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Abstract: A numerical study is presented on the effect Transient MHD free convective fluid flow past a moving accelerated vertical

porous plate in the presence of viscous dissipation has been studied. The dimensionless governing coupled non-linear

boundary layer partial differential equations are solved by an efficient finite element method. The variations of the fluid
velocity, temperature and concentration fields with the help of different flow parameters are presented graphically. And

also,the effects these flow parameters on Skin-friction, Rate of heat and mass transfer are discussed through tabular forms.

This model finds applications in geophysics, astrophysics and also in the design of high temperature industrial processing
systems.
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1. Introduction

The most common type of body force, which acts on a fluid, is due to gravity, so that the body force can be defined as in

magnitude and direction by the acceleration due to gravity. Sometimes, electromagnetic effects are important. The electric

and magnetic fields themselves must obey a set of physical laws, which are expressed by Maxwell’s equations. The solution of

such problems requires the simultaneous solution of the equations of fluid mechanics and electromagnetism. One special case

of this type of coupling is known as magneto hydrodynamic. Coupled heat and mass transfer phenomenon in porous media

is gaining attention due to its interesting applications. The flow phenomenon in this case is relatively complex than that in

pure thermal/solutal convection process. Processes involving heat and mass transfer in porous media are often encountered

in the chemical industry, in reservoir engineering in connection with thermal recovery process, in the study of dynamics of

hot and salty springs of a sea. Underground spreading of chemical waste and other pollutants, grain storage, evaporation

cooling, and solidification are a few other application areas where combined thermosolutal convection in porous media are

observed. However, the exhaustive volume of work devoted to this area is amply documented by the most recent books by

Ingham and Pop [1], Nield and Bejan [2], Pop and Ingham [3], Vafai [4] studied the problem of transient flow of a fluid past

a moving semi-infinite vertical porous plate. However, many problem areas which are important in applications, as well as

in theory still persist.
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Unsteady free convective flow on taking into account the mass transfer phenomenon past an infinite vertical porous plate with

constant suction was studied by Soundalgekar and Wavre [5], Kafousias [6] have studied the effects of free convective currents

on the flow field of an incompressible viscous fluid past an impulsively started infinite vertical porous plate with constant

suction. However,this analysis is not applicable for other fluids whose Prandtl number is different from unity.Soundalgekar

and Ganesan [7] have analyzed transient free convective flow past a semi-infinite vertical flat plate, taking into account mass

transfer by an implicit finite difference method of Crank Nicolson type. Free convection at a vertical plate with transpiration

has investigated by Kolar and Sastri [8], Yih [9] have analyzed the effect of transpiration on coupled heat andmass transfer

in mixed convection over a vertical plate embedded in a saturated porous medium. Elbashbeshy [10] has investigated the

mixed convection along a vertical plate embedded in non-darcian porous medium with suction and injection. Chin [11]

has studied the effectof variable viscosity on mixed convection boundary layer flow over a vertical surface embedded in

a porous medium. MHD steady free convection flow from vertical surface in porous mediumhas been studied by Reddy

[12]. Thermal radiation in fluid dynamics has become a significant branch of the engineering sciences and is an essential

aspect of various scenarios in mechanical,aerospace, chemical, environmental, solar power and hazards engineering. For some

industrial applications such as glass production and furnace design and in space technology applications such as cosmical

flight aerodynamics rocket, propulsion systems, plasma physics and spacecraft re-entry aerothermodynamics which operate

at higher temperatures, radiation effects can be significant. In view of this, Hossain and Takhar [13] have analyzed the

effect of radiation on mixed convection along a vertical plate with uniform surface temperature. Pal and Talukdar [14] have

studied the buoyancy and chemical reaction effects on MHD mixed convection heat and mass transfer in a porous medium

with thermal radiation and ohmic heating.

Israel-Cookey [15] studied the effects of viscous dissipation and radiation on unsteady MHD free convection flow past an

infinite heated vertical plate in a porous medium with time dependent suction. The effects of radiation on a steady combined

free-forced convective and mass transfer flow of a viscous incompressible electrically conducting and radiating fluid over an

isothermal semi-infinite vertical porous flat plate embedded in a porous medium studied by Bala Anki Reddy and Bhaskar

Reddy [16]. The governing non-linear partial differential equations and their boundary conditions are reduced into a system

of ordinary differential equations by a similarity transformation. This system is solved numerically using Runge-Kutta fourth

order method along with shooting technique. Influence of thermal radiation on transient magneto hydrodynamic coutte flow

through a porous medium by using finite difference method discussed by Baoku [17]. Radiation and mass transfer effects on

an unsteady magneto hydrodynamic convective and dissipative fluid flow past a vertical porous plate has been analyzed by

Gnaneswara Reddy and Bhaskar Reddy [18]. The governing equations of motion, energy and species are transformed into

ordinary differential equations using time dependent similarity parameter. Greif [19] showed that, for an optically thin limit,

the fluid does not absorb its own emitted radiation, this means that there is no self-absorption, but the fluid does absorb

radiation emitted by the boundaries. Mohammed Ibrahim and Bhaskar Reddy [20] analyzed the radiation effects on the

heat and mass transfer characteristics of a viscous incompressible electrically conducting fluid near an isothermal vertical

stretching sheet, in the presence of viscous dissipation and heat generation. The governing equations are transformed by

using similarity transformation and the resultant dimensionless equations are solved numerically using the Runge-Kutta

fourth order method with shooting technique.

Vasu [21] studied the radiation and mass transfer effects on transient free convection flow of a dissipative fluid past semi-

infinite vertical plate with uniform heat and mass flux. Ramana Reddy [22] have been studied Mixed convective MHD flow

and mass transfer past an accelerated infinite vertical porous plate. Anand Rao [23] have investigated Radiation effects on

an unsteady MHD vertical porous plate in the presence of homogeneous chemical reaction. Siva Reddy Sheri and Prasanthi

Modugula [24] have found thermal-diffusion and diffusion-thermo effects on MHD flow through porous medium past an
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exponentially accelerated inclined plate with variable temperature. Siva Reddy Sheri and Prashanthi Modugula [25] have

studied Heat and mass transfer effects on unsteady MHD flow over an inclined porous plate embedded in porous medium

with Soret-Dufour and chemical Reaction. Siva Reddy Sheri [26] have found Heat and mass transfer effects on MHD natural

convection Flow past an infinite inclined plate with ramped temperature

The object of the present paper is to study the transient MHD free convective fluid flow past a moving accelerated vertical

porous plate in the presence of viscous dissipation. The problem is governed by the system of coupled non-linear partial

differential equations whose exact solutions are difficult to obtain, if possible. So, finite element method has been adopted

for its solution, which is more economical from computational point of view.

2. Mathematical Formulation

Consider the effect of thermal radiation on an unsteady mixed convective mass flow of a viscous incompressible electrically

conducting fluid past an accelerating vertical infinite porous flat plate with viscous dissipation. We made the following

assumptions.

(1). In Cartesian coordinate system, letx′-axis is taken to be along the plate and the y′-axis normal to the plate. Since the

plate is considered infinite in x′-direction, hence all physical quantities will be independent of x′-direction.

(2). The wall is maintained at constant temperature (T ′w) and concentration (C′w) higher than the ambient temperature

(T ′∞) and concentration (C′∞) respectively.

(3). A uniform magnetic field of magnitude Bo is applied normal to the plate. The transverse applied magnetic field and

magnetic Reynold’s number are assumed to be very small, so that the induced magnetic field is negligible.

(4). The homogeneous chemical reaction is of first order with rate constant K̄ between the diffusing species and the fluid is

neglected.

(5). It is assumed that there is no applied voltage which implies the absence of an electric field.

(6). It is assumed that the plate is accelerating with a velocity u = Uo in its own plane for t′ ≥ 0.

(7). The fluid has constant kinematic viscosity and constant thermal conductivity and the Boussinesq’s approximation have

been adopted for the flow.

The magneto hydrodynamic unsteady mixed convective boundary layer equations under the Boussinesq’s approximations

are:

Continuity Equation:

∂v′

∂y′
= 0⇒ v′ = −v′o (Constant) (1)

Momentum Equation:

∂u′

∂t′
+ v′

∂u′

∂y′
= gβ

(
T ′ − T ′∞

)
− ν u

′

k′
+ gβ∗

(
C′ − C′∞

)
+ v

∂2u′

∂y′2
− σB2

o

ρ
u′ (2)

Energy Equation:

∂T ′

∂t′
+ v′

∂T ′

∂y′
=

κ

ρcp

∂2T ′

∂y′2
+

v

cp

(
∂u′

∂y′

)2

− ∂qr
∂y′

(3)

Concentration Equation:

∂C′

∂t′
+ v′

∂C′

∂y′
= D

∂2C′

∂y′2
(4)
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Figure 1. Physical sketch and geometry of the problem

The boundary conditions of the problem are:

t′ ≤ 0 : { u′ = 0, v′ = 0, T ′ = 0, C′ = 0 for all y′

t′ ≥ 0 :

 u′ = UO, v
′ = −v′o, T ′ = T ′w, C

′ = C′w at y′ = 0

u′ → 0, T ′ → T ′∞, C
′ → C′∞ as y

′
→∞



 (5)

The radiative heat flux term is simplified by making use of the Rossel and approximation as

qr = − 4σ̄

3k∗
∂T ′4

∂y′
(6)

Here σ̄ is Stefan-Boltzmann constant and k∗ is the mean absorption coefficient. It is assumed that the temperature differences

within the flow are sufficiently small so that T ′4 can be expressed as a linear function of T ′ after using Taylor’s series to expand

T ′4 about the free stream temperature T ′h and neglecting higher-order terms. This results in the following approximation:

T ′
4 ∼= 4T ′

3
hT
′ − 3T ′

4
h (7)

Using equations (6) and (7) in the last term of equation (3), we obtain:

∂qr
∂y

= −16σ̄T ′
3
h

3k∗
∂2T ′

∂y′2
(8)

Introducing (8) in the equation (3), the energy equation becomes:

∂T ′

∂t′
+ v′

∂T ′

∂y′
=

κ

ρ cp

∂2T ′

∂y′2
+

v

cp

(
∂u′

∂y′

)2

+
16σ̄T ′

3
h

3k∗
∂2T ′

∂y′2
(9)

Introducing the following non-dimensional variables and parameters,

y =
y′v′o
v
, t =

t′v′2o
4v

, ω = 4vω′

v′2o
, u = u′

Uo
, M =

(
σB2

o
ρ

)
v
v′2o
, K =

k′ v′2o
ν2

, Sc = ν
D
,

θ =
T ′−T ′∞
T ′w−T ′∞

, C =
C′−C′∞
C′w−C′∞

, Pr = v
k
, Gr =

vgβ(T ′w−T
′
∞)

Uov′3o
, Gc =

gβ∗v(C′w−C
′
∞)

Uov′3o
,

Ec =
v′2o

cp(T ′w−T ′∞)
, R = κ k∗

4σT ′3
h

 (10)
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Substituting (10) in equations (2), (9) and (4) under boundary conditions (5), we get:

∂u

∂t
− ∂u

∂y
= (Gr) θ + (Gc)C +

∂2u

∂y2
−
(
M +

1

K

)
u (11)

∂θ

∂t
− ∂θ

∂y
=

1

Pr

(
1 +

4

3R

)
∂2θ

∂y2
+ (Ec)

(
∂u

∂y

)2

(12)

∂C

∂t
− ∂C

∂y
=

1

Sc

∂2C

∂y2
(13)

The corresponding boundary conditions are:

u = 1, θ = 1, C = 1 at y = 0

u→ 0, θ → 0, C → 0 as y →∞

 (14)

The skin-friction, Nusselt number and Sherwood number are important physical parameters for this type of boundary layer

flow. The skin-friction at the plate, which in the non-dimensional form is given by

τ =
τ ′w
ρUov

=

(
∂u

∂y

)
y=0

(15)

The rate of heat transfer coefficient, which in the non-dimensional form in terms of the Nusselt number is given by

Nu = −x

(
∂T ′

∂y′

)
y′=0

T ′w − T ′∞
⇒ Nu Re−1

x = −
(
∂θ

∂y

)
y=0

(16)

The rate of mass transfer coefficient, which in the non-dimensional form in terms of the Sherwood number, is given by

Sh = −x

(
∂C′

∂y′

)
y′=0

C′w − C′∞
⇒ Sh Re−1

x = −
(
∂C

∂y

)
y=0

(17)

Where Re = Uox
ν

is the local Reynolds number. The mathematical formulation of the problem is now completed. Equations

(11), (12) and (13) present a coupled nonlinear system of partial differential equations and are to be solved by using initial

and boundary conditions(14). However, exact solutions are difficult, whenever possible. Hence, these equations are solved

by the Finite element method.

3. Numerical Solution by FEM

An excellent description of Galerkin finite element method is presented in the text books Bathe [27] and Reddy [28]. By

applying Galerkin finite element method for equation (4) over the element (e), (yj ≤ y ≤ yk) is:

∫ yk

yj

{
NT

[
∂2u(e)

∂y2
− ∂u(e)

∂t
+
∂u(e)

∂y
−Au(e) + P

]}
dy = 0 (18)

Where P = (Gr)θji + (Gc)Cji , A = M + 1
K

. Integrating the first term in equation (18) by parts one obtains

N (e)T

{
∂u(e)

∂y

}yk
yj

−
∫ yk

yj

{
∂N (e)T

∂y

∂u(e)

∂y
+N (e)T

(
∂u(e)

∂t
− ∂u(e)

∂y
+Au(e) − P

)}
dy = 0 (19)

Neglecting the first term in equation (19), one gets:

∫ yk

yj

{
∂N (e)T

∂y

∂u(e)

∂y
+N (e)T

(
∂u(e)

∂t
− ∂u(e)

∂y
+Au(e) − P

)}
dy = 0
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Let u(e) = N (e)φ(e) be the linear piecewise approximation solution over the element (e), (yj ≤ y ≤ yk), whereN (e) = [Nj Nk],

φ(e) = [uj uk]T and Nj = yk−y
yk−yj

, Nk =
y−yj
yk−yj

are the basis functions. One obtains:

∫ yk

yj


 N ′j N ′j N

′
j N

′
k

N
′
j N

′
k N

′
kN

′
k


 uj
uk


 dy +

∫ yk

yj


 Nj Nj Nj Nk

Nj Nk NkNk


 •
uj
•
u
k


 dy −

∫ yk

yj


 Nj N ′j Nj N

′
k

N
′
j Nk N

′
kNk


 uj
uk


 dy

+A

∫ yk

yj


 Nj Nj Nj Nk

Nj Nk NkNk


 uj
uk


 dy = P

∫ yk

yj

 Nj
Nk

 dy
Simplifying we get

1

l(e)2

 1 − 1

−1 1


 uj
uk

+
1

6

 2 1

1 2


 •uj•
u
k

− 1

2l(e)

 −1 1

−1 1


 uj
uk

+
A

6

 2 1

1 2


 uj
uk

 =
P

2

 1

1


Where prime and dot denotes differentiation w.r.t y and time t respectively. Assembling the element equations for two

consecutive elements (yi−1 ≤ y ≤ yi) and (yi ≤ y ≤ yi+1) following is obtained:

1

l(e)2


1 − 1 0

−1 2 − 1

0 − 1 1



ui−1

ui

ui+1

 +
1

6


2 1 0

1 4 1

0 1 2



•
u
i−1

•
u
i

•
u
i+1

 − 1

2l(e)


− 1 1 0

−1 0 1

0 − 1 1



ui−1

ui

ui+1



+
A

6


2 1 0

1 4 1

0 1 2



ui−1

ui

ui+1

 =
P

2


1

2

1


(20)

Now put row corresponding to the node i to zero, from equation (20) the difference schemes with l(e) = h is:

1

h2
[−ui−1 + 2ui − ui+1] +

1

6

[
•
u
i−1

+ 4
•
u
i

+
•
u
i+1

]
− 1

2h
[−ui−1 + ui+1] +

A

6
[ui−1 + 4ui + ui+1] = P (21)

Applying the trapezoidal rule, following system of equations in Crank Nicholson method is obtained:

A1u
n+1
i−1 +A2u

n+1
i +A3u

n+1
i+1 = A4u

n
i−1 +A5u

n
i +A6u

n
i+1 + P ∗ (22)

Now from equations (12) and (13) following equations are obtained:

B1θ
n+1
i−1 +B2θ

n+1
i +B3θ

n+1
i+1 = B4θ

n
i−1 +B5θ

n
i +B6θ

n
i+1 +Q∗ (23)

D1C
n+1
i−1 +D2C

n+1
i +D3C

n+1
i+1 = D4C

n
i−1 +D5C

n
i +D6C

n
i+1 (24)

Where A1 = 2 +Ak+ 3rh− 6r, A2 = 8 + 4Ak+ 12r, A3 = 2 +Ak− 3rh− 6r, A4 = 2−Ak− 3rh+ 6r, A5 = 8− 4Ak− 12r,

A6 = 2 − Ak + 3rh + 6r, B1 = 2(Pr) + 3rh(Pr) − 6R1r, B2 = 8(Pr) + 12R1r, B3 = 2(Pr) − 3rh(Pr) − 6R1r, B4 =

2(Pr)− 3rh(Pr) + 6R1r, B5 = 8(Pr)− 12R1r, B6 = 2(Pr) + 3rh(Pr) + 6R1r, D1 = 2(Sc) + 3rh(Sc)− 6r, D2 = 8(Sc) + 12r,

D3 = 2(Sc) − 3rh(Sc) − 6r, D4 = 2(Sc) − 3rh(Sc) + 6r, D5 = 8(Sc) − 12r, D6 = 2(Sc) + 3rh(Sc) + 6r, P ∗ = 12Phk =

12hk(Gr)θji + 12hk(Gc)Cji ,Q∗ = 12kQ = 12k(Pr) (Ec)

(
∂u

j
i

∂y

)2

, R1 = 1 + 4
3R

. Here r = k
h2 and h, k are mesh sizes along
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y−direction and time-direction respectively. Index i refers to space and j refers to the time. In the equations (22), (23) and

(24) taking i = 1(1)n and using boundary conditions (14), then the following system of equations are obtained:

AiXi = Bi; i = 1(1)n (25)

Where Ai’s are matrices of order n and Xi, Bi’s are column matrices having n-components. The solutions of above system

of equations are obtained by using Thomas algorithm for velocity, temperature and concentration. Also, numerical solutions

for these equations are obtained by C-programme. In order to prove the convergence and stability of Galerkin finite element

method, the same C-programme was run with smaller values of h and k and no significant change was observed in the values

of u, θ and C. Hence the Galerkin finite element method is stable and convergent.

4. Results and Discussions

The formulation of the problem that accounts for the transient MHD free convective fluid flow past a moving accelerated

vertical porous plate in the presence of viscous dissipation is performed in the preceding sections. The governing equations

of the flow field are solved numerically by using a finite element method. The above presented equations enable us to carry

out numerical computations. The following parameter values are adopted for computations unless otherwise indicated in

the figures and table: Gr = 1.0, Gc = 1.0, M = 1.0, K = 1.0, Pr = 0.71, R = 1.0, Ec = 0.001, Sc = 0.22. The boundary

conditions for η → ∞ are replaced by those at ηmax where the value of ηmax is sufficiently large, so that the velocity at

η = ηmax is equal to the relevant free stream velocity. We choose ηmax = 4. To assess the accuracy of the present method,

comparisons between the present results and previously published data Ramana Reddy [22]. Figures (2) and (3) exhibit the

effect of thermal Grashof number and solutal Grashof numbers on the velocity profile with other parameters are fixed. The

Grashof number signifies the relative effect of the thermal buoyancy force to the viscous hydrodynamic force in the boundary

layer. As expected, it is observed that there is a rise in the velocity due to the enhancement of thermal buoyancy force. Also,

as Gr increases, the peak values of the velocity increases rapidly near the porous plate and then decays smoothly to the free

stream velocity. The solutal Grashof number defines the ratio of the species buoyancy force to the viscous hydrodynamic

force. As expected, the fluid velocity increases and the peak value is more distinctive due to increase in the species buoyancy

force. The velocity distribution attains a distinctive maximum value in the vicinity of the plate and then decreases properly

to approach the free stream value. It is noticed that the velocity increases with increasing values of the solutal Grashof

number.

Figure 2. Velocity profiles for different values of thermal Grashof number Gr
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Figure 3. Velocity profiles for different values of Solutal Grashof number Gc

Figure 4. Velocity profiles for different values of Hartmann number M

Figure 5. Velocity profiles for different values of Permeability parameter K
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Figure 6. Velocity profiles for different values of Prandtl number Pr

Figure 7. Temperature profiles for different values of Prandtl number Pr

Figure 8. Velocity profiles for different values of Eckert number Ec
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Figure 9. Temperature profiles for different values of Eckert number Ec

Figure 10. Velocity profiles for different values of thermal radiation parameter R

Figure 11. Temperature profiles for different values of thermal radiation parameter R
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Figure 12. Velocity profiles for different values of Schmidt number Sc

Figure 13. Concentration profiles for different values of Schmidt number Sc

The effect of the Hartmann number (M) is shown in figure (4). It is observed that the velocity of the fluid decreases with

the increase of the magnetic field number values. The decrease in the velocity as the Hartmann number (M) increases is

because the presence of a magnetic field in an electrically conducting fluid introduces a force called the Lorentz force, which

acts against the flow if the magnetic field is applied in the normal direction, as in the present study. This resistive force

slows down the fluid velocity component as shown in figure (4). The effect of Permeability parameter(K)is presented in the

figure (5). From this figure we observe that, the velocity is increases with increasing values of K.

Figures 6 and 7 illustrate the velocity and temperature profiles for different values of the Prandtl number Pr. The Prandtl

number defines the ratio of momentum diffusivity to thermal diffusivity. The numerical results show that the effect of

increasing values of Prandtl number results in a decreasing velocity (Figure 6). From Figure 7, it is observed that an

increase in the Prandtl number results a decrease of the thermal boundary layer thickness and in general lower average

temperature within the boundary layer. The reason is that smaller values of Pr are equivalent to increasing the thermal

conductivities, and therefore heat is able to diffuse away from the heated plate more rapidly than for higher values of Pr.

Hence in the case of smaller Prandtl numbers as the boundary layer is thicker and the rate of heat transfer is reduced. The

influence of the viscous dissipation parameter i.e., the Eckert number (Ec) on the velocity and temperature are shown in

figures (8) and (9) respectively. The Eckert number (Ec) expresses the relationship between the kinetic energy in the flow

and the enthalpy. It embodies the conversion of kinetic energy into internal energy by work done against the viscous fluid

stresses. Greater viscous dissipative heat causes a rise in the temperature as well as the velocity. This behavior is evident

from figures (8) and (9).
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This behavior is evident from figures (10) and (11). The effect of the thermal radiation parameter on the velocity and

temperature profiles in the boundary layer are illustrated in figures (10) and (11) respectively. Increasing the thermal

radiation parameter produces significant increase in the thermal condition of the fluid and its thermal boundary layer. This

increase in the fluid temperature induces more flow in the boundary layer causing the velocity of the fluid there to decrease.

The effect of Schmidt number Sc on the velocity and concentration are shown in figures (12) and (13). As the Schmidt

number increases, the velocity and concentration decreases. This causes the concentration buoyancy effects to decrease

yielding a reduction in the fluid velocity. Reductions in the velocity and concentration distributions are accompanied by

simultaneous reductions in the velocity and concentration boundary layers.

We observe from this Table 1, the skin-friction rises under the effects of Grashof number, Modified Grashof number, Eckert

number, Thermal radiation parameter and Permeability parameter. And also falls under the effects of Prandtl number,

Schmidt number Hartmann number. The profiles for Nusselt number (Nu) due to temperature profile under the effect

of Prandtl number, Eckert number and Thermal radiation parameter are presented in the Table 2. From this table we

observe that, the Nusselt number due to temperature profile rises under the effect of Eckert number and Thermal radiation

parameter. And temperature falls under the effects of Prandtl number. The profiles for Sherwood number (Sh) due to

concentration profiles under the effect of Schmidt number is presented in the Table 3. We see from this table the Sherwood

number due to concentration profile falls under the effect of Schmidt number. Table 4 shows the comparison between values

of skin-friction coefficient τ for different values of Gr, Gc, Sc, Pr, K and M . In fact, this results show a close agreement,

hence an encouragement for further study of the effects of other varies of parameters.

Gr Gc Pr Sc M K Ec R τ

1.0 1.0 0.71 0.22 1.0 1.0 0.001 1.0 3.2954

2.0 1.0 0.71 0.22 1.0 1.0 0.001 1.0 4.4918

1.0 2.0 0.71 0.22 1.0 1.0 0.001 1.0 5.3946

1.0 1.0 7.00 0.22 1.0 1.0 0.001 1.0 2.1650

1.0 1.0 0.71 0.30 1.0 1.0 0.001 1.0 3.1168

1.0 1.0 0.71 0.22 2.0 1.0 0.001 1.0 2.6004

1.0 1.0 0.71 0.22 1.0 2.0 0.001 1.0 3.7905

1.0 1.0 0.71 0.22 1.0 1.0 0.100 1.0 3.2986

1.0 1.0 0.71 0.22 1.0 1.0 0.001 2.0 3.4094

Table 1. Skin-friction results (τ) for the values of Gr, Gc, Pr, Sc, M, K, Ec and R

Pr Ec R Nu

0.71 0.001 1.0 4.4972

7.00 0.001 1.0 1.0897

0.71 0.100 1.0 4.6270

0.71 0.001 2.0 4.6087

Table 2. Rate of heat transfer (Nu) values for different values of Pr, Ec and R

Sc Sh

0.22 6.9193

0.30 6.5249

Table 3. Rate of mass transfer (Sh) values for different values of Sc
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Gr Gc Pr Sc M K Present Results τ Ramana Reddy [22] τ∗

1.0 1.0 0.71 0.22 1.0 1.0 2.5701 2.5705

2.0 1.0 0.71 0.22 1.0 1.0 2.9978 2.9984

1.0 2.0 0.71 0.22 1.0 1.0 3.6158 3.6191

1.0 1.0 7.00 0.22 1.0 1.0 2.1161 2.1150

1.0 1.0 0.71 0.30 1.0 1.0 1.9721 1.9716

1.0 1.0 0.71 0.22 2.0 1.0 1.5871 1.5889

1.0 1.0 0.71 0.22 1.0 2.0 3.0023 3.0018

Table 4. Comparison of present Skin-friction results (τ)

5. Conclusions

We summarize below the following results of physical interest on the velocity, temperature and concentration distributions

of the flow field and also on the skin-friction, rate of heat and mass transfer at the wall.

(1). A growing Hartmann number or Prandtl number or Schmidt number retards the velocity of the flow field at all points.

(2). The effects of increasing Grashof number or Modified Grashof number or Permeability parameter or Eckert number or

Permeability parameter or Thermal radiation parameter are to accelerate velocity of the flow field at all points.

(3). A growing Prandtl number decreases temperature of the flow field at all points and increases with increasing of Eckert

number or Thermal radiation parameter.

(4). The Schmidt number decreases the concentration of the flow field at all points.

(5). A growing Hartmann number or Prandtl number or Schmidt number decreases the skin-friction while increasing Grashof

number or Modified Grashof number or Permeability parameter or Eckert number or Thermal radiation parameter

increases the skin-friction.

(6). The rate of heat transfer is decreasing with increasing of Prandtl number and increases with increasing of Eckert number

and Thermal radiation parameter.

(7). The rate of mass transfer is decreasing with increasing of Schmidt number.

(8). On comparing the skin-friction (τ) results with the skin-friction (τ∗) results of Ramana Reddy [22] it can be seen that

they agree very well.
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