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Abstract: Haar wavelet collocation method is developed for the numerical solution of nonlinear Fredholm, Volterra, mixed Volterra-
Fredholm integral and integro-differential equations. The method is tested on some of illustrative examples and made a

comparison with the exact solution and existing methods. It shows that the proposed method yields better results than
the others. Hence, the proposed scheme is a new alternative approach and efficient numerical method for the solution of

nonlinear integral and integro-differential equations.
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1. Introduction

Integral and integro-differential equations find its applications in various fields of science and engineering. There are

several numerical methods for approximating the solution of integral and integro-differential equations are known and many

different basic functions have been used. In numerical analysis solving integral equations are reducing it to a system of

equations. There are various methods to solve integral and integro-differential equations such as Adomian decomposition

method, successive substitutions, Laplace transformation method, Picard’s method, etc [1].

Wavelets theory is a relatively new and an emerging tool in applied mathematical research area. It has been applied

in a wide range of engineering disciplines; particularly, signal analysis for waveform representation and segmentations,

time-frequency analysis and fast algorithms for easy implementation. Wavelets permit the accurate representation of

a variety of functions and operators. Moreover, wavelets establish a connection with fast numerical algorithms [2, 3].

Since 1991 the various types of wavelet method have been applied for the numerical solution of different kinds of integral

equations, a detailed survey on these papers can be found in [4].

The solutions are often quite complicated and the advantages of the wavelet method get lost. Therefore any kind of

simplification is welcome. One possibility for it is to make use of the Haar wavelets, which are mathematically the

simplest wavelets. In the previous work, system analysis via Haar wavelets was led by Chen and Hsiao [5], who first

derived a Haar operational matrix for the integrals of the Haar function vector and put the applications for the Haar

∗ E-mail: rkmundewadi@gmail.com
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analysis into the dynamic systems. Recently, Haar wavelet method is applied for different type of problems. Also, Haar

wavelet method is applied for different kind of integral equations, which among the Lepik et al. [6–12] presented the

solution for differential and integral equations. Babolian et al. [13] applied for solving nonlinear Fredholm integral equations.

Aziz et al. [14] have introduced a new algorithm for the numerical solution of nonlinear Fredholm and Volterra integral

equations. Islam et. al [15], Mishra et. al [16] have applied the Haar wavelet method for solving nonlinear volterra integro-

differential equations. Ramane et al. [23] have applied a new Hosoya polynomial of path graphs for the numerical solution

of Fredholm integral equations. In fact the applications of the Haar wavelet collocation method based on Leibnitz rule in

the numerical analysis field is not new and on the other side possessing some of the well known advantages such as:

(1). It is accurate, needless effort to achieve the results,

(2). It is possible to pick any point in the interval of integration and as well the approximate solutions and their derivatives

will be applicable.

(3). The method does not require discretization of the variables, and it is not affected by computation round off errors and

one is not faced with necessity of large computer memory and time.

(4). It is of global nature in terms of the solutions obtained as well as its ability to solve other mathematical, physical, and

engineering problems.

In this paper, we applied the Haar wavelet collocation method (HWCM) based on Leibnitz rule for the numerical solution

of integral and integro-differential equations.

2. Properties of Haar Wavelets

2.1. Haar wavelets

The scaling function h1(t) for the family of the Haar wavelet is defined as

h1(t) =

 1 for t ∈ [0, 1)

0 otherwise
(1)

The Haar Wavelet family for t ∈ [0, 1) is defined as,

hi(t) =


1 for t ∈ [α, β),

−1 for t ∈ [β, γ),

0 elsewhere,

(2)

where α = k
m

, β = k+0.5
m

, γ = k+1
m

, where m = 2l, l = 0, 1, . . . , J , J is the level of resolution; and k = 0, 1, . . . ,m− 1 is the

translation parameter. Maximum level of resolution is J . The index i in (2) is calculated using i = m + k + 1. In case of

minimal values m = 1, k = 0 then i = 2. The maximal value of i is N = 2J+1. Let us define the collocation points tj = j−0.5
N

,

j = 1, 2, . . . , N . Haar coefficient matrix h (i, j) = hi(tj) which has the dimension N × N . For instance, J = 3 ⇒ N = 16,

then we have
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h (16, 16) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1


Any function f(t) which is square integrable in the interval (0, 1) can be expressed as an infinite sum of Haar wavelets as

f(t) =

∞∑
i=1

aihi(t) (3)

The above series terminates at finite terms if f(t) is piecewise constant or can be approximated as piecewise constant

during each subinterval. Given a function f(t) ∈ L2(R) a multi-resolution analysis (MRA) of L2(R) produces a sequence of

subspaces Vj , Vj+1, ... such that the projections of f(t) onto these spaces give finer and finer approximations of the function

f(t) as j →∞.

2.2. Operational Matrix of Haar Wavelet

The operational matrix P which is an N square matrix is defined by

P1,i(t) =

∫ t

0

hi(s) ds (4)

often, we need the integrals

Pr,i(t) =

∫ t

A

∫ t

A

...

∫ t

A

hi(s) ds
r︸ ︷︷ ︸

r−times

=
1

(r − 1)!

∫ t

A

(t− s)r−1hi(s) ds (5)

r = 1, 2, . . . n and i = 1, 2, . . . , N . For r = 1, corresponds to the function P1,i(t), with the help of (2) these integrals can be

calculated analytically; we get

P1,i (t) =


t− α for t ∈ [α, β)

γ − t for t ∈ [β, γ)

0 Otherwise

(6)
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P2,i (t) =



1
2
(t− a)2 for t ∈ [α, β)

1
4m2 − 1

2
(γ − t)2 for t ∈ [β, γ)

1
4m2 for t ∈ [γ, 1)

0 Otherwise

(7)

In general, the operational matrix of integration of rth order is given as

Pr,i (t) =



1
r!

(t− α)r for t ∈ [α, β)

1
r!
{(t− α)r − 2(t− β)r} for t ∈ [β, γ)

1
r!
{(t− α)r − 2(t− β)r + (t− γ)r} for t ∈ [γ, 1)

0 Otherwise

(8)

For instance, J = 3 ⇒ N = 16, then we have

P1,i(16, 16) =
1

32



1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1 3 5 7 9 11 13 15 15 13 11 9 7 5 3 1

1 3 5 7 7 5 3 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 3 5 7 7 5 3 1

1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 3 3 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 3 3 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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P2,i(16, 16) =
1

2048



1 9 25 49 81 121 169 225 289 361 441 529 625 729 841 961

1 9 25 49 81 121 169 225 287 343 391 431 463 487 503 511

1 9 25 49 79 103 119 127 128 128 128 128 128 128 128 128

0 0 0 0 0 0 0 0 1 9 25 49 79 103 119 127

1 9 23 31 32 32 32 32 32 32 32 32 32 32 32 32

0 0 0 0 1 9 23 31 32 32 32 32 32 32 32 32

0 0 0 0 0 0 0 0 1 9 23 31 32 32 32 32

0 0 0 0 0 0 0 0 0 0 0 0 1 9 23 31

1 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8

0 0 1 7 8 8 8 8 8 8 8 8 8 8 8 8

0 0 0 0 1 7 8 8 8 8 8 8 8 8 8 8

0 0 0 0 0 0 1 7 8 8 8 8 8 8 8 8

0 0 0 0 0 0 0 0 1 7 8 8 8 8 8 8

0 0 0 0 0 0 0 0 0 0 1 7 8 8 8 8

0 0 0 0 0 0 0 0 0 0 0 0 1 7 8 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7



3. Haar Wavelet Collocation Method (HWCM) of Solution

In this section, we present a Haar wavelet collocation method (HWCM) based on Leibnitz rule for the numerical solution of

nonlinear integral and integro-differential equations of the form,

(i). Nonlinear Volterra integral equations

u(t) = f(t) + λ

∫ t

a

k1(t, s, u(s))ds

(ii). Nonlinear Fredholm integral equations

u(t) = f(t) +

∫ 1

0

k2(t, s, u(s)) ds ,

(iii). Nonlinear Fredholm-Hammerstein integral equations

u(t) = f(t) +

∫ 1

0

k2(t, s)g(s, u(s)) ds ,

(iv). Nonlinear Volterra-Fredholm integral equations

u(t) = f(t) +

∫ t

0

k1(t, s, u(s))ds +

∫ 1

0

k2(t, s, u(s)) ds ,

(v). Nonlinear Volterra-Fredholm-Hammerstein integral equations

u(t) = f(t) +

∫ t

0

k1(t, s)g(s, u(s))ds +

∫ 1

0

k2(t, s)g(s, u(s)) ds ,

(vi). Nonlinear Volterra-integro-differential equations

u′(t) = f(t) +

∫ t

0

k1(t, s, u(s))ds
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(vii). Nonlinear Fredholm integro-differential equations

u′(t) = f(t) +

∫ 1

0

k2(t, s, u(s))ds

(viii). Nonlinear Fredholm-Hammerstein integro-differential equations

u′(t) = f(t) +

∫ 1

0

k2(t, s)g(s, u(s))ds

where k1(t, s, u(s)) and k2(t, s, u(s)) is a nonlinear function defined on [0, 1] × [0, 1] are the known function is called the

kernel of the integral equation and f(t) is also a known function, while the unknown function u(t) represents the solution

of the integral equation. Basic principle is that for conversion of the integral equation into equivalent differential equation

with initial conditions. The conversion is achieved by the well-known Leibnitz rule [1]. Numerical computational Procedure

is as follows,

Step 1: Differentiating above equations w.r.t t using Leibnitz rule, we get differential equations with subject to initial

conditions u(0) = β, u′(0) = γ.

Step 2: Applying Haar wavelet collocation method. Let us assume that,

u′′(t) =

N∑
i=1

aihi(t) (9)

Step 3: By integrating (9) twice and substituting the initial conditions, we get,

u′(t) = γ +

N∑
i=1

aip1,i(t) (10)

u(t) = β + γt+

N∑
i=1

aip2,i(t) (11)

Step 4: Substituting (9)-(11) in the differential equation, which reduces to the nonlinear system of N equations with N

unknowns and then the Newton’s method is used to obtain the Haar coefficients ai, i = 1, 2, . . . , N . Substituting Haar

coefficients in (11) to obtain the required approximate solution of equation.

4. Numerical Experiments

In this section, we consider the some of the examples to demonstrate the capability of the present method and error function

is presented to verify the accuracy and efficiency of the following numerical results:

Error function = Emax = ‖ue(ti)− ua(ti)‖∞ =

√√√√ n∑
i=1

(ue(ti)− ua(ti))
2

where ue and ua are the exact and approximate solution respectively.

Example 4.1. Let us consider the Nonlinear Volterra-Fredholm integral equation [17],

u(t) =
1

6
t+

1

2
t exp(−t2) +

∫ t

0

ts exp(−u2(s)) ds +

∫ 1

0

t u2(s) ds , 0 ≤ x , t ≤ 1 (12)

with the initial conditions u(0) = 0, u′(0) = 1. Which has the exact solution u(t) = t. We applied the present technique

and solved Equation (12) as follows, successively differentiating Equation (12) twice w.r.t t and using Leibnitz rule, we get

differential equation,

u′′(t)− 2t3

exp(t2)
+

3t

exp(t2)
− t exp(−u2(t))− 2t exp(−u2(t))− t2 exp(−u2(t))(−2u(t)u′(t)) = 0 (13)
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Let us assume that,

u′′(t) =

N∑
i=1

aihi(t) (14)

integrating Equation (14) twice,

u′(t)− u′(0) =

N∑
i=1

aip1,i(t)

u′(t) =

N∑
i=1

aip1,i(t) + 1 (15)

u(t)− u(0) =

N∑
i=1

aip2,i(t) + t

u(t) =

N∑
i=1

aip2,i(t) + t (16)

substituting Equation (14)-Equation (16) in Equation (13), we get the system of N equations with N unknowns,

N∑
i=1

aihi(t)−
2t3

exp(t2)
+

3t

exp(t2)
− t exp

−( N∑
i=1

aip2,i(t) + t

)2
− exp

−( N∑
i=1

aip2,i(t) + t

)2
 · 2t

− t2 exp

−( N∑
i=1

aip2,i(t) + t

)2
 · (−2 ·

(
N∑
i=1

aip2,i(t) + t

)
·

(
N∑
i=1

aip1,i(t) + 1

))
= 0. (17)

Solving Equation (17) using Newton’s Method to obtain the Haar wavelet coefficients ai for N = 16 i.e., [−2.33e−09 2.32e−

09 1.22e− 12 4.67e− 09 3.17e− 12 6.85e− 12 − 1.32e− 11 9.21e− 09 3.88e− 12 − 5.13e− 12 1.77e− 11 − 1.00e−

11 2.10e− 12 4.41e− 11 1.80e− 11 1.61e− 08]. Substituting ai’s, in Equation (16) obtain the approximate solution are

given in table 1 and figure 1 shows the comparison with exact and existing method. Maximum error analysis is presented

in table 2.

t Exact HWCM for N = 8 Method[17] Error (HWCM) Error[17]

0 0 0.00000000 0.00000000 5.25e-12 0.00e+00

0.1 0.1 0.10000000 0.06616916 4.65e-13 3.38e-02

0.2 0.2 0.20000000 0.13333039 4.56e-14 6.66e-02

0.3 0.3 0.30000000 0.20355479 4.91e-14 9.64e-02

0.4 0.4 0.40000000 0.27915784 1.31e-13 1.20e-01

0.5 0.5 0.50000000 0.36269547 6.73e-14 1.37e-01

0.6 0.6 0.60000000 0.45678660 8.33e-14 1.43e-01

0.7 0.7 0.70000000 0.56375872 4.21e-13 1.36e-01

0.8 0.8 0.80000000 0.68523040 1.09e-12 1.14e-01

0.9 0.9 0.90000000 0.82191762 1.14e-11 7.80e-02

1 1 1.00000000 0.97404036 7.18e-11 2.59e-02

Table 1. Numerical results of the Example 4.1

N Emax (HWCM)

4 1.73e-11

8 2.43e-11

16 3.03e-11

32 4.34e-11

64 5.70e-11

128 6.80e-11

Table 2. Maximum error analysis of the Example 4.1
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Figure 1. Comparison of HWCM with exact and existing method of the Example 4.1

Example 4.2. Secondly, consider the Nonlinear Volterra-Fredholm-Hammerstein integral equation [18],

u(t) =
t

2
− t4

12
− 1

3
+

∫ 1

0

(t+ s)u(s) ds +

∫ t

0

(t− s)u2(s) ds , 0 ≤ t , s ≤ 1 (18)

Initial condition’s: u(0) = 0, u′(0) = 1. Exact solution of Equation (18) is u(t) = t.

Differentiating Equation (18) twice w.r.t t and using Leibnitz rule which reduces to the differential equation,

u′(t) =
1

2
− 1

3
t3 +

∫ 1

0

u(s) ds+

∫ t

0

u2(s) ds (19)

u′′(t)− [u(t)]2 + t2 = 0 (20)

Assume that,

u′′(t) =

N∑
i=1

aihi(t) (21)

integrating Equation (21) twice,

u′(t) =

N∑
i=1

aip1,i(t) + 1 (22)

u(t) =

N∑
i=1

aip2,i(t) + t (23)

substituting Equation (21)-(23) in Equation (20), we get the system of N equations with N unknowns,

N∑
i=1

aihi(t)−

[
N∑
i=1

aip2,i(t) + t

]2
+ t2 = 0. (24)

Solving Equation (24) using Newton’s method to find Haar wavelet coefficients ai’s for N = 16, i.e., [−1.93e − 11 1.93e −

11 8.48e− 19 3.70e− 11 − 2.56e− 18 1.08e− 12 6.99e− 11 − 5.24e− 20 − 1.59e− 18 − 7.87e− 18 8.86e− 18 4.92e−

13 1.53e− 12 2.60e− 12 9.36e− 11]. Substituting ai’s, in Equation (23) and obtained the required HWCM solution with

exact solution is presented in table 3. Error analysis is shown in table 4. This justifies the efficiency of the HWCM.

t(/32) Exact (HWCM) Error (HWCM)

1 0.03125 0.03125 0

3 0.09375 0.09375 0

5 0.15625 0.15625 0

7 0.21875 0.21875 0
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t(/32) Exact (HWCM) Error (HWCM)

9 0.28125 0.28125 0

11 0.34375 0.34375 0

13 0.40625 0.40625 0

15 0.46875 0.46875 0

17 0.53125 0.53125 0

19 0.59375 0.59375 4.44e-16

21 0.65625 0.65625 4.44e-15

23 0.71875 0.71875 1.41e-14

25 0.78125 0.78125 3.82e-14

27 0.84375 0.84375 7.70e-14

29 0.90625 0.90625 1.67e-13

31 0.96875 0.96875 5.29e-13

Table 3. Comparision of exact and approximate solution of the Example 4.2

N Emax(HWCM)

4 1.93e-13

8 1.68e-13

16 5.29e-13

32 6.66e-13

64 6.55e-13

128 9.38e-13

Table 4. Error analysis of the Example 4.2

Example 4.3. Next, consider the Nonlinear Volterra Integral equation [14],

u(t) =
3

2
− 1

2
e−2t −

∫ t

0

[(u(s))2 + u(s)]ds, 0 ≤ t ≤ 1,

with initial conditions u(0) = 1. Which has the exact solution u(t) = e−t.

u(t) =
3

2
− 1

2
e−2t −

∫ t

0

[(u(s))2 + u(s)]ds, 0 ≤ t ≤ 1, (25)

Successively differentiating Equation (25) w.r.t t and using Leibnitz rule reduces to the differential equation,

u′(t) = e−2t + (u(t)2 + u(t)) (26)

u′(t)− (u(t)2 + u(t))− e−2t = 0 (27)

Assume that,

u′(t) =

N∑
i=1

aihi(t) (28)

integrating Equation (28),

u(t) =
N∑
i=1

aip1,i(t) + 1 (29)

substituting Equation (28) and (29) in (27), we get the system of N equations with N unknowns.

N∑
i=1

aihi(t)−

( N∑
i=1

aip1,i(t) + 1

)2

+

(
N∑
i=1

aip1,i(t) + 1

)− e−2t = 0 (30)

solving (30) using Matlab to find Haar wavelet coefficients ai’s, for N = 16 i.e, [−0.63 − 0.16 − 0.10 − 0.06 − 0.06 −

0.04 − 0.03 − 0.03 − 0.03 − 0.03 − 0.02 − 0.02 − 0.02 − 0.02 − 0.01 − 0.01]. Substituting ai’s, in Equation

(29) and obtained the required HWCM solution compared with exact solutions is shown in table 6. Error analysis is given

in table 5, which justifies the efficiency of the HWCM.
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N Emax(HWCM)

4 5.30e-3

8 1.60e-3

16 4.38e-4

32 1.15e-4

64 2.96e-5

128 7.52e-6

Table 5. Error analysis of the Example 4.3.

t=(/32) HWCM Exact

1 0.9697 0.9692

3 0.9109 0.9105

5 0.8556 0.8553

7 0.8037 0.8035

9 0.7550 0.7548

11 0.7092 0.7091

13 0.6662 0.6661

15 0.6259 0.6258

17 0.5879 0.5879

19 0.5523 0.5523

21 0.5188 0.5188

23 0.4874 0.4874

25 0.4578 0.4578

27 0.4301 0.4301

29 0.4040 0.4040

31 0.3795 0.3796

Table 6. Comparison of Exact and HWCM for N= 16 of the Example of 4.3

Example 4.4. Next, consider the Nonlinear Fredholm Integral equation [14],

u(t) = −t2 − t

3
(2
√

2− 1) + 2 +

∫ 1

0

ts
√
u(s) ds, 0 ≤ t ≤ 1,

with initial conditions u(0) = 2, u′(0) = 0. Which has the exact solution u(t) = 2− t2.

u(t) = −t2 − t

3
(2
√

2− 1) + 2 +

∫ 1

0

ts
√
u(s) ds, 0 ≤ t ≤ 1, (31)

Successively differentiating Equation (31) twice w.r.t t, using Leibnitz rule reduces to the differential equation,

u′(t) = −2t− 1

3
(2
√

2− 1) +

∫ 1

0

s
√
u(s)ds, (32)

u′′(t) + 2 = 0 (33)

Assume that,

u′′(t) =
N∑
i=1

aihi(t) (34)

integrating Equation (34) twice,

u′(t) =

N∑
i=1

aip1,i(t) (35)

u(t) =

N∑
i=1

aip2,i(t) + 2 (36)
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Substituting Equation (34)-(36) in Equation (33), we get the system of N equations with N unknowns,

N∑
i=1

aihi(t) + 2 = 0. (37)

Solving Equation (37) using Matlab to find Haar wavelet coefficients ai’s. For N = 16 i.e.,

[−2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00]. Substituting ai’s, in

Equation (36) and obtained the accurate HWCM solutions is compared with the exact solutions is shown in table 7, which

justifies the efficiency of the HWCM.

t=(/32) HWCM Exact

11.9990 1.9990

31.9912 1.9912

51.9756 1.9756

71.9521 1.9521

91.9209 1.9209

111.8818 1.8818

131.8350 1.8350

151.7803 1.7803

171.7178 1.7178

191.6475 1.6475

211.5693 1.5693

231.4834 1.4834

251.3896 1.3896

271.2881 1.2881

291.1787 1.1787

311.0615 1.0615

Table 7. Comparison of Exact and HWCM for N = 16 of the Example 4.4

Example 4.5. Next, consider the Nonlinear Fredholm Integro-differential equation [19],

u′(t) = 1− 1

2
t− t

2e
+

∫ 1

0

ts exp(−(u(s))2)ds, 0 ≤ t ≤ 1, (38)

with initial conditions u(0) = 0, u′(0) = 1, u′′(0) = 0. Which has the exact solution u(t) = t.

Differentiating Equation (38) twice w.r.t t and using Leibnitz rule reduces to differential equation,

u′′(t) = −1

2
− 1

2e
+

∫ 1

0

s exp(−(u(s))2)ds

u′′′(t) = 0 (39)

assume that,

u′′′(t) =

N∑
i=1

aihi(t) (40)

integrating Equation (40) thrice, we get

u′′(t) =

N∑
i=1

aip1,i(t) (41)

u′(t) =
N∑
i=1

aip2,i(t) + 1 (42)
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u(t) =

N∑
i=1

aip3,i(t) + t (43)

substituting Equations (40)-(43) in the differential equation Equation (39), we get the system of N equations with N

unknowns,
N∑
i=1

aihi(t) = 0. (44)

Solving (44) using Newton’s Method to obtain Haar wavelet coefficients ai’s. substituting these coefficients in Equation (43)

and obtained the required HWCM solutions, which gives the accurate solutions is presented in figure 2. This justifies the

efficiency of the HWCM.

Figure 2. Comparison of HWCM with exact solution for N = 64 of the Example 4.5

Example 4.6. Next, consider the Nonlinear Fredholm-Hammerstein Integro-differential equation [20],

u′(t) = 2t+
1

8
(−π + log(4)) +

∫ 1

0

s arctan(u(s))ds, 0 ≤ t ≤ 1 (45)

with initial conditions u(0) = 0, u′(0) = 0. Which has the exact solution u(t) = t2.

Differentiating Equation (45) w.r.t t and using Leibnitz rule reduces to differential equation,

u′′(t) = 2 (46)

assume that,

u′′(t) =

N∑
i=1

aihi(t) (47)

integrating Equation (47) twice, we get

u′(t) =

N∑
i=1

aip1,i(t) (48)

u(t) =

N∑
i=1

aip2,i(t) (49)

substituting Equations (47)-(49) in the differential equation Equation (46), we get the system of N equations with N

unknowns,
N∑
i=1

aihi(t)− 2 = 0. (50)

Solving Equation (50) using Newton’s Method to obtain Haar wavelet coefficients ai’s substituting these coefficients in

Equation (49) and obtained the required HWCM solutions, which gives the accurate solutions is presented in figure 3. This

justifies the efficiency of the HWCM.
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Figure 3. Comparison of HWCM with exact solution for N = 64 of the Example 4.6

Example 4.7. Next, consider the nonlinear Volterra integro-differential equation [21],

u′(t) = 1 +

∫ t

0

u(s)u′(s)ds, 0 ≤ t ≤ 1 (51)

with initial conditions u(0) = 0, u′(0) = 1. Which has the exact solution u(t) =
√

2 tan
(

t√
2

)
.

Differentiating Equation (51) w.r.t t, using Leibnitz rule, we get the differential equation,

u′′(t)− u(t)u′(t) = 0 (52)

assume that,

u′′(t) =

N∑
i=1

aihi(t) (53)

integrating Equation (53) twice,

u′(t) =

N∑
i=1

aip1,i(t) + 1 (54)

u(t) =

N∑
i=1

aip2,i(t) + t (55)

substituting Equations (53)-(55) in Equation (52), we get the system of N equations with N unknowns,

N∑
i=1

aihi(t)−

(
N∑
i=1

aip2,i(t) + t

)
·

(
N∑
i=1

aip1,i(t) + 1

)
= 0. (56)

Solving Equation (56) using Newton’s Method to obtain Haar wavelet coefficients ai’s for N = 32 i.e., [0.7303 -0.4579 -0.1448

-0.3576 -0.0648 -0.0825 -0.1291 -0.2408 -0.0315 -0.0336 -0.0379 -0.0451 -0.0564 -0.0737 -0.1005 -0.1429 -0.0157 -0.0159 -0.0164

-0.0172 -0.0182 -0.0197 -0.0214 -0.0237 -0.0265 -0.0300 -0.0343 -0.0396 -0.0462 -0.0545 -0.0650 -0.0783]. Substituting ai’s, in

Equation (55) yields the HWCM solution. In table 9 and figure 4, the HWCM solution is compared with the exact solution

and ADM. Further, error analysis of HWCM is shown in table 8.

N Emax(HWCM)

4 1.67e-03

8 4.56e-04

16 1.19e-04
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N Emax(HWCM)

32 3.04e-05

64 7.84e-06

128 2.13e-06

Table 8. Error analysis of HWCM of the Example 4.7

t Exact ADM HWCM Error (ADM) Error (HWCM)

0 0 0 0 0 0

0.0312 0.0312551 0.0312001 0.0312576 5.5e-05 2.5e-06

0.0625 0.0625407 0.0625013 0.0625458 3.9e-05 5.1e-06

0.0938 0.0938876 0.0938065 0.0938953 8.1e-05 7.7e-06

0.1250 0.1253265 0.1250200 0.1253368 3.0e-04 1.0e-05

0.1562 0.1568889 0.0156250 0.1569019 1.4e-01 1.3e-05

0.1875 0.1886064 0.1876030 0.1886221 1.0e-03 1.5e-05

0.2188 0.2205114 0.2189910 0.2205299 1.5e-03 1.8e-05

0.2500 0.2526371 0.2503260 0.2526585 2.3e-03 2.1e-05

0.2812 0.2850175 0.2817230 0.2850418 3.3e-03 2.4e-05

0.3125 0.3176876 0.3132980 0.3177150 4.4e-03 2.7e-05

0.3438 0.3506837 0.3449710 0.3507143 5.7e-03 3.0e-05

0.3750 0.3840435 0.3766600 0.3840775 7.4e-03 3.4e-05

0.4062 0.4178061 0.4084910 0.4178436 9.3e-03 3.7e-05

0.4375 0.4520125 0.4405900 0.4520538 1.1e-02 4.1e-05

0.4688 0.4867056 0.4728850 0.4867508 1.3e-02 4.5e-05

0.5000 0.5219305 0.5053030 0.5219799 1.6e-02 4.9e-05

0.5312 0.5577348 0.5379810 0.5577886 1.9e-02 5.3e-05

0.5625 0.5941686 0.5710610 0.5942273 2.3e-02 5.8e-05

0.5938 0.6312855 0.6044810 0.6313492 2.6e-02 6.3e-05

0.6250 0.6691419 0.6381770 0.6692112 3.1e-02 6.9e-05

0.6562 0.7077985 0.6723040 0.7078737 3.5e-02 7.5e-05

0.6875 0.7473198 0.7070280 0.7474014 4.0e-02 8.1e-05

0.7188 0.7877751 0.7422990 0.7878637 4.5e-02 8.8e-05

0.7500 0.8292390 0.7780680 0.8293351 5.1e-02 9.6e-05

0.7812 0.8717916 0.8145190 0.8718960 5.7e-02 1.0e-04

0.8125 0.9155197 0.8518530 0.9156331 6.3e-02 1.1e-04

0.8438 0.9605172 0.8900430 0.9606405 7.0e-02 12e-04

0.8750 1.0068862 0.9290630 1.0070204 7.7e-02 1.3e-04

0.9062 1.0547377 0.9691440 1.0548841 8.5e-02 1.4e-04

0.9375 1.1041932 1.0105500 1.1043529 9.3e-02 1.5e-04

0.9688 1.1553854 1.0532800 1.1555599 1.0e-01 1.7e-04

1.0000 1.2084602 1.0973700 1.2086514 1.1e-01 1.9e-04

Table 9. Comparison of numerical results with exact and existing method of the Example 4.7, for N = 32.

Figure 4. Comparison of HWCM, ADM with exact solution for N = 32 of the Example 4.7
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Example 4.8. Lastly, consider the Nonlinear Fredholm-Hammerstein Integral equation [22],

u(t) +

∫ 1

0

et−2s [u(s)]3 ds = et+1, 0 ≤ t ≤ 1, (57)

with initial conditions u(0) = 1. Which has the exact solution u(t) = et.

Differentiating Equation (57) w.r.t t and using Leibnitz rule, its equivalent differential equation,

u′(t) = et+1 −
∫ 1

0

et−2s [u(s)]3ds (58)

u′(t)− u(t) = 0 (59)

Let us assume that,

u′(t) =

N∑
i=1

aihi(t) (60)

integrating Equation (60), we get

u(t) = 1 +

N∑
i=1

aip1,i(t) (61)

substituting Equation (60) and Equation (61) in the differential equation Equation (59), we get the system of N equations

with N unknowns,
N∑
i=1

aihi(t)−

(
1 +

N∑
i=1

aip1,i(t)

)
= 0. (62)

Solving Equation (62) using Newton’s Method to obtain Haar wavelet coefficients ai’s for N = 16 i.e., [1.7192 -0.4212 -0.1615

-0.2662 -0.0710 -0.0911 -0.1170 -0.1503 -0.0333 -0.0377 -0.0428 -0.0485 -0.0549 -0.0622 -0.0705 -0.0799 ]. Substituting ai’s,

in (61) and obtained the required HWCM solutions is presented in table 10 and figure 5, compared with exact and existing

solutions. Error analysis is shown in table 11, which justifies the efficiency of the HWCM.

Figure 5. Comparison of HWCM solution with exact solution and existing method

t Exact HWCM Method [22] Error (HWCM) Error [22]

0.1 1.105170918 1.105314848 1.107217811 1.4e-04 2.0e-03

0.2 1.221402758 1.221571768 1.218102916 1.6e-04 3.3e-03

0.3 1.349858808 1.350056580 1.341165462 1.9e-04 8.7-03

0.4 1.491824698 1.492055414 1.474918603 2.3e-04 1.6e-02
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t Exact HWCM Method [22] Error (HWCM) Error [22]

0.5 1.648721271 1.648989674 1.667402633 2.6e-04 1.8e-02

0.6 1.822118800 1.822430264 1.833861053 3.1e-04 1.1e-02

0.7 2.013752707 2.014113322 2.016679830 3.6e-04 2.9e-03

0.8 2.225540928 2.225957586 2.217456630 4.1e-04 8.1e-03

0.9 2.459603111 2.460083612 2.437978177 4.8e-04 2.1e-02

Table 10. Comparison of Exact and HWCM of the Example 4.8, for N = 32.

N Emax(HWCM)

4 3.0e-02

8 8.1e-03

16 2.1e-03

32 5.4e-04

64 1.3e-04

128 3.4e-05

Table 11. Maximum error analysis of the Example 4.8

5. Conclusion

In the present work, Haar wavelet collocation method based on Leibnitz rule is applied to obtain the numerical solution

of nonlinear integral and integro-differential equations of the second kind. The Haar wavelet function and its operational

matrix were employed to solve the resultant integral and integro-differential equations. The numerical results are obtained

by the proposed method have been compared with existing method. The integral and integro-differential equations are

converted to differential equations with initial conditions, then we reduces to a system of algebraic equations. HWCM are

mathematically simple and easy to use, then the required less computational complexity and provide more quantitatively

reliable results. Illustrative examples clearly depict the validity and applicability of the technique and error analysis shows

that, as the level of resolution N increases, gives the better accuracy.
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