ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Fixed Point Theorem For Pair of Weakly Compatible Mappings Using CLR_T Property

B. Vijayabasker Reddy^{1,*} and V. Srinivas²

- 1 Department of Mathematics, Sreenidhi Institute of Science and Technology, Ghatkesar, Hyderabad, India.
- 2 Department of Mathematics, University college of Science Saifabad, Osmania University, Hyderabad, India.

Abstract: The purpose of this paper is to prove a common fixed point theorem in a fuzzy metric space using the concept of weakly

compatible mappings and CLR_T property.

MSC: 54H25, 47H10.

Keywords: Fixed point, weakly compatible mappings, CLR_T property.

© JS Publication.

1. Introduction

The notion of the fuzzy sets was introduced by Zadeh [14]. Kramosil and Michelek initiated the concept of Fuzzy metric spaces since then many authors proved fixed point theorem using Fuzzy metric space. In 1988, Grabic [5] obtained the Banach contraction principle in fuzzy version. George and Veeramani [4] modified the notion of fuzzy metric space and shown that every metric induces a fuzzy metric. Recently Sintunavarat and kuman [11] initiated an interesting property Common Limit in the Range property (CLR property). Aim of this paper to prove a common fixed point for four self maps with the concept of weakly compatible maps and CLR_T property.

2. Definitions and Preliminaries

Definition 2.1. A binary operation $*: [0,1] \times [0,1] \to [0,1]$ is called continuous t-norm if * satisfies the following conditions:

(1). * is commutative and associative

(2). * is continuous

(3). $a * 1 = a \text{ for all } a \in [0, 1]$

(4). $a*b \le c*d$ whenever $a \le c$ and $b \le d$ for all $a,b,c,d \in [0,1]$.

Definition 2.2. A 3-tuple (X, M, *) is said to be fuzzy metric space if X is an arbitrary set, * is continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions for all $x, y, z \in X$, s, t > 0.

 $^{^*}$ E-mail: basker.bonuga@gmail.com

(FM-1) M(x, y, 0) = 0

(FM-2) M(x, y, t) = 1 for all t > 0 if and only if x = y

(FM-3) M(x, y, t) = M(y, x, t)

 $(FM-4)\ M(x,y,t) * M(y,z,s) \le M(x,z,t+s)$

(FM-5) $M(x,y,.):[0,\infty)\to[0,1]$ is left continuous

Example 2.3 (Induced fuzzy metric space). Let (X,d) be a metric space defined $a*b = \min\{a,b\}$ for all $x,y \in X$ and t>0.

$$M(x, y, t) = \frac{t}{t + d(x, y)}$$
 (a)

Then (X, M, *) is a fuzzy metric space. We call this fuzzy metric M induced by metric d the standard fuzzy metric. From the above example every metric induces a fuzzy metric but there exist no metric on X satisfying (a).

Definition 2.4. Let (X, M, *) be a fuzzy metric space then a sequence $\langle x_n \rangle$ in X is said to be convergent to a point $x \in X$, if

$$\lim_{n \to \infty} M(x_n, x, t) = 1 \text{ for all } t > 0.$$

Definition 2.5. A sequence $\langle x_n \rangle$ in X is called a Cauchy sequence if $\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1$ for all t > 0 and p > 0.

Definition 2.6. A fuzzy metric space (X, M, *) is said to be complete if every Cauchy sequence is convergent to a point in X.

Lemma 2.7. For all $x, y \in X$, M(x, y, .) is non decreasing.

Lemma 2.8. l Let (X, M, *) be a fuzzy metric space if there exists $k \in (0, 1)$ such that $M(x, y, kt) \geq M(x, y, t)$ then x = y.

Proposition 2.9. In the fuzzy metric space (X, M, *) if $a * a \ge a$ for all $a \in [0, 1]$ then $a * b = \min\{a, b\}$.

Definition 2.10. Two self maps S and T of a fuzzy metric space (X, M, *) are said to be compatible mappings if $\lim_{n\to\infty} M(STx_n, TSx_n, t) = 1$, whenever $\langle x_n \rangle$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = z$ for some $z \in X$.

Definition 2.11. Two self maps S and T of a fuzzy metric space (X, M, *) are said to be weakly compatible if they commute at their coincidence point i.e if Su = Tu for some $u \in X$ then STu = TSu.

Definition 2.12. Let B and T be two self maps defined on a metric space (X, d). We say that the mappings B and T satisfy CLR_T property if there exists a sequence $\langle x_n \rangle \in X$ such that $\lim_{n \to \infty} Bx_n = \lim_{n \to \infty} Tx_n = Tx$ for some $x \in X$.

3. Main Result

Theorem 3.1. Let (X, M, *) be a Fuzzy metric space with $a * b = \min\{a, b\}$ and let A, B, S and T are self maps of X satisfying the following condition conditions

- (1). $B(X) \subseteq S(X)$ and the pair (B,T) satisfy CLR_T property
- (2). the pairs (A, S) and (B, T) are weakly compatible
- (3). $[M(Ax, By, kt)]^2 * M(Ax, By, kt)M(Ty, Sx, kt) \ge \{k_1 [M(By, Sx, 2kt) * M(Ax, Ty, 2kt)]\}$

$$+k_2 [M(Ax,Sx,kt)*M(By,Ty,kt)] M(Ty,Sx,t)$$

where for all x,y in X and k_1 , $k_2 \ge 0$, $k_1 + k_2 \ge 1$

then the mappings A, B, S and T have a unique common fixed point in X.

Proof. Assume that the pairs (B,T) satisfy CLR_T property so there exists a sequence $\langle x_n \rangle \in X$ such that $\lim_{n \to \infty} Bx_n = \lim_{n \to \infty} Tx_n = Tx$. Since the condition $B(X) \subseteq S(X)$ implies there exists a sequence $\langle y_n \rangle \in X$ such that $\lim_{n \to \infty} Bx_n = \lim_{n \to \infty} Sy_n$ implies $\lim_{n \to \infty} Sy_n = Tx$ this gives $\lim_{n \to \infty} Bx_n = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} Sy_n = Tx$. We show that $\lim_{n \to \infty} Ay_n = Tx$. Put $x = y_n$ and $y = x_n$ in (3).

$$[M(Ay_{n}, Bx_{n}, kt)]^{2} * M(Ay_{n}, Bx_{n}, kt)M(Tx_{n}, Sy_{n}, kt) \geq \{k_{1} [M(Bx_{n}, Sy_{n}, 2kt) * M(Ay_{n}, Tx_{n}, 2kt)] + k_{2} [M(Ay_{n}, Sy_{n}, kt) * M(Bx_{n}, Tx_{n}, kt)] \} M(Tx_{n}, Sy_{n}, t)$$

$$[M(Ay_{n}, Tx, kt)]^{2} * M(Ay_{n}, Tx, kt)M(Tx, Tx, kt) \geq \{k_{1} [M(Tx, Tx, 2kt) * M(Ay_{n}, Tx, 2kt)] + k_{2} [M(Ay_{n}, Tx, kt) * M(Tx, Tx, kt)] \} M(Tx, Tx, t)$$

$$[M(Ay_{n}, Tx, kt)]^{2} \geq \{k_{1} [M(Ay_{n}, Tx, 2kt)] + k_{2} [M(Ay_{n}, Tx, kt)] \}$$

$$[M(Ay_{n}, Tx, kt)] \geq \{k_{1} + k_{2}\}$$

$$[M(Ay_{n}, Tx, kt)] \geq 1$$

implies $\lim_{n\to\infty}Ay_n=Tx$ let Tx=z then we have $\lim_{n\to\infty}Ay_n=\lim_{n\to\infty}Sy_n=\lim_{n\to\infty}Tx_n=\lim_{n\to\infty}Bx_n=z$. We prove Bx=z. Put $x=y_n$ and y=x in (?)

$$[M(Ay_n, Bx, kt)]^2 * M(Ay_n, Bx, kt) M(Tx, Sy_n, kt) \ge \{k_1 [M(Bx, Sy_n, 2kt) * M(Ay_n, Tx, 2kt)] + k_2 [M(Ay_n, Sy_n, kt) * M(Bx, Tx, kt)]\} M(Tx, Sy_n, t)$$

$$[M(z, Bx, kt)]^2 * M(z, z, kt) M(z, z, kt) \ge \{k_1 [M(Bx, z, 2kt) * M(z, z, 2kt)] + k_2 [M(z, z, kt) * M(Bx, z, kt)]\} M(z, z, t)$$

$$[M(z, Bx, kt)]^2 \ge \{k_1 [M(Bx, z, 2kt)] + k_2 [M(Bx, z, kt)]\}$$

$$[M(z, Bx, kt)] \ge \{k_1 + k_2\}$$

$$[M(z, Bx, kt)] \ge 1$$

implies Bx = z this gives Tx = Bx = z. Since the pair (B,T) is weakly compatible implies BTx = TBx gives Bz = Tz. Also since the condition $B(X) \subseteq S(X)$ implies there exists a sequence $y \in X$ such that Bx = Sy = z. We next show that z = Ay. Put $y = x_n$ and x = y in (?)

$$[M(Ay, Bx_n, kt)]^2 * M(Ay, Bx_n, kt) M(Tx_n, Sy, kt) \ge \{k_1 [M(Bx_n, Sy, 2kt) * M(Ay, Tx_n, 2kt)] + k_2 [M(Ay, Sy, kt) * M(Bx_n, Tx_n, kt)]\} M(Tx_n, Sy, t)$$

$$[M(Ay, z, kt)]^2 * M(Ay, z, kt) M(z, Sy, kt) \ge \{k_1 [M(z, Sy, 2kt) * M(Ay, z, 2kt)] + k_2 [M(Ay, Sy, kt) * M(z, z, kt)]\} M(z, Sy, t)$$

$$[M(Ay, z, kt)]^2 * M(Ay, z, kt) M(z, z, kt) \ge \{k_1 [M(z, z, 2kt) * M(Ay, z, 2kt)] + k_2 [M(Ay, z, kt)]\} M(z, z, t)$$

$$[M(Ay, z, kt)]^2 \ge \{k_1 [M(Ay, z, 2kt)] + k_2 [M(Ay, z, kt)]\}$$

$$[M(Ay, z, kt)] > 1$$

gives Ay = z and this implies Ay = Sy = z. But the pair (A, S) is weakly compatible it follows that ASy = Say implies Az = Sz. Now we prove that Az = Bz. Put x = z and y = z in (?).

$$[M(Az, Bz, kt)]^2 * M(Az, Bz, kt)M(Tz, Sz, kt) \ge \{k_1 [M(Bz, Sz, 2kt) * M(Az, Tz, 2kt)]\}$$

$$+k_{2} \left[M(Az,Sz,kt) * M(Bz,Tz,kt) \right] \right\} M(Tz,Sz,t)$$

$$\left[M(Az,Bz,kt) \right]^{2} * M(Az,Bz,kt) M(Bz,Az,kt) \geq \left\{ k_{1} \left[M(Bz,Az,2kt) * M(Az,Bz,2kt) \right] \right.$$

$$\left. + k_{2} \left[M(Az,Az,kt) * M(Bz,Bz,kt) \right] \right\} M(Bz,Az,t)$$

$$\left[M(Az,Bz,kt) \right]^{2} * M(Az,Bz,kt) M(Bz,Az,kt) \geq \left\{ k_{1} \left[M(Bz,Az,2kt) * M(Az,Bz,2kt) \right] \right.$$

$$\left. + k_{2} \left[M(Az,Az,kt) * M(Bz,Bz,kt) \right] \right\} M(Bz,Az,t)$$

$$\left[M(Az,Bz,kt) \right]^{2} \geq \left\{ k_{1} \left[M(Bz,Az,2kt) \right] + k_{2} \right\} M(Bz,Az,t)$$

$$\left[M(Az,Bz,kt) \right] \geq \left\{ k_{1} \left[M(Bz,Az,2kt) \right] + k_{2} \right\}$$

$$M(Az,Bz,kt) \geq \frac{k_{2}}{1-k_{1}}$$

$$M(Az,Bz,kt) \geq 1$$

implies Az = Bz. Therefore Az = Bz = Sz = Tz. Now we show that z = Az. Put x = z and y = x in (?).

$$\begin{split} [M(Az,Bx,kt)]^2*M(Az,Bx,kt)M(Tx,Sz,kt) &\geq \{k_1 \left[M(Bx,Sz,2kt) * M(Az,Tx,2kt) \right] \\ &\quad + k_2 \left[M(Az,Sz,kt) * M(Bx,Tx,kt) \right] \} \, M(Tx,Sz,t) \\ [M(Az,z,kt)]^2*M(Az,z,kt)M(z,Az,kt) &\geq \{k_1 \left[M(z,Az,2kt) * M(Az,z,2kt) \right] \\ &\quad + k_2 \left[M(Az,Az,kt) * M(z,z,kt) \right] \} M(z,Az,t) \\ [M(Az,z,kt)] &\geq \{k_1 \left[M(z,Az,2kt) \right] + k_2 \} \\ [M(Az,z,kt)] &\geq \frac{k_2}{1-k_1} \\ [M(Az,z,kt)] &\geq 1 \end{split}$$

implies Az = z therefore Az = Bz = Sz = Tz = z.

Uniqueness: Let $w(\neq z)$ be the common fixed point of A, B, S and T then we get Aw = Bw = Sw = Tw = w. Put x = z and y = w in (?).

$$\begin{split} [M(Az,Bw,kt)]^2*M(Az,Bw,kt)M(Tw,Sz,kt) &\geq \{k_1 \left[M(Bw,Sz,2kt) * M(Az,Tw,2kt) \right] \\ &\quad + k_2 \left[M(Az,Sz,kt) * M(Bw,Tw,kt) \right] \} \, M(Tw,Sz,t) \\ [M(z,w,kt)]^2*M(z,w,kt)M(w,z,kt) &\geq \{k_1 \left[M(w,z,2kt) * M(z,w,2kt) \right] \\ &\quad + k_2 \left[M(z,z,kt) * M(w,w,kt) \right] \} \, M(w,z,t) \\ [M(z,w,kt)] &\geq \{k_1 \left[M(w,z,2kt) \right] + k_2 \} \\ [M(z,w,kt)] &\geq \frac{k_2}{1-k_1} \\ [M(z,w,kt)] &\geq 1 \end{split}$$

Implies z = w. Which gives Self maps A,B,S and T have unique common fixed point.

Example 3.2. Let $X = [0, 2/3), M(x, y, t) = \frac{t}{t + d(x, y)}$ where d(x, y) = |x - y|

$$Ax = \begin{cases} \frac{6}{10} & if \ 0 \le x < \frac{1}{3} \\ \frac{1}{3} & if \ \frac{1}{3} \le x < \frac{2}{3} \end{cases} \qquad Bx = \begin{cases} \frac{1}{4} & if \ 0 \le x < \frac{1}{3} \\ \frac{1}{3} & if \ \frac{1}{3} \le x < \frac{2}{3} \end{cases} \qquad Sx = Tx = \begin{cases} \frac{1}{6} & if \ 0 \le x < \frac{1}{3} \\ \frac{2}{3} - x & if \ \frac{1}{3} \le x < \frac{2}{3} \end{cases}$$

then $A(X) = \left\{\frac{6}{10}, \frac{1}{3}\right\}$, $B(X) = \left\{\frac{1}{4}, \frac{1}{3}\right\}$ while $S(X) = T(X) = \left\{\frac{1}{6} \cup \left(0, \frac{1}{3}\right]\right\}$ so that the condition $B(X) \subseteq S(X)$ are satisfied. Clearly the pairs (A, S) and (B, T) are weakly compatible as they commute at coincident point 1/3. Let a sequence $x_n = \left(\frac{1}{3} + \frac{1}{n}\right)$ for $n \ge 1$, then $\lim_{n \to \infty} Bx_n = \lim_{n \to \infty} Tx_n = \frac{1}{3}$ and $T\left(\frac{1}{3}\right) = \frac{1}{3}$ which implies the pair (B, T) satisfies CLR_T property. The rational inequality holds for the values of $0 \le k_1 + k_2 \ge 1$ where $k_1, k_2 \ge 0$. Therefore all the conditions of Theorem 3.1 are satisfied. Clearly 1/3 is the unique common fixed point of A, B, S and T.

References

- P. Balasubramaniam, S. Murali Sankar and R.P. Pant, Common fixed point of four mappings in fuzzy metric space,
 J.Fuzzy Math. 10(2)(2002), 379-384.
- [2] Y.J. Cho, H.K. Pathak, S.M. Kang and J.S. Jung, Common fixed point of compatible maps of type β on fuzzy metric spaces, Fuzzy Sets and Systems, 93(1998), 99-111.
- [3] Dinesh Panth and Kumar Subedi, Some common fixed point theorems for four mappings in dislocated metric space, Advances in Pure Mathematics, 6(2016), 695-712.
- [4] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399.
- [5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988), 385-389.
- [6] G. Jungck, Compatible mappings and common fixed points (2), Int. J. Math. & Math. Sci., (1988), 285-288.
- [7] Manish Jain and Sanjay Kumar, A Common fixed point Theorem in Fuzzy metric Space Using the property (CLR_g) , Thai Journal of Mathematics, 12(3)(2014), 591-600.
- [8] S.N. Mishra, N. Sharma and S.L. Singh, Common fixed points of mappings on fuzzy metric spaces, Int. J. Math. & Math. Sci., 17(1994), 253-258.
- [9] R.P. Pant and K. Jha, A Remark on common fixed points of four mappings in a fuzzy metric space, J. Fuzzy Math., 12(2)(2004), 433-437.
- [10] S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 127(2002), 345-352.
- [11] W. Sintunavarat and P. Kuman, Common fixed point theorems for a pair of weakly compatible mappings in Fuzzy Metric Spaces, Journal of Applied Mathematics, 2011(2011), 1-14.
- [12] K.S. Sisodia, M.S. Rathore and Deepak Singh, A common fixed point theorem in fuzzy metric spaces, Int. J. of Math. Analysis, 5(17)(2011), 819-826.
- [13] V. Srinivas, B.V.B. Reddy and R. Umamaheshwar Rao, A common fixed point theorem on fuzzy metric space, Kathmandu University Journal of Science Engineering and Technology, 8(2)(2012), 77-82.
- [14] L.A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.