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Abstract

The purpose of this paper is to apply generalized fractional integral and differential operators given

by Marichev-Saigo-Maeda to the product of a generalized Mathieu series and a generalized Lommel-

Wright function. The results are expressed in terms of generalized Wright function. A number of

known results and some new results can be easily found as special cases of our main results.
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1. Introduction & Preliminaries

Fractional calculus (FC) is an emerging field of mathematics, which has wide applications in all

related fields of science and engineering such as electromagnetism, control engineering and signal

processing. It has become evident that fractional differential equations can accurately describe more

and more processes in the physical and engineering world. The field of fractional calculus has

made extraordinary advances, addressing both modelling and control, but new applications and

theoretical developments are still needed for explaining and controlling chaotic systems characterized

by bifurcations, criticality and symmetry. The fractional integral formulas involving various special

functions have gained importance due to the usefulness of these results in the evaluation of generalized

integrals and generalized derivatives and the solution of differential and integral equation. For a

remarkable number of integral formulas involving a variety of special function one can refer the

works of [2, 7–9, 14, 19, 24, 29]. In the present work, we aim at finding generalized integral and

differential formulas for the product of generalized Lommel-Wright function and Mahieu series, which

are expressed in terms of the generalized (Wright’s) hypergeometric functions.

We now recall the generalized fractional integrals and derivatives involving Appell function or Horn

function F3 (.). These fractional calculus operators are introduced by Marichev [15] and later extended

and studied by Saigo and Maeda [25] and are defined as follows:
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Let η, η′, ς, ς′, γ ∈ C and x > 0 and R (γ) > 0, then left and right sided fractional integral operators are

respectively defined as

(
Iη,η′,ς,ς′,γ
0+ f

)
(x) =

x−η

Γ (γ)

∫ x

0
(x − t)γ−1 t−η′

F3

(
η, η′, ς, ς′; γ; 1 − t

x
, 1 − x

t

)
f (t) dt (1)

and (
Iη,η′,ς,ς′,γ
0− f

)
(x) =

x−η′

Γ (γ)

∫ ∞

x
(t − x)γ−1 t−η F3

(
η, η′, ς, ς′; γ; 1 − x

t
, 1 − t

x

)
f (t) dt (2)

where F3 (.) is the Appell series defined by

F3
(
η, η′, ς, ς′; γ; u, v

)
=

∞

∑
m,n=0

(η)m (η′)n (ς)m (ς′)n
(γ)m+n

um

m!
vn

n!
, (max {|u| , |v| < 1})

Let η, η′, ς, ς′, γ ∈ C and x > 0 and R (γ) > 0, then corresponding left and right sided generalized

fractional differential operators are respectively defined as

(
Dη,η′,ς,ς′,γ

0+ f
)
(x) =

(
d

dx

)[R(γ)]+1 (
I−η′,−η,−ς′+[R(γ)]+1,−ς,−γ+[R(γ)]+1
0+ f

)
(x) (3)

(
Dη,η′,ς,ς′,γ

0− f
)
(x) =

(
− d

dx

)[R(γ)]+1 (
I−η′,−η,−ς′,−ς+[R(γ)]+1,−γ+[R(γ)]+1
0− f

)
(x) (4)

Many interesting applications of fractional integral and differential operators in applicable

mathematical analysis can be notably found in [11, 18, 28]. Further, the image formulas for a power

function, under operators (1) and (2) are given by [see [25], p. 394, Equations (4.18) and (4.19)]

[
Iη,η′,ς,ς′,γ
0+ tρ−1

]
(x) = Γ

 ρ, ρ + γ − η − η′ − ς, ρ − η′ + ς′

ρ + ς′, ρ + γ − η − η′, ρ + γ − η′ − ς

 xρ−η−η′+γ−1 (5)

where R (γ) > 0 and R (ρ) > max {0, R (η + η′ + ς − γ) , R (η′ − ς′)}. Also,

[
Iη,η′,ς,ς′,γ
0− tρ−1

]
(x) = Γ

 1 + η + η′ − γ − ρ, 1 + η + ς′ − γ − ρ, 1 − ς − ρ

1 − ρ, 1 + η + η′ + ς′ − γ − ρ, 1 + η − ς − ρ

 xρ+γ−η−η′−1 (6)

where R (γ) > 0 and R (ρ) < 1+min {R (−ς) , R (η + ς′ − γ) , R (η + η′ − γ)} and Γ

a, b, c

d, e, f

 = Γa Γb Γc
Γd Γe Γ f .

The following infinite series

S (l) =
∞

∑
n=1

2n

(n2 + l2)2

(
l ∈ R+

)
(7)

was investigated by Mathieu [17] in his book of elasticity of solid bodies. Closed form integral

representation for S (l) is given by

S (l) =
1
l

∫ ∞

0

x sin (lx)
ex − 1

dx (8)
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Several interesting problems and solutions dealing with integral representations and bound for the

following fractional power generalization of the Mathieu series

Sσ (l) =
∞

∑
n≥1

2n

(n2 + l2)σ+1

(
l, σ ∈ R+

)
(9)

have been widely considered by many authors, see for reference [4, 5, 10, 20, 21, 23, 26, 31]. Various

Applications of the Mathieu series and its generalizations can be found in classical, analytical number

theory, special functions, mathematical harmonic and numerical analysis physics, probability, quantum

field theory, quantum physics, etc. in the book by Tomovski [32]. For our present work, we consider

the following family of generalized Mathieu series defined by Tomovski and Mehrez [30] as

S(θ,ϕ)
σ,τ (l, d; x) = S(θ,ϕ)

σ,τ
(
l, {dn}∞

n=1 ; x
)
=

∞

∑
n=1

2dϕ
n (τ)n

(dθ
n + l2)

σ

xn

n!
(
l, d, θ, ϕ, σ ∈ R+; |x| ≤ 1

)
(10)

In particular, the case dn = n, θ = 2, ϕ, τ = 1 and σ with σ + 1 equation (10) reduces to Mathieu series

defined by Tomovski and Pogany [31] of the form

S(2,1)
σ,1 (l, n; x) = Sσ (l; x) =

∞

∑
n=1

2nxn

(n2 + l2)σ+1

(
l, σ ∈ R+; |x| ≤ 1

)
(11)

For our present investigation, we need to recall the generalized Lommel-Wright function defined by

de’ Oteiza et al. [22] represented as

Jµ,k
ω,υ (z) =

∞
∑

r=0

(−1)r

Γ(υ+r+1)kΓ(ω+rµ+υ+1)

( z
2

)ω+2υ+2r

=
( z

2

)ω+2υ
1Ψk+1

(1, 1) ; (υ + 1, 1)︸ ︷︷ ︸
k−times

, (ω + υ + 1, µ) ; −z2

4


z ∈ C\(−∞, 0], µ > 0, k ∈ N, ω, υ ∈ C

(12)

where pΨq (z) is the generalized Wright hypergeometric function also called Fox-Wright function

defined by Wright (1935) and is given by the following series

pΨq (z) = pΨq

 (ai, αi)1,p(
bj, β j

)
1,q

∣∣∣∣∣∣ z

 =
∞

∑
n=0

p
∏
i=1

Γ (ai + αin)

q
∏
j=1

Γ
(
bj + β jn

) zn

n!
(13)

where, z, ai, bj ∈ C and αi, β j ∈ R − {0} (i = 1, 2, ..., p; j = 1, 2, ...q) and
p
∑

i=1
αi −

q
∑

j=1
β j ≤ 1. Also we have

the following relations of generalized Lommel-Wright function with generalized Bessel function and

Struve function:

Jµ,1
ω,υ (z) = Jµ

ω,υ (z) (see e.g., [12, p. 353]) (14)
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J1,1
ω,1/2

(z) = Hω (z) (see e.g., [16, p. 28, Equation (1.170)]) (15)

J1,1
ω,0 (z) = Jω (z) (see e.g., [16, p. 27, Equation (1.161)]) (16)

A great deal of research work has been carried out to investigate various generalizations and particular

cases of Lommel-Wright function. For details one can refer the works of [3, 13, 27]. Also, Agarwal et

al. [1] and Haq et al. [6] have developed integral formulas involving Lommel-Wright functions. In

the present paper, we obtain some fractional integrals and derivatives for the product of generalized

Mathieu series and generalized Lommel-Wright function.

2. Main Results

In this section, we establish image formulas for the product of generalized Lommel-Wright function

Jµ,k
ω,υ (·) and generalized Mathieu series S(θ,ϕ)

σ,τ (l, d; x) involving Marichev-Saigo-Maeda fractional

integral and differential operators.

2.1 Image formulas for fractional integral operators

Theorem 2.1. Let η, η′, ς, ς′, γ, υ ∈ C, k ∈ N, µ > 0 and x > 0 be such that R (γ) > 0 and R (ω) >

−1; R (ρ + ωξ + 2υξ) > max {0, R (η + η′ + ς − γ) , R (η′ − ς′)}, then the following Left sided generalized

fractional integration formula holds true

[
Iη,η′,ς,ς′,γ
0+ tρ−1S(θ,ϕ)

σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δtξ

)]
(x) = xA−η−η′+γ−1

(
δ

2

)ω+2υ

S(θ,ϕ)
σ,τ

(
l, d; xλ

)

× 4Ψ4+k



(1, 1) (A + λn, 2ξ) (A + γ − η − η′ − ς + λn, 2ξ)

(A − η′ + ς′ + λn, 2ξ)

(A + γ − η − η′ + λn, 2ξ) (A + γ − η′ − ς + λn, 2ξ)

(A + ς′ + λn, 2ξ) (ω + υ + 1, µ) (υ + 1, 1)︸ ︷︷ ︸
k−times

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−
(
δxξ

)2

4


(17)

where, A = ρ + ωξ + 2υξ

Proof. On using definitions (10) and (12), writing the functions in series form, and then interchanging

the order of integration and summation which is possible under given conditions, the LHS of equation

(17) becomes

[
Iη,η′,ς,ς′,γ
0+ tρ−1S(θ,ϕ)

σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δtξ

)]
(x) =

[
∞

∑
n=1

2dϕ
n(τ)n

(dθ
n + l2)

σ

1
n!

×
∞

∑
r=0

(−1)r

Γ(υ + r + 1)kΓ (ω + rµ + υ + 1)

(
δ

2

)ω+2υ+2r

Iη,η′,ς,ς′,γ
0+ tρ+ωξ+2υξ+2rξ+λn−1

]
(x)
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Further using the image formula (5), we get

[
Iη,η′,ς,ς′,γ
0+ tρ−1S(θ,ϕ)

σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δtξ

)]
(x) = xA−η−η′+γ−1

(
δ

2

)ω+2υ ∞

∑
n=1

2dϕ
n(τ)n

(dθ
n + l2)

σ

(
xλ

)n

n!

×
∞

∑
r=0

Γ (r + 1) Γ (A + λn + 2rξ)

Γ (A + γ − η − η′ + λn + 2rξ) Γ (A + γ − η′ − ς + λn + 2rξ)

× Γ (A + γ − η − η′ − ς + λn + 2rξ) Γ (A − η′ + ς′ + λn + 2rξ)

Γ (A + ς′ + λn + 2rξ) Γ (ω + υ + 1 + µr) Γ(υ + r + 1)k

(
−δ2x2ξ

4

)r 1
r!

Rewriting the RHS of above equation, in view of the definition(13), we arrive at result (17).

Corollary 2.2. Let η, ς, γ, υ ∈ C, k ∈ N, µ > 0 and x > 0 be such that R (ω) > −1 and R (ρ + ωξ + 2υξ) >

max {0, R (ς − γ)} , then following formula holds true

[
Iη,ς,γ
0+ tρ−1S(θ,ϕ)

σ,τ
(
l, d; tλ

)
Jµ,k
ω,υ

(
δtξ

)]
(x) = xA−ς−1 ( δ

2

)ω+2υ
S(θ,ϕ)

σ,τ
(
l, d; xλ

)
×3Ψ3+k

 (1, 1) (A + λn, 2ξ) (A − ς + γ + λn, 2ξ)

(A − ς + λn, 2ξ) (A + η + γ + λn, 2ξ) (ω + υ + 1, µ) (υ + 1, 1)︸ ︷︷ ︸
k−times

∣∣∣∣∣∣∣∣
−(δxξ)

2

4

 (18)

where, A = ρ + ωξ + 2υξ

Theorem 2.3. Let η, η′, ς, ς′, γ, υ ∈ C, k ∈ N, µ > 0 and x > 0 be such that R (γ) > 0 and R (ω) > −1;

and R (−ρ − ωξ − 2υξ) < 1 + min {R (−ς) , R (η + ς′ − γ) , R (η + η′ − γ)}, then generalized fractional

integration Iη,η′,ς,ς′,γ
0− of product of Jµ,k

ω,υ (·)and S(θ,ϕ)
σ,τ (l, d; x) is given by

[
Iη,η′,ς,ς′,γ
0− t−ρ−1S(θ,ϕ)

σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δt−ξ

)]
(x) = x−A′−η−η′+γ

(
δ

2

)ω+2υ

S(θ,ϕ)
σ,τ

(
l, d; xλ

)

× 4Ψ4+k



(1, 1) (A′ + η + η′ − γ − λn, 2ξ) (A′ + η + ς′ − γ − λn, 2ξ)

(A′ − ς − λn, 2ξ)

(A′ − λn, 2ξ) (A′ + η + η′ + ς′ − γ − λn, 2ξ) (A′ + η − ς − λn, 2ξ)

(ω + υ + 1, µ) (υ + 1, 1)︸ ︷︷ ︸
k−times

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−
(
δx−ξ

)2

4


(19)

where, A′ = 1 + ρ + ωξ + 2υξ

Proof. On using equation (10) and (12) in the LHS of equation (19) and then interchanging order of

integration and summation, we obtain

[
Iη,η′,ς,ς′,γ
0− t−ρ−1S(θ,ϕ)

σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δt−ξ

)]
(x) =

[
∞

∑
n=1

2dϕ
n(τ)n

(dθ
n + l2)

σ

1
n!

×
∞

∑
r=0

(−1)r

Γ(υ + r + 1)kΓ (ω + rµ + υ + 1)

(
δ

2

)ω+2υ+2r

Iη,η′,ς,ς′,γ
0− t−ρ−1−ωξ−2υξ−2rξ+λn

]
(x)
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which on using image formula (6), becomes

[
Iη,η′,ς,ς′,γ
0− t−ρ−1S(θ,ϕ)

σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δt−ξ

)]
(x) = x−A′−η−η′+γ(

δ

2

)ω+2υ ∞

∑
n=1

2dϕ
n (τ)n

(dθ
n + l2)

σ

(
xλ

)n

n!

∞

∑
r=0

Γ (r + 1) Γ (A′ + η + η′ − γ − λn + 2rξ)

Γ (A′ + η + η′ + ς′ − γ − λn + 2rξ) Γ (A′ + η − ς − λn + 2rξ)

× Γ (A′ + η + ς′ − γ − λn + 2rξ) Γ (A′ − ς − λn + 2rξ)

Γ (A′ − λn + 2rξ) Γ (ω + υ + 1 + µr) Γ (υ + r + 1)k

(
−δ2x−2ξ

4

)r 1
r!

Interpreting the RHS of above equation, in view of the definition (13), we arrive at result (19).

Corollary 2.4. Let η, ς, γ, υ ∈ C, k ∈ N, µ > 0 and x > 0 be such that R (γ) > 0 and R (ω) > −1; and

R (−ρ − ωξ − 2υξ) < 1 + min {R (γ) , R (ς)}, then following formula holds true

[
Iη,ς,γ
0− t−ρ−1S(θ,ϕ)

σ,τ
(
l, d; tλ

)
Jµ,k
ω,υ

(
δt−ξ

)]
(x) = x−A′−ς

(
δ
2

)ω+2υ
S(θ,ϕ)

σ,τ
(
l, d; xλ

)
×3Ψ3+k

 (1, 1) (A′ + ς − λn, 2ξ) (A′ + γ − λn, 2ξ)

(A′ − λn, 2ξ) (A′ + η + ς + γ − λn, 2ξ) (ω + υ + 1, µ) (υ + 1, 1)︸ ︷︷ ︸
k−times

∣∣∣∣∣∣∣∣
−(δx−ξ)

2

4

 (20)

where, A′ = 1 + ρ + ωξ + 2υξ

2.2 Image formulas for fractional differential operators

Now, we give image formulas for the product of generalized Lommel-Wright function and generalized

Mathieu series involving left and right sided operators of Marichev-Saego-Maeda fractional differential

operators by the following theorems:

Theorem 2.5. The generalized fractional differentiation Dη,η′,ς,ς′,γ
0+ of the product of generalized Lommel-Wright

function Jµ,k
ω,υ (·) and generalized Mathieu series S(θ,ϕ)

σ,τ (l, d; x) is given by

[
Dη,η′,ς,ς′,γ

0+ tρ−1S(θ,ϕ)
σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δtξ

)]
(x) = xA+η+η′−γ−1

(
δ

2

)ω+2υ

S(θ,ϕ)
σ,τ

(
l, d; xλ

)

× 4Ψ4+k



(1, 1) (A + λn, 2ξ) (A − γ + η + η′ + ς′ + λn, 2ξ)

(A + η − ς + λn, 2ξ)

(A − γ + η + η′ + λn, 2ξ) (A − γ + η + ς′ + λn, 2ξ)

(A − ς + λn, 2ξ) (ω + υ + 1, µ) (υ + 1, 1)︸ ︷︷ ︸
k−times

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−
(
δxξ

)2

4


(21)

where, η, η′, ς, ς′, γ, υ ∈ C, k ∈ N, µ > 0 and x > 0 be such that R (γ) > 0 and R (ω) > −1;

R (ρ + ωξ + 2υξ) > max {0, R (γ − η − η′ − ς′) , R (ς − η)} and A = ρ + ωξ + 2υξ.

Proof. On using definitions (10) and (12), writing the functions in series form, and then interchanging

the order of integration and summation which is possible under given conditions, the LHS of equation
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(21) becomes

[
Dη,η′,ς,ς′,γ

0+ tρ−1S(θ,ϕ)
σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δtξ

)]
(x) =

[
∞

∑
n=1

2dϕ
n(τ)n

(dθ
n + l2)

σ

1
n!

×
∞

∑
r=0

(−1)r

Γ(υ + r + 1)kΓ (ω + rµ + υ + 1)

(
δ

2

)ω+2υ+2r

I−η′,−η,−ς′,−ς,−γ
0+ tρ+ωξ+2υξ+2rξ+λn−1

]
(x)

Further using the image formula (5), we get

[
Dη,η′,ς,ς′,γ

0+ tρ−1S(θ,ϕ)
σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δtξ

)]
(x) = xA+η+η′−γ−1(

δ

2

)ω+2υ ∞

∑
n=1

2dϕ
n (τ)n

(dθ
n + l2)

σ

(
xλ

)n

n!

∞

∑
r=0

Γ (r + 1) Γ (A + λn + 2rξ)

Γ (A − γ + η + η′ + λn + 2rξ) Γ (A − γ + η + ς′ + λn + 2rξ)

× Γ (A − γ + η + η′ + ς′ + λn + 2rξ) Γ (A + η − ς + λn + 2rξ)

Γ (A − ς + λn + 2rξ) Γ (ω + υ + 1 + µr) Γ (υ + r + 1)k

(
−δ2x2ξ

4

)r 1
r!

Rewriting the RHS of above equation, in view of the definition(13), we arrive at result (21).

Corollary 2.6. Let η, ς, γ, υ ∈ C, k ∈ N, µ > 0 and x > 0 be such that R (γ) > 0 and R (ω) >

−1;R (ρ + ωξ + 2υξ) > max {0, R (−ς) , R (−η − ς − γ)} then following formula holds true:

[
Dη,ς,γ

0+ tρ−1S(θ,ϕ)
σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δtξ

)]
(x) = xA+ς−1 ( δ

2

)ω+2υ
S(θ,ϕ)

σ,τ
(
l, d; xλ

)
×3Ψ3+k

 (1, 1) (A + λn, 2ξ) (A + η + ς + γ + λn, 2ξ)

(A + ς + λn, 2ξ) (A + γ + λn, 2ξ) (ω + υ + 1, µ) (υ + 1, 1)︸ ︷︷ ︸
k−times

∣∣∣∣∣∣∣∣
−(δxξ)

2

4

 (22)

and A = ρ + ωξ + 2υξ.

Theorem 2.7. The generalized right-sided fractional differentiation Dη,η′,ς,ς′,γ
0− of the product of generalized

Lommel-Wright function Jµ,k
ω,υ (·) and generalized Mathieu seriesS(θ,ϕ)

σ,τ (l, d; x) is given by

[
Dη,η′,ς,ς′,γ

0− t−ρ−1S(θ,ϕ)
σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δt−ξ

)]
(x) = x−A′+η+η′−γ

(
δ

2

)ω+2υ

S(θ,ϕ)
σ,τ

(
l, d; xλ

)

× 4Ψ4+k



(1, 1) (A′ − η − η′ + γ − λn, 2ξ) (A′ − η′ − ς + γ − λn, 2ξ)

(A′ + ς′ − λn, 2ξ)

(A′ − λn, 2ξ) (A′ − η − η′ − ς + γ − λn, 2ξ)

(A′ − η′ + ς′ − λn, 2ξ) (ω + υ + 1, µ) (υ + 1, 1)︸ ︷︷ ︸
k−times

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−
(
δx−ξ

)2

4


(23)

where η, η′, ς, ς′, γ, υ ∈ C, k ∈ N, µ > 0 and x > 0 be such that R (γ) > 0 and R (ω) > −1; and

R (−ρ − ωξ − 2υξ) < 1 + min {R (ς′) , R (γ − η′ − ς) , R (γ − η − η′)}, where, A′ = 1 + ρ + ωξ + 2υξ.

Proof. On using equation (10) and (12) in the LHS of equation (23) and then interchanging order of
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integration and summation, we obtain

[
Dη,η′,ς,ς′,γ

0− t−ρ−1S(θ,ϕ)
σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δt−ξ

)]
(x) =

[
∞

∑
n=1

2dϕ
n(τ)n

(dθ
n + l2)

σ

1
n!

×
∞

∑
r=0

(−1)r

Γ(υ + r + 1)kΓ (ω + rµ + υ + 1)

(
δ

2

)ω+2υ+2r

I−η′,−η,−ς′,−ς,−γ
0− t−ρ−1−ωξ−2υξ−2rξ+λn

]
(x)

which on using image formula (6), becomes

[
Dη,η′,ς,ς′,γ

0− t−ρ−1S(θ,ϕ)
σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δt−ξ

)]
(x) = x−A′+η+η′−γ(

δ

2

)ω+2υ ∞

∑
n=1

2dϕ
n (τ)n

(dθ
n + l2)

σ

(
xλ

)n

n!

∞

∑
r=0

Γ (r + 1) Γ (A′ − η − η′ + γ − λn + 2rξ)

Γ (A′ − η − η′ − ς + γ − λn + 2rξ) Γ (A′ − η′ + ς′ − λn + 2rξ)

× Γ (A′ − η′ − ς + γ − λn + 2rξ) Γ (A′ + ς′ − λn + 2rξ)

Γ (A′ − λn + 2rξ) Γ (ω + υ + 1 + µr) Γ (υ + r + 1)k

(
−δ2x−2ξ

4

)r 1
r!

Interpreting the RHS of above equation, in view of the definition (13), we arrive at result (23).

Corollary 2.8. Let η, ς, γ, υ ∈ C, k ∈ N, µ > 0 and x > 0, then following generalized fractional

differentiation formula holds true:

[
Dη,ς,γ

0− t−ρ−1S(θ,ϕ)
σ,τ

(
l, d; tλ

)
Jµ,k
ω,υ

(
δt−ξ

)]
(x) = x−A′+ς−γ

(
δ
2

)ω+2υ
S(θ,ϕ)

σ,τ
(
l, d; xλ

)
×3Ψ3+k

 (1, 1) (A′ − ς − λn, 2ξ) (A′ + η + γ − λn, 2ξ)

(A′ − λn, 2ξ) (A′ − ς + γ − λn, 2ξ) (ω + υ + 1, µ) (υ + 1, 1)︸ ︷︷ ︸
k−times

∣∣∣∣∣∣∣∣
−(δx−ξ)

2

4

 (24)

where, R (γ) > 0 and R (ω) > −1; and R (−ρ − ωξ − 2υξ) < 1 + min {0, R (η + γ) , R (−ς)}, and A′ =

1 + ρ + ωξ + 2υξ.

3. Further Remarks and Observations

We conclude our present study by remarking that it is not difficult to obtain several analogues and

variations of the derived formulas exhibited here by (17), (18), (19), (20), (21), (22), (23) and (24),

involving the generalized Lommel–Wright function Jµ,k
ω,υ (·) itself and its other variants. For suitable

choices of the parameters µ, ω and υ, each of our integral and derivative formulas (17), (18), (19), (20),

(21), (22), (23) and (24), (with k = 1) give some known as well as new results for the generalized Bessel

function Jµ
ω,υ (z), the Struve function Hω (z) and the classical Bessel function Jω (z), which are related

to the generalized Lommel–Wright function Jµ,k
ω,υ (z) by means of (14), (15) and (16).
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