t)) \rangle}{\|u(\rho(t))\|\nu(t)} \\ &= \frac{\|u(t)\| - \|u(\rho(t))\|}{\nu^{2}(t)} - \frac{\langle u(\rho(t)), u(t) \rangle}{\|u(\rho(t))\|\nu^{2}(t)} + \frac{\|u(\rho(t))\|}{\nu^{2}(t)} + \frac{\langle u(\rho(t)), u^{\nabla\nabla}(t) \rangle}{\|u(\rho(t))\|} \\ &= \frac{\langle u(\rho(t)), u^{\nabla\nabla}(t) \rangle}{\|u(\rho(t))\|} - \frac{\langle u(\rho(t)), u(t) \rangle}{\|u(\rho(t))\|\nu^{2}(t)} + \frac{\|u(t)\|}{\nu^{2}(t)} \\ &\geq \frac{\langle u(\rho(t)), u^{\nabla\nabla}(t) \rangle}{\|u(\rho(t))\|} \end{split}$$

If $t \in A$ such as $\rho^2(t) < \rho(t) < t$, we obtain

$$\begin{split} \|u(t)\|^{\nabla\nabla} &= \frac{\|u(t)\|^{\nabla} - \|u(\rho(t))\|^{\nabla}}{\nu(t)} \\ &= \frac{\|u(t)\| - \|u(\rho(t))\|}{\nu^{2}(t)} - \frac{\|u(\rho(t))\| - \|u(\rho^{2}(t))\|}{\nu(\rho(t))\nu(t)} \end{split}$$

we have

$$\frac{\langle u(\rho(t)), u(\rho^2(t))\rangle}{\|u(\rho(t))\|} \leq \|u(\rho^2(t))\|$$

$$\frac{\|u(\rho(t))\| - \|u(\rho^{2}(t))\|}{\|u(\rho(t))\| - \|u(\rho^{2}(t))\|} \leq \frac{\|u(\rho(t))\|^{2} - \langle u(\rho(t)), u(\rho^{2}(t))\rangle}{\|u(\rho(t))\|}$$

$$\frac{\|u(\rho(t))\| - \|u(\rho^{2}(t))\|}{\nu(\rho(t))\nu(t)} \leq \frac{\|u(\rho(t))\|^{2} - \langle u(\rho(t)), u(\rho^{2}(t))\rangle}{\nu(\rho(t))\nu(t)\|u(\rho(t))\|}$$

$$\leq \frac{\langle u(\rho(t)), u(\rho(t)) - u(\rho^{2}(t)) \rangle}{\nu(\rho(t))\nu(t) \| u(\rho(t)) \|}$$

$$\leq \frac{\langle u(\rho(t)), u^{\nabla}(\rho(t)) \rangle}{\nu(t) \| u(\rho(t)) \|}$$

thus

$$||u(t)||^{\nabla\nabla} \geqslant \frac{||u(t)|| - ||u(\rho(t))||}{v^2(t)} - \frac{\langle u(\rho(t)), u^{\nabla}(\rho(t))\rangle}{v(t)||u(\rho(t))||}$$

and we conclude as in previous case.

Lemma 2.19. Let $\varepsilon > 0$, the exponential function $e_{\varepsilon}(., t_0)$ is defined by

$$e_{\varepsilon}(t,t_0) = \exp\left(\int_{[t_0,t)\cap\mathbb{T}} \xi_{\varepsilon}(\mu(s))\nabla s\right),$$

where

$$\xi_{\varepsilon}(h) = \left\{ egin{array}{ll} arepsilon & ext{if } h = 0 \ rac{log(1+harepsilon)}{h} & ext{if } h > 0 \end{array}
ight.$$

It is the unique solution to the initial value problem

$$u^{\nabla}(t) = \varepsilon u(t), \qquad u(t_0) = 1$$

Here is a result on times scales, analogous to Gronwall's inequality by:

Theorem 2.20. *Let* $\alpha > 0$, $\varepsilon > 0$ *and* $y \in C(\mathbb{T}, \mathbb{R})$, *if*

$$y(t) = \alpha + \int_{[a,t)\cap \mathbb{T}} \varepsilon y(s) \nabla s$$

then

$$y(t) \le \alpha e_{\varepsilon}(t, a) \quad \forall \ t \in \mathbb{T}$$

Lemma 2.21. Let $f: \mathbb{T} \to \mathbb{R}$ be a function with a local maximum at $t_0 \in]a, b[\cap \mathbb{T}]$. If $f^{\nabla \nabla}(\sigma(t_0))$ exists, then $f^{\nabla \nabla}(\sigma(t_0)) \leq 0$ provided t_0 is not the same time right dense and left scattered.

Lemma 2.22. Let $f: \mathbb{T} \to \mathbb{R}$ be a function with a local maximum at $t_0 \in \mathbb{T}_{\kappa}$ left dense. If $f^{\nabla}(t_0) = 0$ and $f^{\nabla\nabla}(t_0)$ exists, then $f^{\nabla\nabla}(t_0) \leq 0$.

Theorem 2.23. Let $r \in W^{2,1}_{\nabla}(\mathbb{T})$ a function such as $r^{\nabla\nabla} > 0$ ∇ . a.e on $\{t \in \mathbb{T}_{\kappa^2,0} : r(\rho(t)) > 0\}$. If $r(\rho(a)) = r(\sigma(b))$ and $r^{\nabla}(a) \geqslant r^{\nabla}(\sigma(b))$, then $r(t) \leqslant 0$ for every $t \in \mathbb{T}$.

Proof. Suppose there exist $t_0 \in \mathbb{T}$ such as $r(t_0) = \max_{t \in \mathbb{T}} r(t) > 0$.

1st case : $a < t_0 < \sigma(t_0) < b$, then $r^{\nabla\nabla}(\sigma(t_0))$ exists since $0 < \mu_{\nabla}(\{\sigma(t_0)\}) = \sigma(t_0) - \rho(\sigma(t_0)) = \sigma(t_0) - t_0$ car $\rho(\sigma(t_0)) = t_0$ and $r \in W^{2,1}_{\nabla}(\mathbb{T})$. By the previous lemma 2.21, $r^{\nabla\nabla}(\sigma(t_0) \le 0$ which contradicts the fact that $r(\rho(\sigma(t_0))) = r(t_0) > 0$

2nd case : $a < t_0 = \sigma(t_0) < b$ then exist $t_1 > t_0$ such as $r(\sigma(t)) > 0$ for every $t \in (t_0, t_1) \cap \mathbb{T}$. As $r(t_0)$ is a maximum then $r^{\nabla}(t_0) = 0$ and there exist $s \in (t_0, t_1)$ such as $r^{\nabla}(s) \leq 0$ thus

$$0 \ge r^{\nabla}(s) - r^{\nabla}(t_0) = \int_{[t_0,s) \cap \mathbb{T}} r^{\nabla\nabla}(\tau) \nabla \tau > 0,$$

contradiction.

3rd case : $t_0 = a$

Suppose that $\rho(a) < a$ and that $r(a) > r(\rho(a))$ then $r^{\nabla}(a) = \frac{r(a) - r(\rho(a))}{a - \rho(a)} > 0$. Then there exists $\delta > 0$ such as for all $t \in [a, a + \delta), r^{\nabla}(t) > 0$, we have, for every $t \in [a, a + \delta)$,

$$r(t) - r(a) = \int_{[a,t) \cap \mathbb{T}} r^{\nabla}(s) \nabla s > 0$$

which contradicts the fact that *a* is a maximum.

Suppose that $\rho(a) = a$ and $r^{\nabla}(a) > 0$ then there exists $t_1 > a$ such as $r^{\nabla}(t) > 0$ for every $t \in [a, t_1)$. Thus, for all $s \in [a, t_1)$, we have

$$r(s) - r(a) = \int_{[a,s) \cap \mathbb{T}} r^{\nabla}(t) \nabla t > 0$$

impossible because a is a maximum.

If $a = \rho(a)$ and $r^{\nabla}(a) = 0$, there exists a t_2 such as $r(\rho(t)) > 0$ for every $t \in (a, \sigma(t_2))$. So by hypothesis, $\nabla - ppt \in (a, \sigma(t_2)), r^{\nabla \nabla}(t) > 0$ and thus

$$r^{\nabla}(t) - r^{\nabla}(a) = r^{\nabla}(t) = \int_{[a,t) \cap \mathbb{T}} r^{\nabla\nabla}(\omega) \nabla\omega > 0$$
 (2)

as r(a) is a maximum, there exists $s \in (a, \sigma(t_2))$ such as $r^{\nabla}(s) \leq 0$. Which contradicts (2)

4th case : $t_0 = b$

If $b = \sigma(b)$, we have $r(\rho(a)) = r(b) = r(\sigma(b))$ if $a > \rho(a)$ then suppose that

$$r(a) < r(\rho(a) \Rightarrow r^{\nabla}(a) = \frac{r(a) - r(\rho(a))}{a - \rho(a)} < 0$$

We have $r^{\nabla}(\sigma(b)) \leq r^{\nabla}(a) < 0$. Which contradicts the fact that b is a maximum. If $a = \rho(a)$, then $r^{\nabla}(\sigma(b)) = r^{\nabla}(a) \leq 0$. Because $t_0 = a$ then $r^{\nabla}(a) = r^{\nabla}(\sigma(b)) = 0$. There exists $t_1 > a$ such as $r(\rho(t)) > 0$. For every $t \in [a, \sigma(t_1))$. Thus for all $s \in (a, t_1)$, we have

$$r^{\nabla}(s) = r^{\nabla}(s) - r^{\nabla}(a) = \int_{[a,s] \cap \mathbb{T}} r^{\nabla\nabla}(t) \nabla t > 0 \tag{3}$$

As r(a) is a maximum, there exist a $s \in (a, t_1)$ such as $r^{\nabla}(s) \leq 0$. which contradicts (3). Thus So in all cases whatever the condition, it is necessary that $r(t) \leq 0$, for every $t \in \mathbb{T}$.

Lemma 2.24. The equation

$$\begin{cases} u^{\nabla\nabla}(t) - u(\rho(t)) &= 0 \\ u(\rho(a)) &= u(\sigma(b)) \\ u^{\nabla}(a) &= u^{\nabla}(\sigma(b)) \end{cases}$$

admits only one solution which is trivial.

Proof. Suppose that the equation admits u a non-trivial solution. Let $c \in \mathbb{T}$ such as $0 < u(c) = \max_{t \in \mathbb{T}} u(t)$ If a < c < b thus if c is not both scattered on the left and dense on the right then, by the Lemma 2.21, $u^{\nabla\nabla}(\sigma(c)) \leq 0$. So $u^{\nabla\nabla}(\sigma(c)) - u(\rho(\sigma(c))) = u^{\nabla\nabla}(\sigma(c)) - u(c) < 0$. Which contradicts that u is solution of the equation. If $\rho(c) < c = \sigma(c)$ then $\rho(c)$ is not both scattered on the left and dense on the right so we come back to the previous case. Suppose that c = a. If $\rho(a) < a$ then we return to the previous case. If $\rho(a) = a$ then $u^a = u^{\nabla}(\sigma(b)) = 0$, by Lemma 2.22, $u^{\nabla\nabla}(a) \leq 0$. So $u^{\nabla\nabla}(a) - u(\rho(a)) < 0$. Contradicts that u is solution of the equation. Suppose that c = b. If $b = \rho(b)$ then we come back to the two previous cases. If $b < \rho(b)$ then $\sigma(b)$ is not both scattered on the left and dense on the right then, by the Lemma 2.21, $u^{\nabla\nabla}(\sigma(b)) \leq 0$. So $u^{\nabla\nabla}(\sigma(b)) - u(\rho(\sigma(b))) = u^{\nabla\nabla}(\sigma(b)) - u(b) < 0$. Contradiction.

Notice (BC) the conditions of boundary value following

$$(BC): u(\rho(a)) = u(\sigma(b)); u^{\nabla}(a) = u^{\nabla}(\sigma(b))$$

and

$$W_{\nabla,BC}^{2,1} = \{ u \in W_{\nabla}^{2,1} : u \in BC \}.$$

Proposition 2.25. Let $g(t) \in L^1_{\nabla}(\mathbb{T}_{0,\kappa})$ then the tree equations are equivalents

$$u^{\nabla\nabla}(t) - u(\rho(t)) = g(t) \quad \nabla \cdot p \cdot p \quad t \in \mathbb{T}_{0,\kappa}$$
 (4)

$$u^{\nabla\nabla}(t) + \nu(t)u^{\nabla}(t) - u(t) = g(t) \quad \nabla p.p \quad t \in \mathbb{T}_{0,\kappa}$$
 (5)

$$u^{\nabla}(t) - u^{\nabla}(a) - \int_{[a,t] \cap \mathbb{T}} u(\rho(s)) \nabla(s) = \int_{[a,t] \cap \mathbb{T}} g(s) \nabla(s) \quad \nabla \cdot p \cdot p \quad t \in \mathbb{T}_{0,\kappa}$$
 (6)

We define the ∇ differential operators L_1 and L_2 associated resp to the problems (4) and (5) define $L_1, L_2 : W^{2,1}_{\nabla}(\mathbb{T}, \mathbb{R}^n) \to L^1_{\nabla}(\mathbb{T}_{0,\kappa}, \mathbb{R}^n)$ by

$$L_1(u)(t) = u^{\nabla\nabla}(t) - u(\rho(t))$$

$$L_2(u)(t) = u^{\nabla\nabla}(t) + v(t)u^{\nabla}(t) - u(t)$$

Definition 2.26. For two nabla differentiable functions u_1, u_2 we define the nabla Wronskian $W = W(u_1, u_2)$

bу

$$W(t) = det \begin{pmatrix} u_1(t) & u_2(t) \\ u_1^{\nabla}(t) & u_2^{\nabla}(t) \end{pmatrix}$$

We say that two solutions u_1 and u_2 of $L_2u=0$ form a fondamental set of solutions for $L_2u=0$ provided $W(u_1,u_2)(t)\neq 0$ for all $t\in \mathbb{T}_{\kappa}$.

Corollary 2.27. [2] The Wronskian of any two solutions of $L_1u(t) = 0$ is independent of t.

Proposition 2.28. [1] Let $t_0 \in \mathbb{T}_{\kappa}$. Suppose that u_1 subject to conditions $u(t_0) = 1$, $u^{\nabla}(t_0) = 0$ and u_2 subject to conditions $u(t_0) = 0$, $u^{\nabla}(t_0) = 1$ solutions of the homogeneous equation $L_2(u)(t) = 0$, $u(t_0) = u_0$, $u^{\nabla}(t_0) = u_0^{\nabla}$. We have $W(u_1, u_2)(t) = W(u_1, u_2)(t_0) = 1$, then u_1 and u_2 form a fundamental set of solution of this homogeneous equation. Therefore the solution of the initial value problem $L_2(u)(t) = g(t)$, $u(t_0) = u_0$, $u^{\nabla}(t_0) = u_0^{\nabla}$ is given by

$$u(t) = \int_{[t_0,t)\cap\mathbb{T}} [u_2(t)u_1(\rho(s)) - u_1(t)u_2(\rho(s))]g(s)\nabla .s$$

Proposition 2.29. [2] If $t_0 \in \mathbb{T}_{\kappa}$, then the initial value problem $L_2(u)(t) = g(t)$, $u(t_0) = u_0$, $u^{\nabla}(t_0) = u_0^{\nabla}$ has a unique solution and this solution is defined on the whole time scale \mathbb{T} .

3. Existence of Solutions

In this section, we prove the existence of a solution to the problem (1). A solution of the problem is a function $u \in W^{2,1}_{\nabla}(\mathbb{T};\mathbb{R}^n)$ satisfying (1). Let us introduce the notion of solution-tube for the problem (1) as follows.

Definition 3.1. Let $(v, M) \in W^{2,1}_{\nabla}(\mathbb{T}, \mathbb{R}^n) \times W^{2,1}_{\nabla}(\mathbb{T}, [0, +\infty[)$. We say that (v, M) is solution-tube for (1) if i) ∇ .a.e $t \in \{t \in \mathbb{T}_{0,\kappa^2} : t = \rho(t)\}$, we have

$$\langle u - v(t), f(t, u, w) - v^{\nabla\nabla}(t) \rangle + \|w - v^{\nabla}(t)\|^2 \ge M(t)M^{\nabla\nabla}(t) + (M^{\nabla}(t))^2$$

and for all $(u,w) \in \mathbb{R}^{2n}$ such as ||u-v(t)|| = M(t) and $\langle u-v(t), w-v^{\nabla}(t) \rangle \geq M(t)M^{\nabla}(t)$.

- ii) For $t \in \{t \in \mathbb{T}_{0,\kappa^2} : \rho(t) < t\}$, we have $\langle u v(\rho(t)), f(t,u,w) v^{\nabla\nabla}(t) \rangle \geq M(\rho(t))M^{\nabla\nabla}(t)$ for every $(u,w) \in \mathbb{R}^{2n}$ such as $\|u v(\rho(t))\| = M(\rho(t))$.
- iii) $v(\rho(a)) = v(\sigma(b))$ and $M(\rho(a)) = M(\sigma(b))$ and $||v^{\nabla}(\sigma(b)) v^{\nabla}(a)|| \le M^{\nabla}(\sigma(b)) M^{\nabla}(a)$. Let $\mathbf{T}(v, M) = \{u \in W^{2,1}_{\nabla}(\mathbb{T}, \mathbb{R}^n) : ||u(t) - v(t)|| \le M(t) \text{ for every } t \in \mathbb{T}\}.$

Theorem 3.2. Let $f: \mathbb{T}_{0,\kappa} \times \mathbb{R}^{2n} \to \mathbb{R}^n$ a function ∇ -Carathedory. Suppose that:

 (H_1) : there exists $(v, M) \in W^{2,1}_{\nabla}(\mathbb{T}, \mathbb{R}^n) \times W^{2,1}_{\nabla}(\mathbb{T},]0, \infty[)$ a solution-tube for (1).

 (H_2) : There exists the constants C, D > 0 such as $||f(t, u, w)|| \le C + D||w|| \quad \nabla . p.p \quad t \in \mathbb{T}_{0,\kappa}$ and for every $(u, w) \in \mathbb{R}^{2n}$ such as $||u - v(t)|| \le M(t)$. Then the problem (1) have a solution $u \in W^{2,1}_{\nabla}(\mathbb{T}, \mathbb{R}^n) \cap T(v, M)$.

Let K > 0 a constant which will be defined later. Consider the following modified problem:

$$\begin{cases}
 u^{\nabla\nabla}(t) - u(\rho(t)) &= g(t, u(\rho(t)), u^{\nabla}(t)) \quad \nabla p.p \quad t \in \mathbb{T}_{0,\kappa^2} \\
 u(\rho(a)) &= u(\sigma(b)) \quad and \quad u^{\nabla}(a) = u^{\nabla}(\sigma(b))
\end{cases}$$
(7)

where

$$g(t,u,w) = \begin{cases} \left(\frac{M(\rho(t))}{||u-v(\rho(t))||}f(t,\bar{u}(\rho(t),\tilde{w}(t)) - \bar{u}(\rho(t))\right) + \\ \left(1 - \frac{M(\rho(t))}{||u-v(\rho(t))||}\right) \left(v^{\nabla\nabla}(t) + \frac{M^{\nabla\nabla}(t)}{||u-v(\rho(t))||}(u-v(\rho(t)))\right) \\ if \quad ||u-v(\rho(t))|| > M(\rho(t)) \end{cases}$$

$$f(t,\bar{u}(\rho(t),\tilde{w}(t)) - \bar{u} \qquad Otherwise.$$

and

$$\bar{u}(\rho(t)) = \begin{cases} \frac{M(\rho(t))}{\|u - v(\rho(t)))\|} \left(u((\rho(t)) - v(\rho(t))) + v(\rho(t)), & \text{if } || \ u - v(\rho(t))) \ || > M(\rho(t)); \\ u(\rho(t)), & \text{otherwise.} \end{cases}$$

and

$$\widehat{w}(t) = \begin{cases} \widehat{w}(t) + \left(M^{\nabla}(t) - \frac{\langle u - v(\rho(t)), \widehat{w}(t) - v^{\nabla}(t) \rangle}{\|u - v(\rho(t))\|}\right) \left(\frac{u - v(\rho(t))}{\|u - v(\rho(t))\|}\right) \\ if \quad t = \rho(t), \quad \|u - v(\rho(t))\| > M(\rho(t)) \\ \widehat{w}(t) + \left(1 - \frac{K}{\|w - v^{\nabla}(t)\|}\right) \frac{M^{\nabla}(t)}{M(\rho(t)} (u - v(\rho(t))) \\ if \quad t = \rho(t), \quad \|u - v(\rho(t))\| \leq M(\rho(t)) \quad and \quad \|y - v^{\nabla}(t)\| > K \\ \widehat{w}(t) \quad if \quad \rho(t) < t \\ w \quad otherwise \end{cases}$$

$$\widehat{w}(t) = \begin{cases} \frac{K}{\|w - v^{\nabla}(t)\|} \left(w - v^{\nabla}(t)\right) + v^{\nabla}(t) & \text{if } \|w - v(t)\| > K; \\ w \quad \text{otherwise} \end{cases}$$

$$\text{otherwise}$$

Remark 3.3.

• If $||u - v(\rho(t))|| > M(\rho(t))$, we have

$$\|\tilde{u}(\rho(t)) - v(\rho(t))\| = \|\frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} (u(\rho(t)) - v(\rho(t)))\| = M(\rho(t))$$

• If more $t = \rho(t)$, we have

$$\begin{array}{lll} \alpha(t) & = & \langle \widehat{u}(\rho(t)) - v(\rho(t)), \widetilde{u}^{\nabla}(t) - v^{\nabla}(t) \rangle \\ & = & \langle \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} (u(\rho(t)) - v(\rho(t))), \widetilde{u}^{\nabla}(t) - v^{\nabla}(t) \rangle \end{array}$$

$$= \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} \langle u(\rho(t)) - v(\rho(t)), \tilde{u}^{\nabla}(t) - v^{\nabla}(t) \rangle$$

$$= \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} [\langle u(\rho(t)) - v(\rho(t)), \hat{u}^{\nabla}(t) - v^{\nabla}(t) \rangle$$

$$+ \langle u(\rho(t)) - v(\rho(t)), M^{\nabla}(t) - \frac{\langle u(\rho(t)) - v(\rho(t)), \hat{u}^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u - v(\rho(t))\|} (\frac{u - v(\rho(t))}{\|u - v(\rho(t))\|} \rangle]$$

$$= \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} [\langle u(\rho(t)) - v(\rho(t)), \hat{u}^{\nabla}(t) - v^{\nabla}(t) \rangle$$

$$+ (M^{\nabla}(t) - \frac{\langle u(\rho(t)) - v(\rho(t)), \hat{u}^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u - v(\rho(t))\|}) \|u - v(\rho(t))\|]$$

$$= \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} [M^{\nabla}(t) \|u - v(\rho(t))\|]$$

$$= M(\rho(t)) M^{\nabla}(t)$$

So
$$\langle \widehat{u}(\rho(t)) - v(\rho(t)), \widetilde{u}^{\nabla}(t) - v^{\nabla}(t) \rangle = M(\rho(t))M^{\nabla}(t)$$
 and

$$\|\tilde{u}^{\nabla}(t) - v^{\nabla}(t)\|^2 = \|\hat{u}^{\nabla}(t) - v^{\nabla}(t)\|^2 + (M^{\nabla}(t))^2 - \frac{\langle u(t) - v(t), \hat{u}^{\nabla}(t) - v^{\nabla}(t) \rangle^2}{\|u(t) - v(t)\|^2}$$

Note also that $\|\tilde{w}(t)\| \leq 2K + \|v^{\nabla}(t)\| + M^{\nabla}(t)$ et $\|\tilde{u}(\rho(t)) - v(\rho(t))\| \leq M(\rho(t))$.

Lemma 3.4. Every solution u of (7) is in $\mathbf{T}(v, M)$

Proof. Consider the set $A = \{t \in \mathbb{T}_{0,\kappa^2} : \|u(\rho(t)) - v(\rho(t))\| > M(\rho(t))\}$. The proof will be done in three parts. First, we will show that for $t \in A$

$$(\|u(t) - v(t)\| - M(t))^{\nabla\nabla} \ge \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} - M^{\nabla\nabla}(t)$$

Secondly $(\|u(t) - v(t)\| - M(t))^{\nabla \nabla} > 0 \quad \forall \ t \in A \text{ and third.}$

$$||u(a) - v(a)|| - M(a) = ||u(b) - v(b)|| - M(b)$$
$$||u^{\nabla}(a) - v^{\nabla}(a)|| - M^{\nabla}(a) \ge ||u^{\nabla}(b) - v^{\nabla}(b)|| - M^{\nabla}(b)$$

Step 1: We prove that $t \in A$

$$(\|u(t) - v(t)\| - M(t))^{\nabla \nabla} \ge \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla \nabla}(t) - v^{\nabla \nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} - M^{\nabla \nabla}(t)$$

• If $t \in A$ is left dense i.e. $\rho(t) = t$, then we have

$$||u(t) - v(t)||^{\nabla} = \frac{\langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u(t) - v(t)\|}$$

And

$$||u(t) - v(t)||^{\nabla \nabla} = (\frac{\langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{||u(t) - v(t)||})^{\nabla}$$

$$= \frac{\|u(t) - v(t)\| \langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle^{\nabla}}{\|u(t) - v(t)\|}$$

$$- \frac{\|u(t) - v(t)\|^{\nabla} \langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u(t) - v(t)\|}$$

$$= \frac{\langle u(t) - v(t), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle + \|u^{\nabla}(t) - v^{\nabla}(t)\|^{2}}{\|u(t) - v(t)\|}$$

$$- \frac{\langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle^{2}}{\|u(t) - v(t)\|^{3}}$$

$$= \frac{\langle u(t) - v(t), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(t) - v(t)\|}$$

$$+ \frac{\|u^{\nabla}(t) - v^{\nabla}(t)\|^{2} \|u(t) - v(t)\|^{2} - \langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle^{2}}{\|u(t) - v(t)\|^{3}}$$

$$\geq \frac{\langle u(t) - v(t), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(t) - v(t)\|}$$

because
$$\|u^{\nabla}(t) - v^{\nabla}(t)\|^2 \|u(t) - v(t)\|^2 \ge \langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle^2$$
 So
$$(||u(t) - v(t)|| - M(t))^{\nabla \nabla} \ge \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla \nabla}(t) - v^{\nabla \nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} - M^{\nabla \nabla}(t)$$

• If $t \in A$ is left-scattered $(\rho(t) < t)$ and $\rho^2(t) = \rho(t)$, then

$$\|u(t) - v(t)\|^{\nabla} = \frac{\|u(t) - v(t)\| - \|u(\rho(t)) - v(\rho(t))\|}{v(t)}$$

with $\nu(t) = t - \rho(t)$. We have

$$u^{\nabla\nabla}(t) = \frac{u^{\nabla}(t) - u^{\nabla}(\rho(t))}{\nu(t)} \Rightarrow u^{\nabla}(\rho(t)) = u^{\nabla}(t) - \nu(t)u^{\nabla\nabla}(t)$$

$$\begin{split} \|u(t) - v(t)\|^{\nabla\nabla} &= \frac{\|u(t) - v(t)\|^{\nabla} - \|u(\rho(t)) - v(\rho(t))\|^{\nabla}}{v(t)} \\ &= \frac{1}{v(t)} [\frac{\langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u(t) - v(t)\|} \\ &- \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla}(\rho(t)) - v^{\nabla}(\rho(t)) \rangle}{\|u(\rho(t)) - v(\rho(t))\|}] \\ &= \frac{1}{v(t)} [\frac{\langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u(t) - v(t)\|} \\ &- \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} \\ &- v(t) \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|}] \\ &= \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} \\ &+ \frac{\langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle - \langle u(\rho(t)) - v(\rho(t)), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{v(t) \|u(t) - v(t)\|} \end{split}$$

$$= \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} + \frac{\langle (u(t) - v(t)) - (u(\rho(t)) - v(\rho(t))), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{v(t) \|u(t) - v(t)\|}$$

$$= \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} + \frac{\langle (u(t) - v(t)) - (u(\rho(t)) - v(\rho(t)))}{v(t)}, u^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u(t) - v(t)\|}$$

$$= \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} + \frac{\|u^{\nabla}(t) - v^{\nabla}(t)\|^{2}}{\|u(t) - v(t)\|}$$

thus

$$\|u(t) - v(t)\|^{\nabla \nabla} \ge \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla \nabla}(t) - v^{\nabla \nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|}$$

Also

$$(\|u(t) - v(t)\| - M(t))^{\nabla\nabla} \ge \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} - M^{\nabla\nabla}(t)$$

• If $t \in A$ is left-scattered $(\rho(t) < t)$ and so $\rho^2(t) < \rho(t)$ then

$$\begin{split} \|u(\rho(t)) - v(\rho(t))\|^{\nabla} &= \frac{\|u(\rho(t)) - v(\rho(t))\| - \|u(\rho^{2}(t)) - v(\rho^{2}(t))\|}{v(\rho(t))} \\ &= \frac{\|u(\rho(t)) - v(\rho(t))\|^{2} - \|u(\rho^{2}(t)) - v(\rho^{2}(t))\| \|u(\rho(t)) - v(\rho(t))\|}{\|u(\rho(t)) - v(\rho(t))\| v(\rho(t))} \\ &\geq \frac{\langle u(\rho(t)) - v(\rho(t)), (u(\rho(t)) - v(\rho(t))) - (u(\rho^{2}(t)) - v(\rho^{2}(t)))\rangle}{\|u(\rho(t)) - v(\rho(t))\| v(\rho(t))} \\ &= \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla}(\rho(t)) - v^{\nabla}(\rho(t))\rangle}{\|u(\rho(t)) - v(\rho(t))\|} \end{split}$$

Thus, it follows that

$$(\|u(t) - v(t)\| - M(t))^{\nabla \nabla} = \frac{\|u(t) - v(t)\|^{\nabla} - \|u(\rho(t)) - v(\rho(t))\|^{\nabla}}{v(t)} - M^{\nabla \nabla}(t)$$

As

$$(\|u(t) - v(t)\|)^{\nabla} = \frac{\|u(t) - v(t)\| - \|u(\rho(t)) - v(\rho(t))\|}{v(t)}$$

and

$$\|u(\rho(t)) - v(\rho(t))\|^{\nabla} \ge \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla}(\rho(t)) - v^{\nabla}(\rho(t))\rangle}{\|u(\rho(t)) - v(\rho(t))\|}$$

and

$$w^{\nabla}(\rho(t)) = w^{\nabla}(t) - \nu(t)w^{\nabla\nabla}(t)$$

thus

$$\begin{split} \|u(t) - v(t)\|^{\nabla\nabla} & \geq & \frac{1}{v(t)} [\frac{\|u(t) - v(t)\| - \|u(\rho(t)) - v(\rho(t))\|}{v(t)} \\ & - \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla}(\rho(t)) - v^{\nabla}(\rho(t)) \rangle}{\|u(\rho(t)) - v(\rho(t))\|}] \\ & \geq & \frac{1}{v(t)} [\frac{\|u(t) - v(t)\| - \|u(\rho(t)) - v(\rho(t))\|}{v(t)} \\ & - \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} \\ & + v(t) \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|}] \\ & \geq & \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} \\ & + \frac{1}{v(t)} [\frac{\|u(t) - v(t)\| - \|u(\rho(t)) - v(\rho(t))\|}{v(t)} \\ & - \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla}(t) - v^{\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|}] \\ & \geq & \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} \end{split}$$

As a result

$$(\|u(t) - v(t)\| - M(t))^{\nabla \nabla} \ge \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla \nabla}(t) - v^{\nabla \nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} - M^{\nabla \nabla}(t)$$

Step 2: We prove now $(\|u(t) - v(t)\| - M(t)))^{\nabla \nabla} > 0$ $\nabla .a.e$ surA

* If
$$\{t \in A : \rho(t) < t\}$$

$$(\|u(t) - v(t)\| - M(t))^{\nabla\nabla} \ge \frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} - M^{\nabla\nabla}(t)$$

We have

$$\begin{split} \beta(t) &= \langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle \\ &= \langle u(\rho(t)) - v(\rho(t)), g(t, u(\rho(t)), u^{\nabla}(t)) + u(\rho(t)) - v^{\nabla\nabla}(t) \rangle \\ &= \langle u(\rho(t)) - v(\rho(t)), \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} f(t, \bar{u}(\rho(t)), \tilde{u}^{\nabla}(t)) \\ &- \bar{u}(\rho(t)) + u(\rho(t)) - v^{\nabla\nabla}(t) + \left(1 - \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|}\right) \\ &\left(v^{\nabla\nabla}(t) + \frac{M^{\nabla\nabla}(t)}{\|u(\rho(t)) - v(\rho(t))\|} (u(\rho(t)) - v(\rho(t)))\right) \rangle \\ &= \langle u(\rho(t)) - v(\rho(t)), \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} (f(t, \bar{u}(\rho(t)), \tilde{u}^{\nabla}(t)) - v^{\nabla\nabla}(t))) + u(\rho(t)) - \bar{u}(\rho(t)) + \left(1 - \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|}\right) \left(\frac{M^{\nabla\nabla}(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} (u(\rho(t)) - v(\rho(t)))\right) \rangle \end{split}$$

$$= \langle \bar{u}(\rho(t)) - v(\rho(t)), (f(t, \bar{u}(\rho(t)), \bar{u}^{\nabla}(t)) - v^{\nabla\nabla}(t))) \rangle$$

$$+ \langle u(\rho(t)) - v(\rho(t)), u(\rho(t)) - \bar{u}(\rho(t)) \rangle$$

$$+ \left(1 - \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|}\right) \frac{M^{\nabla\nabla}(t)}{\|u(\rho(t)) - v(\rho(t))\|} \|u(\rho(t)) - v(\rho(t))\|^2$$

$$= \langle \bar{u}(\rho(t)) - v(\rho(t)), (f(t, \bar{u}(\rho(t)), \bar{u}^{\nabla}(t)) - v^{\nabla\nabla}(t))) \rangle +$$

$$\left(1 - \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|}\right) \|u(\rho(t)) - v(\rho(t))\|^2$$

$$+ \left(1 - \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|}\right) M^{\nabla\nabla}(t) \|u(\rho(t)) - v(\rho(t))\|$$

$$= \langle \bar{u}(\rho(t)) - v(\rho(t)), (f(t, \bar{u}(\rho(t)), \bar{u}^{\nabla}(t)) - v^{\nabla\nabla}(t))) \rangle +$$

$$(\|u(\rho(t)) - v(\rho(t))\| - M(\rho(t))) \left[M^{\nabla\nabla}(t) + \|u(\rho(t)) - v(\rho(t))\|\right]$$

$$\geq M(\rho(t)) M^{\nabla\nabla}(t) + (\|u(\rho(t)) - v(\rho(t))\| - M(\rho(t))) M^{\nabla\nabla}(t)$$

$$+ [\|u(\rho(t)) - v(\rho(t))\| - M(\rho(t))] \|u(\rho(t)) - v(\rho(t))\|$$

$$= \|u(\rho(t)) - v(\rho(t))\| \left[M^{\nabla\nabla}(t) + \|u(\rho(t)) - v(\rho(t))\| - M(\rho(t))\right]$$

Thus

$$\begin{split} &\frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} \geqslant M^{\nabla\nabla}(t) + \|u(\rho(t)) - v(\rho(t))\| - M(\rho(t)) \\ &\frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} - M^{\nabla\nabla}(t) \geqslant \|u(\rho(t)) - v(\rho(t))\| - M(\rho(t)) > 0 \\ &\frac{\langle u(\rho(t)) - v(\rho(t)), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle}{\|u(\rho(t)) - v(\rho(t))\|} - M^{\nabla\nabla}(t) > 0 \end{split}$$

* If $\{t \in A : t = \rho(t)\}$ then

$$(\|u(t) - v(t)\| - M(t))^{\nabla\nabla} = \frac{\langle u(t) - v(t), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle + \|u^{\nabla}(t) - v^{\nabla}(t)\|^{2}}{\|u(t) - v(t)\|} - \frac{\langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t) \rangle^{2}}{\|u(t) - v(t)\|^{3}} - M^{\nabla\nabla}(t)$$

We have

$$\begin{split} \langle u(t) - v(t), u^{\nabla\nabla}(t) - v^{\nabla\nabla}(t) \rangle &= \langle u(\rho(t)) - v(\rho(t)), g(t, u(\rho(t)), u^{\nabla}(t)) - v^{\nabla\nabla}(t) + u(\rho(t)) \rangle \\ &= \langle \overline{u}(\rho(t)) - v(\rho(t)), f(t, \overline{u}(\rho(t)), \widetilde{u}^{\nabla}(t)) - v^{\nabla\nabla}(t)) \rangle \\ &+ \|u(\rho(t)) - v(\rho(t))\| \left[\|u(\rho(t)) - v(\rho(t))\| - M(\rho(t)) + M^{\nabla\nabla}(t) \left(1 - \frac{M(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|} \right) \right] \end{split}$$

So thus

$$(\|u(t) - v(t)\| - M(t))^{\nabla \nabla} = \frac{\langle \overline{u}(t) - v(t), f(t, \overline{u}(t), \widetilde{u}^{\nabla}(t)) - v^{\nabla \nabla}(t)) \rangle + \|u^{\nabla}(t) - v^{\nabla}(t)\|^2}{\|u(t) - v(t)\|}$$

$$\begin{split} &-\frac{\langle u(t)-v(t),u^{\nabla}(t)-v^{\nabla}(t)\rangle^{2}}{\|u(t)-v(t)\|^{3}}-M^{\nabla\nabla}(t) \\ &+\|u(t)-v(t)\|-M(t)+M^{\nabla\nabla}(t)\left(1-\frac{M(t)}{\|u(t)-v(t)\|}\right) \\ &=\frac{\langle \overline{u}(t)-v(t),f(t,\overline{u}(t),\overline{u}^{\nabla}(t))-v^{\nabla}(t))\rangle+\|\overline{u}^{\nabla}(t))-v^{\nabla}(t))\|^{2}}{\|u(t)-v(t)\|} \\ &+\frac{\|u^{\nabla}(t))-v^{\nabla}(t))\|^{2}-\|\overline{u}^{\nabla}(t))-v^{\nabla}(t))\|^{2}}{\|u(t)-v(t)\|} \\ &-\frac{\langle u(t)-v(t),u^{\nabla}(t)-v^{\nabla}(t)\rangle^{2}}{\|u(t)-v(t)\|^{3}} \\ &+\|u(t)-v(t)\|-M(t)-M^{\nabla\nabla}(t)\frac{M(t)}{\|u(t)-v(t)\|} \\ &\geqslant\frac{M(t)M^{\nabla\nabla}(t)+(M^{\nabla}(t))^{2}}{\|u(t)-v(t)\|} +\|u(t)-v(t)\|-M(t) \\ &-M^{\nabla\nabla}(t)\frac{M(t)}{\|u(t)-v(t)\|} \\ &\frac{\|u^{\nabla}(t))-v^{\nabla}(t)\rangle\|^{2}-\|\overline{u}^{\nabla}(t))-v^{\nabla}(t)\rangle\|^{2}}{\|u(t)-v(t)\|^{3}} \\ &\geqslant\|u(t)-v(t),u^{\nabla}(t)-v^{\nabla}(t)\rangle^{2} \\ &=\|u(t)-v(t)\|-M(t) \\ &+\frac{\|u^{\nabla}(t))-v^{\nabla}(t)\rangle\|^{2}-\|\widehat{u}^{\nabla}(t))-v^{\nabla}(t)\rangle\|^{2}}{\|u(t)-v(t)\|} \\ &+\frac{\langle u(t)-v(t),\widehat{u}^{\nabla}(t)-v^{\nabla}(t)\rangle^{2}-\langle u(t)-v(t),u^{\nabla}(t)-v^{\nabla}(t)\rangle^{2}}{\|u(t)-v(t)\|} \\ &+\frac{\langle u(t)-v(t),\widehat{u}^{\nabla}(t)-v^{\nabla}(t)\rangle^{2}-\langle u(t)-v(t),u^{\nabla}(t)-v^{\nabla}(t)\rangle^{2}}{\|u(t)-v(t)\|^{3}} \end{split}$$

 $\Diamond \text{ If } \|u^{\nabla}(t) - v^{\nabla}(t)\| \leqslant K \text{ then }$

$$(\|u(t) - v(t)\| - M(t))^{\nabla \nabla} \ge \|u(t) - v(t)\| - M(t) > 0$$

$$\Diamond \text{ If } \|u^{\nabla}(t) - v^{\nabla}(t)\| > K \text{ then } \|\widehat{u}^{\nabla}(t) - v^{\nabla}(t)\| = K \text{ and }$$

$$\begin{split} \langle u(t)-v(t),\widehat{u}^\nabla(t)-v^\nabla(t)\rangle^2 - \langle u(t)-v(t),u^\nabla(t)-v^\nabla(t)\rangle^2 &= \frac{K^2}{\|u^\nabla(t)-v^\nabla(t)\|^2} \\ \langle u(t)-v(t),u^\nabla(t)-v^\nabla(t)\rangle^2 - \langle u(t)-v(t),u^\nabla(t)-v^\nabla(t)\rangle^2 \\ &= \left(\frac{K^2}{\|u^\nabla(t)-v^\nabla(t)\|^2}-1\right)\langle u(t)-v(t),u^\nabla(t)-v^\nabla(t)\rangle^2 \end{split}$$

Thus

$$\begin{aligned} & (\|u(t)-v(t)\|-M(t))^{\nabla\nabla} \\ \geqslant & \|u(t)-v(t)\|-M(t)+\frac{\|u^{\nabla}(t))-v^{\nabla}(t))\|^2-\|\widehat{u}^{\nabla}(t))-v^{\nabla}(t))\|^2}{\|u(t)-v(t)\|} \\ & + \frac{\langle u(t)-v(t),\widehat{u}^{\nabla}(t)-v^{\nabla}(t)\rangle^2-\langle u(t)-v(t),u^{\nabla}(t)-v^{\nabla}(t)\rangle^2}{\|u(t)-v(t)\|^3} \end{aligned}$$

$$\geqslant \|u(t) - v(t)\| - M(t) + \left(1 - \frac{K^2}{\|u^{\nabla}(t) - v^{\nabla}(t)\|^2}\right) \frac{\|u^{\nabla}(t) - v^{\nabla}(t)\|^2}{\|u(t) - v(t)\|} \\ - \left(1 - \frac{K^2}{\|u^{\nabla}(t) - v^{\nabla}(t)\|^2}\right) \frac{\langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t)\rangle^2}{\|u(t) - v(t)\|^3} \\ \geqslant \|u(t) - v(t)\| - M(t) + \\ \left(1 - \frac{K^2}{\|u^{\nabla}(t) - v^{\nabla}(t)\|^2}\right) \left[\frac{\|u^{\nabla}(t)) - v^{\nabla}(t)\|^2}{\|u(t) - v(t)\|} - \frac{\langle u(t) - v(t), u^{\nabla}(t) - v^{\nabla}(t)\rangle^2}{\|u(t) - v(t)\|^3}\right] \\ \geqslant \|u(t) - v(t)\| - M(t) > 0$$

Thus $\nabla .a.e \quad t \in A, (\|u(t) - v(t)\| - M(t))^{\nabla \nabla} > 0$. Denote $r(t) = \|u(t) - v(t)\| - M(t)$, it follows that $r^{\nabla \nabla}(t) > 0 \quad \nabla .a.e \quad t \in \{t \in \mathbb{T}_{0,\kappa^2} : r(\rho(t)) > 0\}.$

Step 3: Prove that $r(\rho(a)) = r(\sigma(b))$, $r^{\nabla}(a) \geqslant r^{\nabla}(\sigma(b))$.

 $r(\rho(a)) = r(\sigma(b))$ (obvious).

Prove that $r^{\nabla}(a) \geqslant r^{\nabla}(\sigma(b))$.

i) If
$$a = \rho(a) \Rightarrow \|u(a) - v(a)\|^{\nabla} = \frac{\langle u(a) - v(a), u^{\nabla}(a) - v^{\nabla}(a) \rangle}{\|u(\rho(a)) - v(\rho(a))\|}$$
.

ii) If $a > \rho(a) \Rightarrow$

$$\begin{split} \|u(a) - v(a)\|^{\nabla} &= \frac{\|u(a) - v(a)\| - \|u(\rho(a)) - v(\rho(a))\|}{v(a)} \\ &= \frac{\|u(a) - v(a)\| \|u(\rho(a)) - v(\rho(a))\| - \|u(\rho(a)) - v(\rho(a))\|^2}{v(a)\|u(\rho(a)) - v(\rho(a))\|} \\ &\geqslant \frac{\langle u(a) - v(a), u(\rho(a)) - v(\rho(a)) \rangle - \|u(\rho(a)) - v(\rho(a))\|^2}{v(a)\|u(\rho(a)) - v(\rho(a))\|} \\ &\geqslant \frac{\langle u^{\nabla}(a) - v^{\nabla}(a), u(\rho(a)) - v(\rho(a)) \rangle}{\|u(\rho(a)) - v(\rho(a))\|}. \end{split}$$

Thus
$$r^{\nabla}(a) \geqslant \frac{\langle u^{\nabla}(a) - v^{\nabla}(a), u(\rho(a)) - v(\rho(a)) \rangle}{\|u(\rho(a)) - v(\rho(a))\|} - M^{\nabla}(a).$$

Also

iii)
$$\sigma(b) = \rho(\sigma(b)) \text{ alors } \|u(\sigma(b)) - v(\sigma(b))\|^{\nabla} = \frac{\langle u^{\nabla}(\sigma(b)) - v^{\nabla}(\sigma(b)), u(\sigma(b)) - v(\sigma(b)) \rangle}{\|u(\sigma(b)) - v(\sigma(b))\|}.$$

iv) If $\sigma(b) > \rho(\sigma(b))$ then

$$\begin{split} \|u(\sigma(b)) - v(\sigma(b))\|^{\nabla} &= \frac{\|u(\sigma(b))) - v(\sigma(b))\| - \|u(\rho(\sigma(b))) - v(\rho(\sigma(b)))\|}{v(\sigma(b))} \\ &= \frac{\|u(\sigma(b))) - v(\sigma(b))\|^2 - \|u(\rho(\sigma(b))) - v(\rho(\sigma(b)))\| \|u(\sigma(b)) - v(\sigma(b))\|}{v(\sigma(b)) \|u(\sigma(b))) - v(\sigma(b))\|} \\ &\leqslant \frac{\langle u^{\nabla}(\sigma(b)) - v^{\nabla}(\sigma(b)), u(\sigma(b)) - v(\sigma(b))\rangle}{\|u(\sigma(b)) - v(\sigma(b))\|}. \end{split}$$

Thus
$$r^{\nabla}(\sigma(b)) \leqslant \frac{\langle u^{\nabla}(\sigma(b)) - v^{\nabla}(\sigma(b)), u(\sigma(b)) - v(\sigma(b)) \rangle}{\|u(\sigma(b)) - v(\sigma(b))\|} - M^{\nabla}(\sigma(b))$$
. It follows that

$$r^{\nabla}(\sigma(b)) - r^{\nabla}(a) \leqslant \frac{\langle u^{\nabla}(\sigma(b)) - v^{\nabla}(\sigma(b)), u(\sigma(b)) - v(\sigma(b)) \rangle}{\|u(\sigma(b)) - v(\sigma(b))\|} - \frac{\langle u^{\nabla}(a) - v^{\nabla}(a), u(\rho(a)) - v(\rho(a)) \rangle}{\|u(\rho(a)) - v(\rho(a))\|}$$

$$\begin{pmatrix} M^{\nabla}(\sigma(b)) - M^{\nabla}(a) \end{pmatrix}$$

$$\leq \frac{\left\langle \left(u^{\nabla}(\sigma(b)) - v^{\nabla}(\sigma(b)) \right) - \left(u^{\nabla}(a) - v^{\nabla}(a) \right), u(\rho(a)) - v(\rho(a)) \right\rangle}{\|u(\rho(a)) - v(\rho(a))\|}$$

$$- \left(M^{\nabla}(\sigma(b)) - M^{\nabla}(a) \right)$$

$$\leq \frac{\left\langle v^{\nabla}(a) - v^{\nabla}(\sigma(b)), u(\rho(a)) - v(\rho(a)) \right\rangle}{\|u(\rho(a)) - v(\rho(a))\|} - \left(M^{\nabla}(\sigma(b)) - M^{\nabla}(a) \right)$$

$$\leq \|v^{\nabla}(a) - v^{\nabla}(\sigma(b))\| - \left(M^{\nabla}(\sigma(b)) - M^{\nabla}(a) \right)$$

$$\leq \|v^{\nabla}(a) - v^{\nabla}(\sigma(b))\| - \left(M^{\nabla}(\sigma(b)) - M^{\nabla}(a) \right)$$

$$\leq 0.$$

Thus Therefore for the theorem 2.23 , we have $r(t) \leq 0 \Rightarrow ||u(t) - v(t)|| \leq M(t)$ for every $t \in \mathbb{T}$.

Let the operators:

$$L_1: W^{2,1}_{\nabla,BC}(\mathbb{T},\mathbb{R}^n) \to C_0(\mathbb{T}_{0,\kappa},\mathbb{R}^n) \cap W^{1,1}_{\nabla}(\mathbb{T},\mathbb{R}^n)$$

define by

$$L_1(u)(t) = u^{\nabla\nabla}(t) - u(\rho(t))$$

and

$$L_3: C^1(\mathbb{T},\mathbb{R}^n) \cap W^{2,1}_{\nabla BC}(\mathbb{T},\mathbb{R}^n) \to C_0(\mathbb{T}_{0,\kappa},\mathbb{R}^n) \cap W^{1,1}_{\nabla}(\mathbb{T},\mathbb{R}^n)$$

define by and

$$L_3(u)(t) = u^{\nabla}(t) - u^{\nabla}(a) - \int_{[a,t) \cap \mathbb{T}} u(\rho(s)) \nabla(s)$$
$$N_g : C^1(\mathbb{T}, \mathbb{R}^n) \cap W^{2,1}_{\nabla}(\mathbb{T}, \mathbb{R}^n) \to C_0(\mathbb{T}_{0,\kappa}, \mathbb{R}^n) \cap W^{1,1}_{\nabla}(\mathbb{T}, \mathbb{R}^n)$$

define by

$$N_g(u)(t) = \int_{[a,t)\cap\mathbb{T}} g(s,u(\rho(s)),u^{\nabla}(s))\nabla(s)$$

Remark 3.5. Since f is ∇ -Caratheodory, then there is $h \in L^1_{\nabla}(\mathbb{T}_{0,\kappa},\mathbb{R}^n)$ such as $\forall u, w \in \mathbb{R}^n$, $\|g(t,u,w)\| \le h(t) \nabla -pp \ t \in \mathbb{T}_{0,\kappa}$.

Proposition 3.6. *let* $f : \mathbb{T}_{0,\kappa} \times \mathbb{R}^n$ a ∇ -Caratheodory function. Suppose that (H_1) is satisfied, then the operator N_g defined is continuous and compact.

Proof. Let $\{u_k\}$ a sequence of $C^1(\mathbb{T},\mathbb{R}^n)$ converging to $u \in C^1(\mathbb{T},\mathbb{R}^n)$.

Prove that the function sequence $\{g_k\}_{k\in\mathbb{N}}$ define by $g_k(t)=g(t,u_k(\rho(t)),u_k^{\nabla}(t))$ converges to the function g define by $g(t)=g(t,u(\rho(t)),u^{\nabla}(t))$ $L^1_{\nabla}(\mathbb{T}_{0,\kappa},\mathbb{R}^n)$.

It is easily shown that $\bar{u}_k(t) \longrightarrow \bar{u}(t)$ et $\widehat{u_k^{\nabla}}(t) \longrightarrow \widehat{u^{\nabla}}(t)$. On $\{t \in \mathbb{T}, \rho(t) < t\}$, we have $g(t, u_k(\rho(t)), u_k^{\nabla}(t)) \longrightarrow g(t, u(\rho(t)), u^{\nabla}(t))$ since f is ∇ -Caratheodory. So, for ∇ -a.e on $I = \{t \in \mathbb{T}_{0,\kappa} : t = \rho(t), \|u(\rho(t)) - v(\rho(t))\| \neq M(\rho(t))\}$, we have $g_k(t) \longrightarrow g(t)$ as $\tilde{u}_k^{\nabla}(t) \longrightarrow \tilde{u}^{\nabla}(t)$ and f is ∇ -Caratheodory.

Notice $S = \{t \in \mathbb{T}_{0,\kappa} : t = \rho(t) \text{ and } \|u_k(\rho(t)) - v_k(\rho(t))\| = M(\rho(t))\}$. We have $\langle u(\rho(t)) - v(\rho(t)), u^{\nabla}(t) - v^{\nabla}(t) \rangle = M(\rho(t))M^{\nabla}(t)$ $\nabla .a.e.$ $t \in S$. So, we have:

$$\begin{split} \tilde{u}_{k}^{\nabla}(t) &= \hat{u}_{k}^{\nabla}(t) + [M^{\nabla}(t) - \frac{\langle u_{k}(\rho(t)) - v(\rho(t), \hat{u}_{k}^{\nabla}(t) - v^{\nabla}(t))\rangle}{\|u_{k}(\rho(t)) - v(\rho(t))\|}] [\frac{u_{k}(\rho(t)) - v(\rho(t))}{\|u_{k}(\rho(t)) - v(\rho(t))\|}] \\ &\to \hat{u}^{\nabla}(t) + [M^{\nabla}(t) - \frac{\langle u(\rho(t)) - v(\rho(t), \hat{u}^{\nabla}(t) - v^{\nabla}(t))\rangle}{\|u(\rho(t)) - v(\rho(t))\|}] [\frac{u(\rho(t)) - v(\rho(t))}{\|u(\rho(t)) - v(\rho(t))\|}] \\ &= \begin{cases} \hat{u}^{\nabla}(t) + \frac{M^{\nabla}(t)}{M(\rho(t))} (1 - \frac{K}{\|u^{\nabla}(t) - v^{\nabla}(t)\|}) (u(\rho(t)) - v(\rho(t))) & \text{if } \|u^{\nabla}(t) - v^{\nabla}(t)\| > K \\ \hat{u}^{\nabla}(t) & \text{if } \|u^{\nabla}(t) - v^{\nabla}(t)\| \le K \end{cases} \\ &= \tilde{u}^{\nabla}(t) \end{split}$$

It follows that ∇ -a.e on S, $\tilde{u}_k^{\nabla}(t) \to \tilde{u}^{\nabla}(t)$ and since f is ∇ -Caratheodory, we have $f(t,u_k(\rho(t)),u_k^{\nabla}(t) \to f(t,u(\rho(t)),u^{\nabla}(t))$ and thus $g_k(t) \to g(t)$. By the previous remark, we see there exists a function $h \in L^1_{\nabla}(\mathbb{T}_{0,\kappa},[0,\infty[)])$ such as $\|g_k(t)\| \leq h(t) \nabla$.a.e $t \in \mathbb{T}_{\kappa,0}$. Since the assumptions of the dominated convergence theorem are satisfied and thus $g_n \to g$ in $L^1_{\nabla}(\mathbb{T}_{0,\kappa},\mathbb{R}^n)$. The continuity is verified. Prove now that $N_g(C^1(\mathbb{T},\mathbb{R}^n))$ is relatively compact in $C_0(\mathbb{T}_\kappa,\mathbb{R}^n)$. Let $\{y_k\}_{k\in\mathbb{N}}$ a sequence of $N_g(C^1(\mathbb{T},\mathbb{R}^n))$. For all $k \in \mathbb{N}$, the exist $u_k \in C^1(\mathbb{T},\mathbb{R}^n)$ such as $y_k = N_g(u_k)$. From the above, we can apply $N_g(u_k)(t) = \int_{[a,t)\cap\mathbb{T}} g_k(s) \nabla s$ and so $\{y_k\}_{k\in\mathbb{N}}$ is uniformly bounded and equicontinuous. For the d'Arzela-Ascoli theorem, $\{y_k\}_{k\in\mathbb{N}}$ has a convergent subsequence so $N_g(C^1(\mathbb{T},\mathbb{R}^n))$ is relatively compact in $C_0(\mathbb{T}_\kappa,\mathbb{R}^n)$.

Proposition 3.7. *The operator* L_1 *is linear, continuous and invertible.*

Proof. it's obvious that L_1 is linear and continuous. Let's $g \in L^1_{\nabla}(\mathbb{T}_{\kappa,0},\mathbb{R}^n)$. By the Proposition 2.27, there exists the unique solution $u \in W^{2,1}_{\nabla,BC}(\mathbb{T}_{\kappa,0},\mathbb{R}^n)$ such as

$$u^{\nabla\nabla}(t) - u(\rho(t)) = g(t)$$
 $\nabla .pp \ t \in \mathbb{T}_{\kappa,0}$

By the Lemma 2.24, L_1 is injective.

Proposition 3.8. *The operator* L_3 *is linear, continuous and invertible.*

Proof. It's obvious that L_3 is linear and continuous. Let's $g \in C_0(\mathbb{T}_{\kappa}, \mathbb{R}^n) \cap W^{1,1}_{\nabla}(\mathbb{T}_{\kappa}, \mathbb{R}^n)$ then $g^{\nabla}L^1_{\nabla}(\mathbb{T}_{\kappa,0}, \mathbb{R}^n)$. By the proposition 2.29,the equation

$$u^{\nabla\nabla}(t) - u(\rho(t)) = g^{\nabla}(t)$$
 $\nabla .pp \ t \in \mathbb{T}_{\kappa,0}$

have the unique solution $u \in W^{2,1}_{\nabla,BC}(\mathbb{T}_{\kappa,0},\mathbb{R}^n)$. By integrating the equation on the set $[a,t] \cap \mathbb{T}$, we have

$$u^{\nabla}(t) - u^{\nabla}(a) - \int_{[a,t) \cap \mathbb{T}} u(\rho(s)) \nabla s = g(t) - g(a)$$
 $\nabla p \quad t \in \mathbb{T}_{\kappa}$

Since $g \in C_0(\mathbb{T}_\kappa, \mathbb{R}^n)$, the operator is surjective. By the Lemma 2.24, L_3 is injective. So, the invertible of L_3 .

Lemma 3.9. Assume that (H_1) is satisfied. Let u a solution of the modified problem then $\exists K > 0$ such as

$$||u^{\nabla}(t) - v^{\nabla}(t)|| \le K \quad \forall t \in \mathbb{T}_{\kappa}$$

Proof. For the assumption (H_2) , Lemma 3.4 and the Proposition 2.13, for all u solution of modified problem (7), we have ∇ .a.e $t \in \mathbb{T}_{\kappa}$,

$$\|u^{\nabla}(t)\| \leq \|u^{\nabla}(a)\| + \int_{[a,t)\cap\mathbb{T}} \|u^{\nabla\nabla}(s)\|\nabla s$$

$$\leq \|u^{\nabla}(a)\| + \int_{[a,t)\cap\mathbb{T}} \|f(s,u(\rho(s)),\tilde{u}^{\nabla}(s)\|\nabla s$$

$$\leq C_0 + \int_{[a,t)\cap\mathbb{T}} (C + D\|\tilde{u}^{\nabla}(s)\|)\nabla s$$

$$\leq C_0 + \int_{[a,t)\cap\mathbb{T}} (C + D\|\tilde{u}^{\nabla}(s)\|)\nabla s$$

$$\leq C_0 + \int_{[a,t)\cap\mathbb{T}} [C + D(\|\hat{u}^{\nabla}(s) - v^{\nabla}(s)\|) + \|v^{\nabla}(s)\| + |M^{\nabla}(s)|)]\nabla s$$

$$\leq C_0 + \int_{[a,t)\cap\mathbb{T}} [C + D(2\|v^{\nabla}(s)\| + |M^{\nabla}(s)|)\nabla s] + D\int_{[a,t)\cap\mathbb{T}} \|u^{\nabla}(s)\|\nabla s$$

$$\leq C_1 + D\int_{[a,t)\cap\mathbb{T}} \|u^{\nabla}(s)\|\nabla s$$

with $C_0 = 2\|v^{\nabla}(a)\| + |M^{\nabla}(a)|$ and $C_1 = C_0 + \int_{[a,t)\cap\mathbb{T}} [C + D(2\|v^{\nabla}(s)\| + |M^{\nabla}(s)|)] \nabla s$. By Gronwall's inequality, $\|u^{\nabla}(t)\| \le C_1 e_D(t,a)$. Fix $K > \|v^{\nabla}\|_0 + C_1 \|e_D(.,a)\|$. So, $\|u^{\nabla}(t) - v^{\nabla}(t)\| \le \|u^{\nabla}(t)\| + \|v^{\nabla}(t)\| \le \|v^{\nabla}(t)\| + C_1 e_D(t,a) \le K$, $\forall t \in \mathbb{T}_K$

Proof of Theorem 3.2. From the previous Lemma 3.9, let *K* defined previously, a solution of the modified problem will be a fixed point of the operator:

$$T=L_3^{-1}\circ N_g:C^1(\mathbb{T},\mathbb{R}^n)\longrightarrow C^1(\mathbb{T},\mathbb{R}^n)$$

with L is linear, continuous, invertible and N_g is continuous then T is continuous. By Remark 3.5, there exists $h \in L^1_{\nabla}(\mathbb{T}_{0,\kappa},[0,\infty))$ such that for every $y \in T(C^1(\mathbb{T},\mathbb{R}^n))$, the exists $u \in T(C^1(\mathbb{T},\mathbb{R}^n))$ such that y = Tu and

$$||N_g(u)(s)|| \leq \int_{[a,t)\cap\mathbb{T}} ||g(s,u(s),u^{\nabla}(s))||\nabla s \leq \int_{[a,t)\cap\mathbb{T}} h(s)\nabla s \quad \nabla - a.e. \quad s \in \mathbb{T}_{0,\kappa}.$$

Since L_3^{-1} is continuous and affine, they map bounded sets in bounded sets. Thus, there exists a constant k_0 such that

$$||y||_1 \leq k_0.$$

Moreover, $y \in W^{2,1}_{\nabla}(\mathbb{T}, \mathbb{R}^n)$ and

$$L_3(y)(s) = y^{\nabla}(s) - y^{\nabla}(a) - \int_{[a,t) \cap \mathbb{T}} y(\rho(s)) \nabla(s) = N_g(u)(s).$$

So, for every $t < \tau$ in \mathbb{T}_{κ} ,

$$||y^{\nabla}(t) - y^{\nabla}(\tau)|| \leq \int_{[t,\tau)\cap\mathbb{T}} ||y(\rho(s)) + g(s,u(s),u^{\nabla}(s))||\nabla s \leq \int_{[t,\tau)\cap\mathbb{T}} (k_0 + h(s))\nabla s.$$

Thus, $T(C^1(\mathbb{T},\mathbb{R}^n))$ is bounded and equicontinuous in $C^1(\mathbb{T},\mathbb{R}^n)$. By an analogy of the Arzelà-Ascoli theorem for our context, $T(C^1(\mathbb{T},\mathbb{R}^n))$ is relatively compact in $T(C^1(\mathbb{T},\mathbb{R}^n))$. By the Schauder fixed point theorem, T has a fixed point, thus solution of modified problem. So any solution of modified problem $u \in T(v,M)$ and $||u^{\nabla}(t) - v^{\nabla}(t)|| \le K \ \forall t \in \mathbb{T}_{\kappa}$. We deduce that u is a solution of problem (1).

References

- [1] M. Bohner and A. Peterson, Advances in Dynamic Equations on time scales, Birkäuser, Boston, (2003).
- [2] M. Bohner and A. Peterson, *Dynamic Equations on time scales:An Introduction with Applications* Birkäuser, Boston, (2001).
- [3] M. Frigon, Boundary and Periodic value value problems for systems of nonlinear second order differential equations under Bernstein-Nagumo Growth condition, Differential Equations, 8(1995), 1789-1804.
- [4] M. Frigon and D. O'Regan, Exsitence for initial value problems in banach spaces, Differential Equations Dynam. Systems, 2(1994), 41-48.
- [5] M. Frigon and D. O'Regan, Nonlinear first order and periodic problems in Banach Spaces, Appl. Maths. Lett., 10(1997), 41-46.
- [6] M. Frigon and E. Montoki, Multiplicity results for systems of second order differential equations, Nonlinear Stud., 15(2008), 71-92.
- [7] M. Frigon and H. Gilbert, Boundary Value problems for systems of second-Order Dynamic equations on time scales with δ -Caratheodory Functions, Abstract and Applied Analysis, 2010(2010), 26 pages.
- [8] H. Gilbert, Théorèmes d'existence pour des systèmes différentielles et d'équations aux échelles de temps, Ph.D. Thesis, (2009).