ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Group Action on Fuzzy R-Subgroup of a Near-Ring

G. Balasubramanian^{1,*} and P. Vani²

- 1 Department of Mathematics, Government Arts College for Men, Krishnakiri, Tamilnadu, India.
- 2 Department of Mathematics, Government Arts College for Women, Krishnakiri, Tamilnadu, India.

Abstract: Meldrum [7] studied new rings and their algebraic links with groups. Osman Kazanci [8] discussed intuitionistic Q-fuzzy R-subgroup in a near-ring, and found few contributions on their union and intersection. Cho and Jun [2] discussed intuitionistic fuzzy right (left) R-subgroup in a near-ring, and analyzed the usual algebraic properties like as the union, intersection, complement and decomposition of intuitionistic fuzzy right (left) R-subgroup in a near-ring. In this paper, group action on a right (respectively left) R subgroup and same type of fuzzy right (respectively left) R-subgroup of a near-ring R are studied. Few characterizations are obtained.

Keywords: Set action on a fuzzy set; group action on fuzzy R-subgroup on a near-ring.

© JS Publication.

1. Introduction

Kim and Jun [3] investigated fuzzy algebraic properties in fuzzy R-subgroup in a near-ring. They [4] studied on normal fuzzy R-subgroup, and its homomorphic image and pre-images in a near-ring. Kim and Jun [5] further extended their contributions in anti-fuzzy R-subgroup in a near-ring. They [6] again analyzed union and intersection of fuzzy R-subgroups in a near-ring. Solairaju and Nagarajan [9] introduced the new structures of Q-fuzzy groups and then they investigate the notion upper Q-fuzzy index with upper Q- fuzzy subgroups. They [10] initiated some contributions on Q-fuzzy left R-subgroup of near-ring under triangular norm. They [11] introduced the new structures of Q-fuzzy groups and then they investigate the notion upper Q-fuzzy index order with upper Q-fuzzy subgroups. On the other hand Osman Kazanci in [8] the notion of intuitionistic Q-fuzzy R-subgroup in a near ring is introduced and related properties are investigated.

2. Preliminary and Definitions

Definition 2.1 ([2]). A near ring is a non-empty set R with two binary operations + and \cdot satisfying the following axioms: (1). (R, +) is a group; (2). (R, \cdot) is a semigroup; (3). x.(y + z) = x.y + x.z for all x, y, z, \setminus in R. Then It is called a left near-ring by (3). In this paper, it will use the word near-ring. Here xy denotes x.y; (2). x.0 = 0, and x(-y) = -(xy) for x, y in R.

Definition 2.2. A two sided R-subgroup of a near-ring R is a subset H of R such that (1). (H, +) is a subgroup of (R, +); (2). $RH \subset H$; (3). $HR \subset H$. If H satisfies (1) and (2), then it is a left R-subgroup of R, while if H satisfies (1) and (3), then it is a right R-subgroup of R.

^{*} E-mail: solaijmc@gmail.com

Definition 2.3. A fuzzy set μ in a set R is a function $\mu: R \to [0,1]$.

Definition 2.4. Let G be any group. A mapping $\mu: G \to [0,1]$ is a fuzzy group if

(FG1) $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$ and

(FG2) $\mu(x^{-1}) = \mu(x)$, for all $x, y \in G$.

Definition 2.5. Let (S, +) be a group, and G be a non-empty set. Then G acts on S if there exists a function $*: G \times S \to S$ (denoted *(g, s) = gs for all $g \in G$, and $s \in S$) such that es = s and (g + h) * s = g * (h * s) for all s in S, and for all g, h in G.

Definition 2.6. A group (G, Δ) with identity 0 acts on a fuzzy group A under a near-ring (R, +, .) if (GAFS1) the group G acts on R [there exists a function $*: G \times R \to R$ with the conditions g * (h * s) = (g + h) * s and e * s = s or all s in S, and for all g, h in G];

(GAFG2) $A(x*(s-t) \ge \min\{A(x*s), A(x*t)\};$

(GAFG3) $A(x*(st) \ge \min\{A(x*s), A(x*t)\};$

(GAFG4) $A(x*s^{-1}) \ge A(x*s)$ for all $x, y \in G$ and $s, t \in S$.

Definition 2.7. Let A be a fuzzy group on a near-ring (R, +, .). Then G acts on a right (respectively left) R-fuzzy subgroup A of a near-ring R if. (1). The group (G, Δ) acts on R-fuzzy group A under a near-ring (R, +, .);

(GAFS5) $A(x*(sr)) \ge A(x*s)$ (respectively $A(x*(rs)) \ge A(x*s)$) for all $r, x \in R$.

Definition 2.8. Let θ be a mapping from X to Y.

- (1). Let (G', Δ') a group acting on R'-fuzzy group B under a near-ring (R', +', .'). Then the inverse image of B under θ denoted by $\theta^{-1}(B)$ is fuzzy set in (G, Δ) defined by $\theta^{-1}(B) = \mu_{\theta^{-1}(B)}(x) = \mu_{\theta}(\theta(x))$;
- (2). Let (G, Δ) be a group acting on R-fuzzy group A under a near-ring (R, +, .). Then the image of A under θ denoted by $\theta(A)$, where $\mu_{\theta(A)}(y) = \{\sup \mu_{A(x)} : x \in \theta^{-1}(y) \text{ if } \theta^{-1}(y) \neq 0; \text{ 0 otherwise}\}$. Then $\mu_{\theta^{-1}(B)}(x * s) = \mu_{B}(\theta(x) * s)$ for all s in S. Also $\mu_{\theta(A)}(y * s) = \{\sup \mu_{A}(x * s) : (x * s) \in (\theta^{-1}(y) * s) \text{ for all } s \text{ in } S \text{ if } \theta^{-1}(y) \neq 0; = 0, \text{ otherwise}\}$.

Definition 2.9. Let a group (G, +) act on a fuzzy group A under (S, Δ) . Then the upper level cut-set of A is defined by $U(A, t) = \{s \in S : \inf_{x \in G} A(x * s) \ge \alpha\}.$

3. Group Action on Fuzzy Characteristic and Fuzzy Same Type R-subgroup

First the contribution on R-subgroup action a group is discussed:

Definition 3.1. Let $\varphi: R \to R'$ be an near-ring endomorphism, and a group G acts on an R'-fuzzy-subgroup of a near-ring R'. An R-fuzzy set $A\varphi$ in R is defined by $A\varphi(x*s) = A(x*\varphi(s))$ for all s in R.

Theorem 3.2. Let $\varphi: R \to R'$ be an near-ring endomorphism. Let a group (G, Δ) acts on an R'-fuzzy subgroup A of a near-ring R'. Then (G, Δ) acts on R-fuzzy subgroup of R.

Proof.

(GAFG1) The group (G, Δ) acts on R-fuzzy subset $A\varphi$ of R.

(GAFG2)
$$A\varphi(x*(s-t)) = A(x*(\varphi(s-t)))$$

$$= A(x*(\varphi(s) - \varphi(t)))$$

$$\geq \min\{A(x*\varphi(s), A(x*\varphi(t))\} = \min\{A\varphi(x*s), A\varphi(x*t)\}$$

(GAFG3)
$$A\varphi(x*(st)) = A(x*(\varphi(st)))$$

$$= A(x*(\varphi(s).\varphi(t)))$$

$$\geq \min\{A(x*\varphi(s), A(x*\varphi(t))\}$$

$$= \min\{A\varphi(x*s), A\varphi(x*t)\}$$

(GAFG4)
$$A\varphi(x*s^{-1}) = A(x*\varphi(s^{-1})) \ge A(x*\varphi(s)) = A\varphi(x*s).$$

Let r be in R.

$$A\varphi(x*(sr)) = A(x*\varphi(sr)) = A(x*\varphi(s).\varphi(r)) \ge A(x*\varphi(s)) = A\varphi(x*s).$$

Similarly

$$A\varphi(x*(rs)) = A(x*\varphi(rs)) = A(x*\varphi(r).\varphi(s)) \geq A(x*\varphi(s)) = A\varphi(x*s).$$

Hence $A\varphi$ is an R-fuzzy subgroup of R acted by the group G.

Definition 3.3. A group (G, Δ) with identity 0 acts on a R-fuzzy group A under a near-ring (R, +, .). Then A is fuzzy characteristic if $A\varphi(x*s) = A(x*s)$ for all x in G, s in R, and φ in Aut(R) that is the group of all automorphisms of R.

Definition 3.4. Let a group (G, Δ) act a family $\{A_i : i \in N\}$ of R-fuzzy subgroups of a near-ring (R, +, .). Then $\bigwedge_{i \in N} A_i(x) = \min\{A_1(x), A_2(x), A_3(x), ...\}$.

Theorem 3.5. Let a group (G, Δ) act a family $\{A_i : i \in N\}$ of characteristic R-fuzzy subgroups of a near-ring (R, +, .). Then $\wedge_{i \in N} A_i$ is characteristic.

Proof. Assume that a group (G, Δ) act a family $\{A_i : i \in N\}$ of characteristic R-fuzzy subgroups of a near-ring (R, +, .). Let φ be an automorphism. Let $x \in G$, and $s \in R$. It follows that $\wedge_{i \in N} A_i \varphi(s) = \min\{A_1 \varphi(s), A_2 \varphi(s), A_3 \varphi(s), ...\}$. It gets that

$$\begin{split} \varphi(\wedge_{i\in N}A_i)(x*s) &= (\wedge_{i\in N}A_i)(x*\varphi(s)) \\ &= (\wedge_{i\in N}A_i\varphi)(x*s) \\ &= \wedge_{i\in N}A_i(x*s), \quad \text{(since each Ai is characteristic)}. \end{split}$$

Thus $\wedge_{i \in N} A_i$ is fuzzy characteristic.

Definition 3.6. A group (G, Δ) with identity 0 acts on a R-fuzzy group A under a near-ring (R, +, .). Then a right (respectively left) R-subgroup H of R is characteristic right (respectively left) R-subgroup of R if $\varphi(H) = H$ for all φ in Aut(R).

Definition 3.7. Let H be a non-empty subset of a near- ring R acted by a group (G, Δ) , and A be a R-fuzzy set in R defined by: $A(x*s) = \alpha$, $s \in H$; β , $s \notin H$ such that $\alpha > \beta$ in [0, 1]. Then G acts on R-fuzzy right (respectively left) subgroup if and only if G acts on a right (respectively left) R-fuzzy subgroup H in R.

Corollary 3.8. If H is a characteristic right (respectively left) R-subgroup of R, and A is an R-fuzzy set Defined in 3.7, then A is an R-fuzzy characteristic right (respectively left) subgroup of r acted by G.

Proof. Let $x \in G$, $s \in R$, and φ be an automorphism in Aut(R). If $s \in H$, then $\varphi(x) \in \varphi(H) = H$ and so $A\varphi(x * s) = A(x * \varphi(s)) = \alpha = A(x * s)$. Otherwise $s \notin H$. Then $A\varphi(x * s) = A(x * \varphi(s)) = \beta = A(x * s)$. Thus G acts on a right (resp. left) R-fuzzy subgroup H in R.

Lemma 3.9. A group (G, Δ) act on a right (respectively left) R-fuzzy subgroup A in a near-ring R. Let $s \in R$, and $x \in G$. Then A(x * s) = t if and only if $x \in A_t$, and $x \notin A_s$ for all s > t in [0, 1].

4. Properties on Isomorphic Characteristic Fuzzy R-subgroups

The following results are discussed:

Theorem 4.1. A group (G, Δ) act on a right (respectively left) R-fuzzy subgroup A in a near-ring R. Then A is a fuzzy characteristic if and only if each level right (respectively left) R-subgroup of A is characteristic.

Proof. Case (1): A is a fuzzy characteristic. Let t be in Image of A. Let $\varphi \in Aut(R)$, and x in G. Then $A_t = U(A,t) = \{s \in S : \inf_{x \in G} A(x*s) \geq \alpha\}$. Now $s \in A_t$ implies that $A\varphi(x*s) = A(x*s) \geq t$ for all x in G, and so $A(x*\varphi(s)) \in A_t$ for all x in G. This show that $\varphi(A_t) \subseteq A_t$. On the other hand let $s \in A_t$ and $v \in R$ with $\varphi(v) = s$. Then $A(x*v) = A\varphi(x*v) = A(x*\varphi(v)) = A(x*s) \geq t$ for all x in G. This gives that v is in A_t . So $x*s = \varphi(x*v) \in \varphi(A_t)$ for all x in G, and also $A_t \subseteq \varphi(A_t)$. Hence $\varphi(A_t) = A_t$ implies that A_t is characteristic.

Case (2): Let $s \in R$, x in G, and φ be an automorphism in Aut(R). Assume that A(x*u) = t for all x in G implies that by Lemma 3.9, $u \in A_t$, and further $u \notin A_s$ for all s > t in [0, 1]. It follows from hypothesis that $\varphi(x*u) \in \varphi(A_t) = A_t$. This gives that $A\varphi(x*u) = A(x*\varphi(u)) \ge t$. Let $\alpha = A\varphi(x*u)$ and suppose that $\alpha > t$. Then $A(x*u) \in A_\alpha = \varphi(A_\alpha)$. It gets from injectivity of φ that $x*u \in A_\alpha$, a contradiction. Hence $A\varphi(x*s) = A(x*\varphi(u)) = t = A(x*u)$ showing that A is a fuzzy characteristic acted by G.

Note 4.2. A new R-fuzzy right (respectively left) R-subgroup B is constructed by using a given R-fuzzy right (respectively left) R-subgroup A acted by a group (G, Δ) . Let $i \geq 0$ be a real number. If $u \in [0, 1]$, then u^i means the non-negative i^{th} power in case i > 1. Define $A^i : R \to [0, 1]$ by $A^i(x * s) = A(x * s)^i$. for all x in G. If g acts R-fuzzy right (respectively left) subgroup in R, then G acts R-fuzzy right (respectively left) subgroup A^i in R.

Theorem 4.3. A group (G, Δ) act on a right characteristic (respectively left) R-fuzzy subgroup A in a near-ring R. Then G acts a right characteristic (respectively left) R-subgroup A^i of R for all positive integer i > 0.

Proof. Let $\varphi \in Aut(R)$, $x \in G$, and $s \in R$. It follows that

$$(A^{i})^{\varphi}(x * s) = (A^{i})(x * \varphi(s))$$

$$= A(x * \varphi(s))^{i}$$

$$= (A(x * s))^{i}$$

$$= (A^{i})(x * s) \text{ for all } i > 0.$$

Definition 4.4. Let μ and λ be R-fuzzy right (respectively left) subgroup of R acted by a group (G, Δ) . Then μ is R-fuzzy same type with λ if there exist $\varphi \in Aut(R)$ such that $\mu(x * s) = \mu(x * \varphi(s))$ for all x in G, and s in R.

Since all R-fuzzy right (respectively left) subgroups of same type with μ , λ , δ in R acted by a group (G, Δ) , then (1). μ is R-fuzzy with same type with μ itself (2). if μ is R-fuzzy same type with λ , then λ is R-fuzzy same type with μ , and (3). if μ is R-fuzzy same type with λ and λ is R-fuzzy same type with δ , then μ is R-fuzzy same type with δ .

Theorem 4.5. Let A, B be two R-fuzzy right (respectively left) subgroups in R such that A is R-fuzzy same type with B. Then A is isomorphic to B.

Proof. Since A is R-fuzzy same type with B, there exists $\varphi \in Aut(R)$ such that $A(x*s) = B(x*\varphi(s))$ for all s in R, and for all x in G. Let $\psi : A(R) \to B(R)$ such that $\psi(A(x*s)) = B(x*\varphi(s))$ for all s in R, and for all x in G. Then for every u, v in R, it gets that $\psi(Ax*(u+v)) = B(x*\varphi(x+y))$ and $\psi(x*A(uv)) = B(x*\varphi(xy)) = B(x*\varphi(u).\varphi(v))$ for all x in G. If $\psi(A(x*u)) = \psi(A(x*v))$ for all u, v in R, and for all x in G, then it follows that $B(x*\varphi(u)) = B(x*\varphi(v))$, and so A(x*u) = A(x*v) for all x in G showing that ψ is injective.

Theorem 4.6. Let a group (G, Δ) act two R-fuzzy right (respectively left) subgroups A, B in R. If $Ao\varphi = B$, then $\psi(A) = B$ for some φ , ψ in Aut(R).

Proof. Since $Ao\varphi = B$ for some φ in Aut(R). Thus $B(x * \varphi(s)) = B(x * s)$ for all s in R, and for all x in G. It follows that $\varphi^{-1}(A)(x * s) = \sup_{v \in (s)} A(x * v) = A(x * \varphi(u)) = B(x * u)$ for all u in R, and for all x in G. Take $\psi = \varphi^{-1}$. Then $\psi \in Aut(R)$. and $\psi(A) = B$.

Corollary 4.7. Let a group (G, Δ) act two R-fuzzy right (respectively left) subgroups A, B in R. If there exist $\varphi \in Aut(R)$ such that $A_t = \varphi(B_t)$ for all t in [0, 1]. Then G acts R-fuzzy subgroup A same type with B.

Proof. Suppose that $\varphi \in Aut(R)$ such that $A_t = \varphi(B_t)$ for all t in [0, 1]. Let u be in A_t , and x in G. Then A(x * u) = t. It implies that $\varphi^{-1}(x * u) \in \varphi^{-1}(A_t) = B_t$. So $B((x * \varphi^{-1}(u)) > t = A(x * u)$. Putting $B(x * \varphi^{-1}(u)) = \alpha$ implies that $\varphi^{-1}(x * u) \in B_{\alpha}$. Thus $x * u \in \varphi(B_{\alpha}) = A_{\alpha}$ by assumption. It follows that $A(x * u) \geq \alpha = B(x * \varphi^{-1}(u))$. Hence $A(x * u) = B(x * \varphi^{-1}(u))$ for all u in R, and x in G. Since $\varphi^{-1} \in Aut(R)$, then A is R-fuzzy of same type with B.

References

- [1] S. Abou-Zaid, On fuzzy sub near-rings and ideals, Fuzzy Sets and System, 44(1991), 139-146.
- [2] Y.U. Cho and Y.B. Jun, On intuitionistic fuzzy R-subgroup of near-rings, Journal of Appl. Math and Computing, 18(2005), 665-677.
- [3] K.H. Kim and Y.B. Jun, On fuzzy R-subgroups of near-rings, J. Fuzzy Math., 8(2000), 549-558.
- [4] K.H. Kim and Y.B. Jun, Normal fuzzy R-subgroups of near-rings, J. Fuzzy Sets and System, 121(2001a), 341-345.
- [5] K.H. Kim and Y.B. Jun, Anti-fuzzy R- subgroups of near-rings, Scientiae Mathematicae Japonicae, 4(1999), 347-153.
- [6] K.H. Kim and Y.B. Jun, A note on fuzzy R-subgroups of near-rings, Soochow Journal of Mathematics, 28(2002), 339-346.
- [7] J.D.P. Meldrum, New-rings and their links with groups, Pitman, Boston, (1985).
- [8] Osman Kazanci, Sultar Yamark and Serife Yimaz, On intuitionistic Q-fuzzy R-subgroups of near-rings, International Mathematical Forum, 59(2007), 2899-2910.
- [9] A. Solairaju and R. Nagarajan, Q-fuzzy left R-subgroup of near-rings with respect to T-norm, Antarctica Journal of Mathematics, 5(1-2)(2008), 59-63.
- [10] A. Solairaju and R. Nagarajan, A New structure and constructions of Q-fuzzy groups, Advances in Fuzzy Mathematics, 4(2009), 23-29.

- [11] A. Solairaju and R. Nagarajan, Some structure properties of upper Q-fuzzy index order with upper Q-fuzzy subgroups, Int. J. of Open Problems in Mathematics and Applications, 1(2011), 21-28.
- [12] L.A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.