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Abstract

This paper presents a comprehensive redefinition of Yagar’s bag theory [5] by introducing novel

notations and adopting the terminology of multisets. The primary objective of this study is to

provide a solid foundation for understanding multisets, catering to those interested in delving into

the core principles of this concept. We compare two variants of multisets: fuzzy multisets and crisp

multisets, and explore their distinct characteristics. Additionally, we investigate various operations

on multisets, including those involving fuzzy multisets. Furthermore, we discuss the significance of

multiset relations in the context of data set theory.
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1. Introduction

Multisets, also known as bags, are mathematical structures that extend the concept of sets by allowing

duplicate elements. They find wide-ranging applications in various domains, including computer

science, mathematics, data analysis and artificial intelligence. Yagar’s bag theory has been a

fundamental reference in understanding and utilizing multisets (see [5]). However, in this paper, we

aim to provide a fresh perspective on multisets by introducing new notations and adopting the

terminology of "multisets" instead of "bags."

The objective of this study is to offer a comprehensive understanding of multisets from their core

principles, making it accessible to those interested in learning about this topic. We focus on comparing

two variants of multisets: fuzzy multisets and crisp multisets. Fuzzy multisets incorporate the notion

of fuzzy logic, allowing elements to have degrees of membership rather than strict membership values

(see [2]). Crisp multisets, on the other hand, adhere to the classical notion of set theory, where elements

are either present or absent.
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To establish a solid foundation for understanding multisets, we explore various operations on

multisets, including union, intersection, difference, and Cartesian product (see [7]). These operations

provide insight into how multisets can be manipulated and analyzed in different contexts.

Additionally, we investigate the operations and properties specific to fuzzy multisets, highlighting the

unique characteristics they offer (see [1]).

Furthermore, we delve into the applications of multiset relations in the field of data set theory.

Multiset relations play a crucial role in analyzing and comparing datasets, allowing for a more nuanced

understanding of the relationships between elements. By leveraging multiset relations, researchers and

practitioners can gain valuable insights into data patterns, similarities, and differences, leading to more

informed decision-making and data-driven solutions [3, 4].

In conclusion, this paper provides a comprehensive exploration of multisets, shedding light on their

characteristics, operations, and applications. By redefining Yagar’s bag theory with new notations

and adopting the terminology of multisets, we aim to enhance the understanding and utilization of

this mathematical concept. The insights gained from this study pave the way for future research,

particularly in the development of graphical representations for multisets and fuzzy multisets, which

can provide intuitive and visual interpretations of complex multiset structures.

2. Crisp Multiset

This section focuses on the definition of crisp multisets and their associated operations. We will

explore the fundamental characteristics of crisp multisets, highlighting their distinction from

traditional sets. Additionally, we will delve into the operations performed on crisp multisets,

including union, intersection, and difference. These operations provide essential tools for

manipulating and analyzing the contents of crisp multisets, facilitating various computations and

comparisons.

Definition 2.1 (Multiset). Let X is any non-empty set then multiset A drawn from set X can be represented

by a function

CountA : X → N0,

where N0 is the set of non-negative integers. In the above for any x ∈ X, CountA(x) indicates the number of

times the element x appears in multiset A.

A =

{
CountA(x)

x
: x ∈ X

}
(1)

Example 2.2. If X = {d, g, i, m, n, o, r} then multiset A is

A = {g, o, o, d, m, o, r, n, i, n, g}
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A =

{
1
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,
2
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,
1
i

,
1
m

,
2
n

,
3
o

,
1
r

}

Every set is a multiset, i.e. X be any set then CountX : X → {0, 1} is defined as

CountX(x) =


1, if x ∈ X

0, if x /∈ X

Definition 2.3 (Support). Let A is a multiset drawn from the set X. The subset B of X with membership

function UB is called the supporting the multiset A, UB can be specified as:

UB(x) = min{CountA(x), 1}

i.e. x ∈ B if CountA(x) > 0 and x /∈ B if CountA(x) = 0.

It should be noted that many different multiset may have the same support set.

Example 2.4. For X in ex. 2.2, A1 = {g, o, o, d} and A2 = {d, o, g} are multisets drawn from X and their

support set B is

B = {d, g, o} ⊂ X

Definition 2.5 (Submultiset). Let A and B are two multisets drawn from the set X, we say A is a submultiset

of B, denoted as A ⊂ B if

CountA(x) ≤ CountB(x) ∀ x ∈ X

It is called proper submultiset if

CountA(x) < CountB(x) f or some x ∈ X

It obviously follows that for any two multisets A = B ⇐⇒ A ⊂ B and B ⊂ A.

Definition 2.6 (Empty Multiset). A multiset is called an empty multiset if

Count(x) = 0 ∀ x ∈ X

Support set of empty multiset is null set (∅).

Definition 2.7 (Cardinality). Let A is a multiset drawn from X. The cardinality of A, denoted card(A) is

defined as

card(A) = ∑
x∈X

CountA(x).

Let A is a set and PA be the set of all multisets which have A as its support set. For any B ∈ PA

card(B) ≥ card(A).
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Definition 2.8 (Peak Value and Peak Element). Let A is a multiset then maxx∈X CountA(x) is known as

peak value of multiset. Any x∗ ∈ X such that CountA(x∗) = maxx∈X CountA(x), is known as peak element of

the multiset.

2.1 Operations on Multisets

Definition 2.9 (Insertion of a Element). Let x ∈ X and A is a multiset drawn from set X. The insertion of x

into A gives a new multiset B, denoted as B = x ⊕ A and for y ∈ X membership function is defined as

CountB(y) =


CountA(y) + 1, if y = x

CountA(y), if y ̸= x

Definition 2.10 (Addition of Multiset). Let A and B are two multisets drawn from set X. The addition of

multisets A and B gives a new multiset C, denoted as C = A ⊕ B such that for any x ∈ X

CountC(x) = CountA(x) + CountB(x).

The fundamental step in creating multisets is the action of insertion or addition.The following

characteristics of the multiset addition operation are easily demonstrable.

1. A ⊕ B = B ⊕ A; (commutative)

2. A ⊕ (B ⊕ C) = (A ⊕ B)⊕ C; (associative)

3. A ⊕ ∅ = A.

We point out in particular that multiset addition is not idempotent and there is no inverse.

It appears that the multiset operation of addition and the set theoretic action of union are closely

related.

Theorem 2.11 ( [5]). Let A and B are two multisets and let C = A ⊕ B. A∗, B∗ and C∗ are the support sets of

the multisets A, B and C respectively, then C∗ = A∗ ∪ B∗.

Definition 2.12 (Removal of an Element). Let x ∈ X and A is a multiset drawn from X, the removal of x

from A gives a new multiset B, denoted as B = A ⊖ x and for any y ∈ X membership function is defined as

CountB(y) =


max{CountA(y)− 1, 0}, if y = x

CountA(y), if y ̸= x

Definition 2.13 (Removal of a Multiset). Let A and B are multisets drawn from set X, the removal of multiset

B from multiset A gives a new multiset C, denoted as C = A ⊖ B and for any x ∈ X

COuntC(x) = max{CountA(x)− CountB(x), 0}
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Definition 2.14 (Union). Let A and B are multisets drawn from set X, the union of A and B is a new multiset

C, deonoted as

C = A ⋓ B

such that for any x ∈ X

CountC(x) = max{CountA(x), CountB(x)}.

It is simple to demonstrate that the union of the two multisets A and B is defined as the smallest

multiset for which both A and B are submultisets.

Definition 2.15 (Intersection). Let A and B are multisets drawn from set X, the intersection of A and B is a

new multiset D, deonoted as

D = A ⋒ B

such that for any x ∈ X

CountD(x) = min{CountA(x), CountB(x)}.

We can demonstrate that the largest multiset that is contained in both A and B is the intersection of

multisets A and B.

The following properties of union, intersection, and addition of multisets are easily established:

1. Commutativity

(a) A ⋒ B = B ⋒ A

(b) A ⋓ B = B ⋓ A;

2. Associativity

(a) A ⋓ (B ⋓ C) = (A ⋓ B)⋓ C

(b) A ⋒ (B ⋒ C) = (A ⋒ B)⋒ C;

3. Idempotency

(a) A ⋓ A = A

(b) A ⋒ A = A;

4. Distributivity

(a) A ⋓ (B ⋒ C) = (A ⋓ B)⋒ (A ⋓ C)

(b) A ⋒ (B ⋓ C) = (A ⋒ B)⋓ (A ⋒ C)

(c) A ⊕ (B ⋓ C) = (A ⊕ B)⋓ (A ⊕ C)

(d) A ⊕ (B ⋒ C) = (A ⊕ B)⋒ (A ⊕ C);

5. (a) A ⋒ (A ⊕ B) = A
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(b) A ⋓ (A ⊕ B) = A ⊕ B;

6. A ⊕ B = (A ⋓ B)⊕ (A ⋒ B).

We take note of the following theorem without providing proof.

Theorem 2.16. Let A, B, C and D are multisets such that C = A ⋒ B and D = A ⋓ B. Let A∗, B∗, C∗ and

D∗ be the support sets of these multisets respectively. Then C∗ = A∗ ∩ B∗ and D∗ = A∗ ∪ B∗.

2.2 Set-Multiset Selection

Definition 2.17 (Multiset-to-Set Inclusion). Let A be a multiset drawn from the set X, and let B be a subset

of X. In certain scenarios, there may be a need to create a new multiset comprising elements from multiset A that

are also members of set B. For simplicity, we denote this resulting multiset as D = A ⊛ B. The count function

for multiset D can be defined as follows:

CoutD(x) =


CountA(x), if x ∈ B

0, if x /∈ B.

Definition 2.18 (Multiset-to-Set Removal). Let A be a multiset drawn from the set X, and let B be a subset

of X. Create a new multiset comprising elements from multiset A that are not members of set B. For simplicity,

we denote this resulting multiset as E = A ⊛ B̄. The count function for multiset E can be defined as follows:

CoutE(x) =


0, if x ∈ B

CountA(x), if x /∈ B

Theorem 2.19. Let A and B are any sets. Consider A as a multiset along with the Count function defined as

CountA(x) =


1, if x ∈ A

0, if x /∈ A

then the set D = A ⊛ B is defined as intersection of A and B, i.e. D = A ∩ B.

Proof. If A ∩ B = ∅ then for any x ∈ A implies x /∈ B then CountD(x) = 0 for all x ∈ A, thus D = ∅.

When A ∩ B ̸= ∅. Let x ∈ A ∩ B is arbitrary, so

x ∈ A ∩ B =⇒ x ∈ A and x ∈ B

=⇒ CountD(x) = CountA(x)

=⇒ CountD(x) = 1

=⇒ x ∈ D
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Thus for all x ∈ A ∩ B implies x ∈ D which gives

A ∩ B ⊂ D (2)

Now for any x ∈ D

CountD(x) = CountA(x) = 1 and x ∈ B

implies x ∈ A ∩ B, which gives

D ⊂ A ∩ B (3)

by (2) and (3) we can say D = A ⊛ B = A ∩ B.

We can easily prove the followings:

1. A ⊛ X = A where A ∈ P(X)

2. A ⊛ ∅ = ∅

3. A ⊛ (B1 ∩ B2) = (A ⊛ B1)⋒ (A ⊛ B2)

4. A ⊛ (B1 ∪ B2) = (A ⊛ B1)⋓ (A ⊛ B2)

5. A1 ⋒ A2)⊛ B = (A1 ⊛ B)⋒ (A2 ⊛ B)

6. A1 ⋓ A2)⊛ B = (A1 ⊛ B)⋓ (A2 ⊛ B)

2.3 Relation on Multiset

Relational databases are one area where the theory of multisets may prove to be valuable.The projection

procedure is one that is frequently employed in relational data stores. Assume that relation R has the

following attributes: A1, A2, ..., An. Therefore, the components of Rare n-tuples. By limiting each of

the n-tuples to be three tuples, only taking into account the top three values in each tuple, and then

removing any tuple duplications, a new set, the projection of R onto A1, A2 and A3, for instance, can

be created.

Example 2.20. Think of a relationship with the staff members over the plan.

Name Age

As a result, the entries in the relation staff members are 2-tuples, with each pair representing a worker’s name

and age. For instance

Staff Members

Name Harry Hermione Luna Ron Ginny Draco

Age 16 15 13 14 14 13

Name Fred Neville George Albus Severus Minerva

Age 17 14 17 75 35 65
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Let’s say we want to know the ages of the staff members. Normally, we would use the age projection to determine

Projage = {13, 14, 15, 16, 17, 35, 65, 75}

The set Projage really offers us the set of "all the different ages of the staff members" rather than the "set of ages of

all the staff members," which is more accurate. We can state that any staff member’s age falls within the specified

Projage It seems that the multiset would provide a more accurate response when a data base is requested for the

staff member’s age.

{16, 15, 14, 13, 14, 13, 14, 17, 17, 75, 35, 65}

or {
2
13

,
3

14
,

1
15

,
1
16

,
2
17

,
1
35

,
1
65

,
1
75

}
As a result, we propose that a more practical implementation of database calculus can be achieved by

including, in addition to the standard projection operations, a new operation called Multiset Projection.

Multiset Projection essentially performs the same function as the standard projection but does not

remove redundant elements, leading to multisets.

We will now discuss the selection operation from relational data base theory. Selection involves

choosing elements from a relation R that possess a specific property. To define a selection, we specify

a subset S of X × Y, and the selection operation is represented by R ∩ S = RS. In a special case, the

selection is based on the condition that the first member of the tuples (x, y) ∈ R belongs to a subset

B of X. In this scenario, the selection subset S becomes S = B × Y, and we can denote the selection

operation as R ∩ S = R ∩ (B × Y) = RB.

Definition 2.21 (Multi-projection Relation). Let R be a relationship in X × Y, Let B ⊂ X and let

H = Multi − ProjXR.

Let H be a multiset over X that is obtained by projecting R onto X without removing duplicates. Additionally,

let M be a multiset in X that is obtained by intersecting the set B with the multiset H.

M = H ⊛ B.

Let us consider the selection operation of relation R using the set B, which results in a set in X × Y denoted as

RB. This set RB is defined as follows:

RB = R ∩ (B × Y) = R ∩ B

It can be readily demonstrated that:

M = Multi − ProjX[RB].
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Thus

(Multi − ProjXR)⊛ B = Multi − ProjX[R ∩ B].

Example 2.22. Relation R in ex. 2.20. Assume we want to know how many teenagers are in this database. Let

B be the set of teenagers.

B = {13, 14, 15, 16, 17}

then

M = (Multi − ProjageR)⊛ B

offers us a multiset containing all of the ages in B. Finally, card(M) represents the number of teenagers in R.

M = {16, 15, 14, 13, 14, 13, 14, 17, 17}

or

M =

{
2
13

,
3
14

,
1
15

,
1
16

,
2
17

}

3. Fuzzy Multisets

The idea of a fuzzy multiset will be introduced in this part, and we’ll create a algebra for working with

these structures later on. As we recall, L. A. Zadeh introduced the fuzzy set.

Definition 3.1 ( [6]). A fuzzy set Ã in a Set X is defined as

Ã = {(x, µÃ(x)) : x ∈ X} (4)

Here µÃ : X → [0, 1] = I.

When developing a concept that corresponds to a multiset with fuzzy elements, it is essential to

consider that a specific object x may have multiple membership grades within the fuzzy multiset. The

subsequent description of a fuzzy multiset acknowledges and accommodates this particular scenario.

Definition 3.2 (fuzzy multiset). Let’s assume X is a set of elements. A fuzzy multiset Ã, drawn from X, can

be described by a function Count.µÃ, which has the following characterization:

Count.µÃ : X → Q,

where Q is the crisp multiset drawn from the unit interval.

For any element x in the set X, Count.µÃ(x) represents a multiset drawn from the unit interval. Since

any multiset, such as Count.µÃ(x), can itself be characterized by a count function over its set (in this
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case, I = [0, 1]), we can rewrite the expression using the earlier notation as follows:

CountCount.µÃ(x) : I → N ∪ {0}

Here, CountCount.µÃ(x) represents the count function associated with the multiset Count.µÃ(x) at

element α in the set I, i.e. the number of times x appears with membership α in the fuzzy multiset Ã.

It represents the count of (x, µÃ(x)) pairs in the fuzzy multiset Ã.

To simplify the notation, we will adopt the following convention:

In the context of characterizing a fuzzy multiset using the Count.µÃ function, we will denote it as

C.µÃ, where C.µÃ(x) represents the multiset associated with element x. Similarly, for the function

CountCount.µÃ(x), we will use the notation CC.µÃ(x), indicating the count of graded x objects in the fuzzy

multiset Ã. It is important to highlight that CC.µÃ(x)(x) evaluates to zero when there are no elements

matching the grading criteria, implying that non-existent elements are not considered in the count.

A regular or crisp multiset B on X can be transformed into a fuzzy multiset using the following

formulation, where Count(x) denotes the standard count of x in B. If CC.µB(x)(α) represents the fuzzy

multiset representation of the crisp multiset B, then for every x in X.

CC.µB(x)(α) =


CountB(x), if α = 1

0, if α ̸= 1

In this scenario, the elements C.µB(x) are treated as multisets, where only elements with a count of

α = 1 can have a non-zero count. This observation indicates that the concept of a multiset is, to some

extent, a generalization of a count. From now on, when we mention a fuzzy multiset, we can also

imply that it may be a regular (crisp) multiset.

Definition 3.3 (Fuzzy Submultiset). Let Ã and B̃ are two multisets drawn from the set X, we say Ã is a

submultiset of B̃, denoted as A ⊂ B if any x ∈ X

C.µÃ(x) ≤ C.µB̃(x)

In order to effectively implement the aforementioned requirement, it is necessary to consider for every x ∈ X and

for every α ∈ I

CC.µÃ(x)(α) ≤ CC.µÃ(x)(α)

It obviously follows that for any two fuzzy submultisets Ã = B̃ ⇐⇒ Ã ⊂ B̃ and B̃ ⊂ Ã.

i.e. for all x ∈ X

C.µÃ(x) = C.µB̃(x)

To operationalize this definition, it is crucial to determine when the fuzzy multiset characterizing x in Ã is equal
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to the fuzzy multiset characterizing x in B̃. For the purpose of equality between fuzzy multisets, it is necessary

to compare the characterizing counts of C.µÃ(x) and C.µB̃(x), which are crisp multisets over the unit interval.

Therefore, the equality of two fuzzy multisets requires that for all x ∈ X and α ∈ I

CC.µÃ(x)(α) = CC.µB̃(x)(α)

Definition 3.4 (Cardinality of Fuzzy Multiset). Let Ã is a fuzzy multiset drawn from set X. The cardinality

of Ã is given by

Card(A) = ∑
x∈X

CardÃ(x)

Where, CardÃ(x) is cardinality of x in Ã, defined as

CardÃ(x) = ∑
α∈I

α ∗ CC.µÃ(x)(α).

Therefore, the cardinality of x in Ã can be calculated by evaluating the product of the membership grade and the

count of x with that particular grade, representing the frequency of x′s occurrence in Ã.

Definition 3.5 (Absolute Cardinality of Fuzzy Multiset). Absolute cardinality is stand for unweighted

measure of the number of elements in Ã, where Ã is any fuzzy multiset drawn form any set X. Thus the absolute

cardinality of Ã is defined as

|Card(A)| = ∑
x∈X

|CardÃ(x)|

where |CardÃ(x)| is the absolute cardinality of x in Ã, defined as

|CardÃ(x)| = ∑
α∈I

|CC.µÃ(x)(α)|.

At this stage, it is important to reiterate that the multisets, C.µÃ(x), extracted from set I, serve as

representations of counts. It is worth noting that there is also a possibility to discuss type II fuzzy

multisets. In this scenario, the functions C.µÃ(x) represent fuzzy multisets over I. Essentially, for each

x ∈ X and α ∈ I, CC.µÃ(x)(α) is not a single value from the set of non-negative integers (N ∪ {0}), but

rather a multiset itself. However, we will not explore this topic any further.

Analogous to the crisp case, where crisp sets can be considered as special instances of crisp multisets,

we can observe a similar relationship in the fuzzy domain. Fuzzy sets can be seen as specific conditions

of fuzzy multisets.

Assume Ã is a fuzzy subset of X with a membership grade function µÃ. We can consider this as a

multiset in which C.µÃ(x) is the multiset ⟨ 1
µÃ(x) ⟩. That is, for each x ∈ X,

CC.µÃ(x)(α) =


1, if µÃ = α

0, if µÃ ̸= α
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Definition 3.6 (Fuzzy Support Set). Assume that Ã is a fuzzy multiset chosen from set X. The fuzzy

supporting set B̃ of Ã is a fuzzy subset of X and its membership function is defined as

µB̃(x) = max
α∈I

{CC.µÃ(x)(α) ∨ α}.

The highest membership grade with a non-zero count in the multiset, C.µÃ(x), is equal to µB̃(x), as we have

shown.

3.1 Operations on Fuzzy Multisets

Definition 3.7 (Addition of Fuzzy Multisets). Assume that Ã and B̃ are fuzzy multisets chosen from set X.

The addition of Ã and B̃ gives a new fuzzy multiset C̃ on X, denoted by C̃ = Ã ⊕ B̃ and for any X ∈ X

C.µC̃(x) = C.µÃ(x)⊕ C.µB̃(x) (5)

The incorporation of multisets into equation 5 can be accomplished using Definition 2.10.

For any α ∈ I and x ∈ X It can be demonstrated that for any α ∈ I and x ∈ X the operation of addition

effectively results in the following outcome:

CC.µC̃(x)(α) = CC.µÃ(x)(α) + CC.µB̃(x)(α)

Definition 3.8 (Insertion of a Fuzzy Element). Let (a, y) is a fuzzy element and Ã fuzzy multiset drawn

from set X. Insertion of (a, y) in Ã gives a new multiset D̃ for which the count function is defined as

CC.µD̃(x)(α)


CC.µÃ(y)(a) + 1, if α = a&x = y

CC.µÃ(x)(α), otherwise

Definition 3.9 (Union of Fuzzy Multisets). Assume Ã and B̃ are two fuzzy multisets drawn from the set X.

The union of Ã and B̃ is a new fuzzy multiset D̃, denoted D̃ = Ã ⋓ B̃, such that for each element x in X

C.µD̃(x) = C.µÃ(x)⋓ C.µB̃(x). (6)

Here C.µÃ(x) and C.µB̃(x) are crisp multisets on I thus from definition 2.14 for any x ∈ X and α ∈ I,

CC.µD̃(x)(α) = max{CC.µÃ(x)(α), CC.µB̃(x)(α)}.

Definition 3.10 (Intersection of Fuzzy Multisets). Assume Ã and B̃ are two fuzzy multisets drawn from the

set X. The intersection of Ã and B̃ is a new fuzzy multiset Ẽ, denoted D̃ = Ã ⋒ B̃, such that for each element x

in X

C.µẼ(x) = C.µÃ(x)⋒ C.µB̃(x). (7)
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Here C.µÃ(x) and C.µB̃(x) are crisp multisets on I thus from definition 2.15 for any x ∈ X and α ∈ I,

CC.µẼ(x)(α) = min{CC.µÃ(x)(α), CC.µB̃(x)(α)}.

Definition 3.11 (Removal of Fuzzy Multisets). Let Ã and B̃ are two fuzzy multisets drawn from the set X.

The removal of multiset B̃ from Ã gives a new fuzzy multiset D̃, denoted as D̃ = Ã ⊖ B̃ and for any x ∈ X,

Count function is defined as

C.µD̃(x) = C.µÃ(x)⊖ C.µB̃(x).

Here C.µÃ(x) and C.µB̃(x) are crisp multisets on I thus from definition 2.13, for any x ∈ X and α ∈ I,

CC.µD̃(x)(α) = max{CC.µÃ(x)(α)− CC.µB̃(x)(α), 0}.

3.2 Fuzzy Set-Multiset Selection

Consider a scenario where Ã represents a fuzzy multiset drawn from the set X, and B̃ represents a

fuzzy subset of X.

Definition 3.12 (Fuzzy Multiset to Fuzzy Set Inclusion). Let D̃ = Ã⊛ B̃, the fuzzy multiset where elements

are in it from Ã and also members of B̃. Since Ã is fuzzy multiset then for any x ∈ X we get

C.µÃ(x) =
⋃
α∈I

{
CCµÃ(x)(α)

α

}

Here CCµÃ(x)(α) represents number of times α appeared along with x in fuzzy multiset Ã then

C.µD̃(x) =
⋃
α∈I

{
CCµÃ(x)(α)

min{α, µB̃(x)}

}

Theorem 3.13. If Ã and B̃ are fuzzy sets on X then Ã ⊛ B̃ = Ã ∧ B̃.

Proof. Let D̃ = Ã ⊛ B̃. Since Ã is a fuzzy set then CCµÃ(x)(α) ∈ {0, 1}. Thus for any x ∈ X and α ∈ I

CCµD̃(x)(α) =


CCµÃ(x)(α), if min{α, µB̃(x)} ̸= 0

0, if min{α, µB̃(x)} = 0

And µD̃(x) = min{µÃ(x), µB̃(x)}. Hence Ã ⊛ B̃ = Ã ∧ B̃.

4. Conclusion

This research article proposes an alternative perspective on Yagar’s Bag Theory by adopting the

term "multiset" instead of "bag" to align with community preferences. The study introduces revised

definitions and different notations to enhance the understanding of multiset structures within Yagar’s
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theory. The upcoming graphical representations will aid in visual comprehension and stimulate further

research and discussions in the field. Overall, this work contributes to the refinement and development

of Yagar’s Theory within the context of multisets.

References

[1] G. Beliakov, A. Pradera and T. Calvo, Aggregation Functions: A Guide for Practitioners, Springer

Berlin, Heidelberg, 2010.

[2] D. Dubois and H. Prade, Representation and combination of uncertainty with belief functions and

possibility measures, Computational Intelligence, 4(3)(1988), 244–264.

[3] B. Li, Fuzzy bags and applications, Fuzzy Sets and Systems, 34(1)(1990), 61–71.

[4] S. Sebastian, Multi-fuzzy sets, International Mathematical Forum, 5(1)(2010), 2471 –2476.

[5] R. R. YAGER, On the theory of bags, International Journal of General Systems, 13(1)(1986), 23–37.

[6] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3)(1965), 338–353.

[7] X. R. Zhao and B. Q. Hu, Three-way decisions with decision-theoretic rough sets in multiset-valued

information tables, Information Sciences, 507(2020), 684–699.


