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Abstract

The nonconvex bifunction extended general variational inequality is another type of variational

inequalities that we describe and discuss in this research. We propose and evaluate some iterative

solutions for the nonconvex bifunction extended general variational inequalities using the auxiliary

principle technique. We show the convergence of these methods either needs only

pseudomonotonicity. Our convergence proofs are fairly straightforward. The concepts and

methods used in this paper could inspire additional study in this area.

Keywords: variational inequalities; auxiliary principle; convergence; Nonconvex function.

2020 Mathematics Subject Classification: 49J40.

1. Introduction

The theory of variational inequalities, which Stampacchia [27] first proposed, can be seen as an

essential and substantial extension of the variational principles. It is common knowledge that the

variational inequalities serve as the convex function’s criterion for optimality. We have another class of

variational inequalities, called the bifunction (directional) variational inequalities, for the directional

differentiable convex functions. Numerous elements of the bifunction variational inequalities have

been studied by Crespi et al. [4–7], Fang et al. [8], Lalitha et al. [10], and Noor et al. [23]. Noor [20]

shows that a class of bifunction variational inequalities can serve as a description of the optimality

condition for a subclass of directional differentiable nonconvex functions on a nonconvex set.

We introduced and talked about the general nonconvex bifunction variational inequalities on

uniformly proximal regular sets as a result of this finding. The prox-regular sets are known to be

nonconvex and include convex sets as special cases [3, 27]. Variational inequality on the uniformly

prox-regular sets has been studied by Noor [15–20] and Bounkhel et al. [2]. There are many numerical

techniques for resolving variational inequalities, such as the projection technique and its variants, the

Wiener-Hop equations, the auxiliary principle, and resolvent equations. It is understood that certain
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approaches, such as projection, Wiener-Hop equations, proximal equations, and resolvent equations,

cannot be expanded upon or generalised to suggest and examine equivalent iterative solutions to

generic nonconvex bifunction variational inequalities.

This aspect promotes the usage of the auxiliary principle technique, which is mostly thanks to

Glowinski et al.’s [9] iterative schemes for solving various classes of variational inequalities. We draw

attention to the flexibility and lack of operator projection in this technique. This method focuses on

locating the auxiliary variational inequality and demonstrating via the fixed-point method that the

auxiliary problem’s solution is the same as the original problem’s solution. It became out that we can

create gap (merit) functions by using this technique to identify analogous differentiable optimisation

issues. It is well knowledge that this technique can be used to create special cases of a significant

number of numerical algorithms.Using this method, we propose and evaluate some explicit

predictor-corrector methods for extended general variational inequalities.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by ⟨., .⟩ and ∥.∥ respectively.

Let K be a nonempty and convex set in H. The following well-known notions from nonlinear convex

analysis and nonsmooth analysis are owed to Clarke et al. [3] and Poliquin et al. [27], respectively. A

novel class of nonconvex sets known as uniformly prox-regular sets has been developed and researched

by Poliquin et al. [27] and Clarke et al. [3].

Definition 2.1. The proximal normal cone of K at u ∈ H is given by

NP
K(u) := ξ ∈ H : u ∈ PK[u + αξ],

where α > 0 is a constant and

PK[u] = u∗ ∈ K : dK(u) = ∥u − u∗∥

Here dK(.) is the usual distance function to the subset K, that is

dK(u) = inf
v∈K

∥v − u∥.

The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.2. Let K be a nonempty, closed and convex subset in H: Then ζ ∈ NP
K(u); if and only if, there exists

a constant α > 0 such that

⟨ζ, u − v⟩ ≤ α∥v − u∥2, ∀v ∈ K

Definition 2.3. For a given r ∈ (0; 1], a subset Kr is said to be normalized uniformly r-prox-regular if and only

if every nonzero proximal normal cone to Kr can be realized by an r-ball, that is,∀u ∈ Kr and 0 ̸= ξ ∈ NP
K(u)
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one has

⟨(ξ)/∥ξ∥, v − u⟩ ≤ (1/2r)∥v − u∥2, ∀v ∈ Kr

It is clear that the class of normalized uniformly prox-regular sets is sufficiently large to include the

class of convex sets, p-convex sets. C1.1 submanifolds (possibly with boundary) of H, the images under

a C1.1 diffeomorphism of convex sets and many other nonconvex sets; see Clarke et al. [3] and Poliquin

et al. [27]. It is well-known that the union of two disjoint intervals [a, b] and [c, d] is a prox-regular

set with r = c−b
2 . For other examples of prox-regular sets, see Noor [20] . Obviously, for r = ∞,

the uniformly prox-regularity of Kr is equivalent to the convexity of K. This class of uniformly prox-

regular sets have played an important part in many nonconvex applications such as optimization,

dynamic systems and differential inclusions. It is known that if Kr is a uniformly prox-regular set,

then the proximal normal cone NP
K(u) is closed as a set-valued mapping.

For the sake of simplicity, we take γ = 1
r . Then it is clear that for r = ∞, we have γ = 0.

For given bifunction B(:; :) : H → H and nonlinear operator g : H → H; we consider the problem of

finding u ∈ H : g(u) ∈ Kr such that

B(g(u), g(v)− g(u)) + γ∥g(v)− g(u)∥2 ≥ 0 ∀v ∈ H : g(v) ∈ Kr, (1)

which is called the nonconvex bifunction general variational inequality.

We now discuss some important special cases nonconvex bifunction general variational inequality.

Special Cases

(I) We note that, if Kr ≡ K; the convex set in H, then problem (1) is equivalent to finding u ∈ H : g(u) ∈

K such that

B(g(u), g(v)− g(u)) ≥ 0 ∀v ∈ H : g(v) ∈ K, (2)

Inequality of type (2) is called the bifunction general variational inequality, which appears to be new

one.

(II) If B(g(u), g(v)− g(u)) = ⟨Tu, g(v)− g(u))⟩, where T is a nonlinear operator, then problem (1) is

equivalent to finding u ∈ H : g(u) ∈ Kr such that

⟨Tu, g(v)− g(u))⟩+ γ∥g(v)− g(u)∥2 ≥ 0 ∀v ∈ H : g(v) ∈ Kr, (3)

which is called the general nonconvex variational inequality, see Noor [15–20].

(III) If B(g(u), g(v) − g(u)) = ⟨Tu, g(v) − g(u))⟩, where T is a nonlinear operator and Kr = K, the

convex set, then problem (3) is equivalent to finding u ∈ H : g(u) ∈ Kr such that

⟨Tu, g(v)− g(u))⟩ ≥ 0 ∀v ∈ H : g(v) ∈ K, (4)

which is called the general variational inequality, introduced and studied by Noor [11–14]. It has
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been shown a wide class of nonsymmetric and odd-order obstacle boundary values and initial value

problems can be studied in the general framework of general variational inequalities (4). For the

applications, numerical methods, sensitivity analysis, dynamical system, merit functions, and other

aspects of general variational inequalities, see Al-Said et al. [1], Noor at al. [21–26] and references

therein.

(IV) If g ≡ I, the identity operator, then problem (4) reduces to finding u ∈ Kr such that

⟨Tu, v − u⟩ ≥ 0 ∀v ∈ Kr, (5)

which is called the nonconvex variational inequality, see Noor [16, 20].

(V) If Kr ≡ K, the convex set, then problem (5) reduces to finding u ∈ K such that

⟨Tu, v − u⟩ ≥ 0 ∀v ∈ K, (6)

which is called the classical variational inequality, introduced and studied by Stampacchia [28].

3. Main Result

In this portion, we propose and analyse some iterative methods for solving the general nonconvex

bifunction variational inequality (1), which was introduced by Glowinski et al. [9] and developed by

Noor [14] and Noor et al [23, 24]. The main advantage of this approach is that it does not utilize the

idea of projection. For a given u ∈ H : g(u) ∈ Kr satisfying (1), consider the problem of finding

w ∈ H : g(w) ∈ Kr such that

ρB(g(w), g(v)− g(w)) + ⟨w − u, v − w⟩+ γ∥g(v)− g(w)∥2 ≥ 0 ∀v ∈ H : g(v) ∈ Kr, (7)

where ρ > 0 and γ > 0 is a constant. Inequality of type (7) is called the auxiliary nonconvex bifunction

general variational inequality. Note that if w = u, then w is a solution of (1). This simple observation

enables us to suggest the following iterative method for solving the general nonconvex bifunction

variational inequalities (1).

Algorithm 3.1. For a given u0 ∈ Kr, compute the approximate solution un+1 by the iterative scheme

ρB(g(un+1), g(v)− g(un+1)) + ⟨un+1 − un, v − un+1⟩+ γ∥g(v)− g(un+1)∥2 ≥ 0 ∀g(v) ∈ Kr, (8)

Algorithm 3.1 is called the proximal point algorithm for solving general nonconvex bifunction

variational inequality (1). In particular, if r = ∞ and γ = 0 then the uniformly prox-regular set Kr

becomes the standard convex set K, and consequently Algorithm 3.1 reduces to:
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Algorithm 3.2. For a given u0 ∈ K, compute the approximate solution un+1 by the iterative scheme

ρB(g(un+1), g(v)− g(un+1)) + ⟨un+1 − un, v − un+1⟩ ≥ 0 ∀g(v) ∈ K

which is known as the proximal point algorithm for solving bifunction variational inequalities (2) and has been

studied extensively, see Noor [11–17, 17–20].

For the convergence analysis of Algorithm 3.1, we recall the following concepts and results.

Definition 3.3. A bifunction B(:, :) : H × H → H with respect to the operator g is said to be:

(i). monotone, if and only if, B(g(u), g(v)− g(u)) + B(g(v), g(u)− g(v)) ≤ 0, ∀ u, v ∈ H;

(ii). pseudomonotone, if and only if, B(g(u), g(v) − g(u)) + γ∥g(v) − g(u)∥2 ≥ 0 implies that

−B(g(v), g(u)− g(v))− γ∥g(v)− g(u)∥2 ≥ 0 ∀ u, v ∈ H;

(iii). partially relaxed strongly monotone, if and only if, there exists a constant α > 0 such that B(g(z), g(v)−

g(u)) + B(g(v), g(u)− g(v)) ≤ α∥z − u∥2, ∀ u, v, z ∈ H.

Note that for z = u, partially relaxed strongly monotonicity reduces to monotonicity. It is known that

coercivity implies partially relaxed strongly monotonicity, but the converse is not true. It is known that

monotonicity implies pseudomonotonicity; but the converse is not true. We also recall the well-known

result.

2⟨u, v⟩ = ∥u + v∥2 − ∥u∥2 − ∥v∥2 (9)

We now consider the convergence criteria of Algorithm 3.1 and this is the main motivation of our next

result.

Theorem 3.4. Let the operator B(:, :) : Kr × Kr → H be pseudomonotone. If un+1 is the approximate solution

obtained from Algorithm 3.1 and u ∈ Kr is a solution of (1), then

∥u − un+1∥2 ≤ ∥u − un∥2 − ∥un − un+1∥2 (10)

Proof. Let u ∈ H : g(u) ∈ Kr be a solution of (1). Then

−B(g(v), g(u)− g(v))− γ∥g(v)− g(u)∥2 ≥ 0 ∀ v ∈ H, g(v) ∈ Kr (11)

since B(:, :) is pseudomonotone. Taking v = un+1 in (11), we have

−B(g(un+1), g(u)− g(un+1))− γ∥g(u)− g(un+1)∥2 ≥ 0 (12)

Setting v = u in (2), and using (8), we have

⟨un+1 − un, u − un+1⟩ ≥ −ρB(g(un+1), g(un+1)− g(u))− γ∥g(un+1)− g(u)∥2 ≥ 0 (13)
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Setting v = u − un+1 and u = un+1 − un in (3), we obtain

2⟨un+1 − un, u − un+1⟩ = ∥u − un∥2 − ∥un − un+1∥2 − ∥u − un+1∥2 (14)

From (9) and (14), and using (12) and (13) we get

∥u − un+1∥2 ≤ ∥u − un∥2 − ∥un − un+1∥2

Theorem 3.5. Let H be a finite dimension subspace and let un+1 be the approximate solution obtained from

Algorithm 3.1. If u ∈ Kr is a solution of (1), then limn→∞ un = u.

Proof. Let u ∈ H : g(u) ∈ Kr be a solution of (1). Then it follows from (10) that the sequence un is

bounded and
∞

∑
n=0

∥un − un+1∥2 ≤ ∥u0 − u∥2

which implies that

lim
n→∞

∥un − un+1∥ = 0 (15)

Let û be a cluster point of the sequence un and let the subsequence uj of the sequence un converge to

û ∈ Kr. replacing un by unj in (15) and taking the limit nj → ∞ and using (8), we have

B(g(û), g(v)− g(û))− γ∥g(v)− g(û)∥2 ≥ 0 ∀v ∈ H, g(v) ∈ Kr,

which implies that û solves the general nonconvex bifunction variational inequality (1) and

∥un − un+1∥2 ≤ ∥û − un∥2

Thus it follows from the above inequality that the sequence un has exactly one cluster point û and

limn→∞ un = û, the required result.

We note that for r = ∞, the r-prox-regular set K becomes a convex set and the nonconvex bifunction

variational inequality (1) collapses to the bifunction variational inequality (2). Thus our results include

the previous known results as special cases. It is well-known that to implement the proximal point

methods, one has to calculate the approximate solution implicitly, which is in itself a difficult problem.

To overcome this drawback, we suggest another iterative method, the convergence of which requires

only partially relaxed strongly monotonicity, which is a weaker condition that cocoercivity. For a given

u ∈ H : g(u) ∈ Kr satisfying (1), consider the problem of finding w ∈ H : g(w) ∈ Kr such that

ρB(g(u), g(v)− g(w)) + ⟨w − u, v − w⟩+ γ∥g(v)− g(w)∥2 ≥ 0 ∀g(v) ∈ Kr, (16)
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which is also called the auxiliary nonconvex bifunction general variational inequality. Note that

problems (3) and (16) are quite different. If w = u, then clearly w is a solution of the nonconvex

bifunction general variational inequality (1). This fact enables us to suggest and analyze the following

iterative method for solving the nonconvex bifunction general variational inequality (1).

Algorithm 3.6. For a given u0 ∈ H, compute the approximate solution un+1 by the iterative scheme

ρB(g(un), g(v)− g(un+1)) + ⟨un+1 − un, v − un+1⟩+ γ∥g(v)− g(un+1)∥2 ≥ 0 ∀ g(v) ∈ Kr, (17)

Note that, for r = ∞, the uniformly prox-regular set Kr becomes a convex set K, and Algorithm 3

reduces to:

Algorithm 3.7. For a given u0 ∈ K, compute the approximate solution un+1 by the iterative scheme

ρB(g(un), g(v)− g(un+1)) + ⟨un+1 − un, v − un+1⟩+ γ∥g(v)− g(un+1)∥2 ≥ 0 ∀g(v) ∈ K,

Theorem 3.8. Let the operator B(:,:) be partially relaxed strongly monotone with constant α > 0. If un+1 is the

approximate solution obtained from Algorithm 3.6 and u ∈ H : g(u) ∈ Kr is a solution of (1), then

∥u − un+1∥2 ≤ ∥u − un∥2 − (1 − 2ρα)∥un − un+1∥2 (18)

Proof. Let u ∈ H : g(v) ∈ Kr be a solution of(1). Then

B(g(u), g(v)− g(u)) + γ∥g(v)− g(u)∥2 ≥ 0 ∀v ∈ H : g(v) ∈ Kr, (19)

Taking v = un+1 in (19), we have

B(g(u), g(un+1)− g(u)) + γ∥g(un+1)− g(u)∥2 ≥ 0. (20)

Letting v = u in (17), we obtain

ρB(g(un), g(u)− g(un+1)) + ⟨un+1 − un, u − un+1⟩+ γ∥g(u)− g(un+1)∥2 ≥ 0,

which implies that

⟨un+1 − un, u − un+1⟩ ≥ −ρB(g(un), g(u)− g(un+1))− γ∥g(u)− g(un+1)∥2

≥ −ρB(g(un), g(u)− g(un+1)) + B(g(u), g(un+1)− g(u))

≥ −αρ∥un − un+1∥2

(21)

since B(:, :) is partially relaxed strongly monotone with constant α > 0. Now Combining (20) and (21),
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we get.

∥u − un+1∥2 ≤ ∥u − un∥2 − (1 − 2ρα)∥un − un+1∥2

4. Conclusion

This research introduces and discusses a new class of extended nonconvex bifunction general

variational inequalities involving two arbitrary operators. There are some unique cases discussed.

Certain iterative solutions to nonconvex bifunction general variational inequalities are proposed using

the auxiliary principle method. The proposed approaches convergence analysis is examined in the

presence of partially relaxed highly monotonicity and pseudo-monotonicity. Comparing the efficacy

of the inertial and proximal approaches with other methods is an outstanding subject; this is another

area for future investigation. Additional work is needed to compare these approaches.
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