International Journal of Mathematics And its Applications

A Class of *-Simple Type A I-Semigroups

R. U. Ndubuisi ${ }^{1, *}$, U. I. Asibong-Ibe ${ }^{1}$ and I. U. UdoAkpan ${ }^{1}$
1 Department of Mathematics \& Statistics, University of Port Harcourt, Port Harcourt, Nigeria.

Abstract

A I-semigroups as the generalized Bruck-Reilly *-extensions is studied and properties obtained. It is proved that a semigroup S is a *-simple type A I-semigroup if and only if it can be expressed as $S=G B R^{*}(T, \theta)$ where T is a finite chain of cancellative monoids. Thus the structure of *-simple type A I-semigroups is described and the results obtained is amplified in the light of studies on simple I-regular semigroups by Warne and that of *-simple type A ω-semigroups by Asibong-Ibe.

Keywords: Type A I-semigroups, cancellative monoids, generalized Bruck-Reilly *-extensions.
(C) JS Publication

1. Introduction and Preliminaries

Earlier investigations in [8] studied *-bisimple type A I-semigroups and characterized them as the generalized Bruck-Reilly *-extensions of cancellative monoids. Their congruences were later studied in [7] while the results of [8] generalized those of regular I-bisimple semigroups obtained in [10], the study of *-simple type A I-semigroup undertaken here follow naturally from that of simple I-regular semigroups by Warne in [11]. The theory developed here draws inspiration from facts in $[6,9,11]$ and [1]. In this section some basic facts on type A semigroups are presented. In section 2 we construct a ${ }^{*}$-simple type A I-semigroup from a sequence of cancellative monoids $M_{i}(i=0,1, \ldots, d-1)$, a homomorphism θ by the generalized Bruck-Reilly ${ }^{*}$-extensions. The integer d is the number of distinct \mathcal{D}^{*}-classes in such a semigroup. Section 3 considers the structure theorem for *-simple type A I-semigroups which is invariably analogous to that of *-simple type A ω-semigroups. For a semigroup $S E(S)$ denotes the set of idempotents of S. Let S be a semigroup whose set $E(S)$ is non-empty. We define a partial order " $\leq "$ on $E(S)$ such that $e \leq f$ if and only if $e f=f e=e$. Let I denote the set of all integers and let \mathbb{N}^{0} denote the set of non-negative integers. A semigroup S is said to be an I-semigroup if and only if $E(S)$ is order isomorphic to I under the reverse of the partial order. Let S be a semigroup and let $a, b \in S$. Then the elements a and b are said to be \mathcal{R}^{*}-related written $a \mathcal{R}^{*} b$ if and only if for all $x, y \in S^{1}, x a=y a$ if and only if $x b=y b$. The relation \mathcal{L}^{*} is defined dually. The join of the equivalence relations \mathcal{R}^{*} and \mathcal{L}^{*} is denoted by \mathcal{D}^{*} and their intersection by \mathcal{H}^{*}. Thus a $\mathcal{H}^{*} b$ if and only if $a \mathcal{R}^{*} b$ and $a \mathcal{L}^{*} b$. In general $\mathcal{R}^{*} \circ \mathcal{L}^{*} \neq \mathcal{L}^{*} \circ \mathcal{R}^{*}$ (see [3]). Following Fountain [4], a semigroup is an abundant semigroup if every \mathcal{L}^{*}-class and every \mathcal{R}^{*}-class in S contain idempotents. An abundant semigroup S is said to be adequate [3] if $E(S)$ forms a semilattice. In an adequate semigroup every \mathcal{L}^{*}-class \mathcal{R}^{*}-class contains a unique idempotent. If a is an element in an adequate semigroup S, then $a^{*}\left(a^{\dagger}\right)$ denotes the unique idempotent in the \mathcal{L}^{*}-class $L_{a}^{*}\left(\mathcal{R}^{*}\right.$-class $\left.R_{a}^{*}\right)$ containing a. Fountain in [2] introduced the concept of right type A semigroup as special type of right PP monoids which is e-cancellable

[^0]for an idempotent. He followed it in [3] with introduction of type A as an adequate semigroup satisfying certain internal conditions. An adequate semigroup S is a type A semigroup if $e a=a(e a)^{*}$ and $a e=(a e)^{\dagger} a$ for all $a \in S$ and $e \in E(S)$. We conclude this section by defining the relation \mathcal{J}^{*}. Let S be a semigroup and I^{*} be an ideal of S. Then I^{*} is said to be a *-ideal if $L_{a}^{*} \subseteq I^{*}$ and $R_{a}^{*} \subseteq I^{*}$ for all $a \in I^{*}$. The smallest *-ideal containing an element ' a ' is the principal *-ideal generated by ' a ' and is denoted by $J^{*}(a)$. For $a, b \in S, a \mathcal{J}^{*} b$ if and only if $J^{*}(a)=J^{*}(b)$. The relations \mathcal{J}^{*} contains \mathcal{D}^{*}. A semigroup S is said to be *-simple if the only *-ideal of S is itself. Clearly a semigroup is *-simple if all its elements are \mathcal{J}^{*}-related.

Lemma 1.1 ([3]). Let S be a semigroup and $a, b \in S$. Then $b \in J^{*}(a)$ if and only if there are elements $a_{0}, a_{1}, \ldots, a_{n} \in S$, $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in S^{1}$ such that $a=a_{0}, b=a_{n}$ and $a_{i} \mathcal{D}^{*} x_{i} a_{i-1} y_{i}$, for $i=1,2, \ldots, n$.

Other basic results discussed in [3] and [8] will be assumed. The notation used in this paper is similar to that in Fountain [3], Howie [5] and Asibong-Ibe [1]. Recently type A semigroups have been shown to be special type of restriction semigroups. In this case type A ω-semigroup will essentially be an ω-restriction semigroups. The idea developed here will prove useful in the study of restriction semigroups. However, we will in this work retain the term type A semigroups generally.

2. The *-Simple Type A I-Semigroup: Construction

Consider a chain of cancellative monoids $T=\bigcup_{i=0}^{d-1} M_{i}$. Each element $x_{i} \in T$ is necessarily in M_{i} for $0 \leq i \leq d-1$. An identity $e_{i} \in M_{i}$ is an idempotent in T. Thus in $T, e_{i} \in T$ form a chain of idempotents $e_{0}>e_{i}>\cdots>e_{d-1}$. Let $\theta: T \rightarrow M_{0}$ be a monoid morphism and let $S=T \times I \times I$ (where I is the set of all integers) be the set of all ordered triples (x_{i}, m, n) where $m \in \mathbb{N}^{0}, n \in I, 0 \leq i \leq d-1$ and $x_{i} \in T$. Define multiplication on S by the rule

$$
\left(x_{i}, m, n\right)\left(y_{j}, p, q\right)= \begin{cases}\left(x_{i} \cdot f_{n-p, p}^{-1} \cdot y_{j} \theta^{n-p} \cdot f_{n-p, q}, m, n+q-p\right) & \text { if } n \geq p \\ \left(f_{p-n, m}^{-1} \cdot x_{i} \theta^{p-n} \cdot f_{p-n, n} \cdot y_{j}, m+p-n, q\right) & \text { if } n \leq p\end{cases}
$$

where θ^{0} is the identity automorphism of T, and for $m \in \mathbb{N}^{0}, n \in I, f_{0, n}=e_{i}$, the identity of M_{i}, while for $m>0$, $f_{m, n}=u_{n+1} \theta^{m-1} \cdot u_{n+2} \theta^{m-2} \ldots u_{n+(m-1)} \theta \cdot u_{n+m}$, and $f_{m, n}^{-1}=u_{n+m}^{-1} \cdot u_{n+(m-1)}^{-1} \theta \ldots u_{n+2}^{-1} \theta^{m-2} \cdot u_{n+1}^{-1} \theta^{m-1}$, where $\left\{u_{n}: n \in I\right\}$ is a collection of T with $u_{n}=e_{i}$ for $n>0$. A routine calculation shows that $S=T \times I \times I$ is a semigroup. This semigroup constructed will be called the generalized Bruck-Reilly *-extension of the semillatice of cancellative monoid T determined by θ and will be denoted by $S=G B R^{*}(T, \theta)$ where $T=\bigcup_{i=0}^{d-1} M_{i}$. If for each i we now let $M_{i}=\left\{e_{i}\right\}$, a monoid with one element, we obtain the set $I \times I$ under the multiplication

$$
(m d+i, n d+i)(p d+j, q d+j)= \begin{cases}(m d+i,(n+q-p) d+i) & \text { if } n \geq p \\ ((m+p-n) d+j, q d+j) & \text { if } n \leq p\end{cases}
$$

We denote $I \times I$ under the above multiplication by B_{d}^{*} and call it the extended bicyclic semigroup. Now let $\left(x_{i}, m, n\right)$ be an idempotent in S. Then

$$
\left(x_{i}, m, n\right)=\left(x_{i}, m, n\right)\left(x_{i}, m, n\right)= \begin{cases}\left(x_{i} \cdot f_{n-m, m}^{-1} \cdot x_{i} \theta^{n-m} \cdot f_{n-m, n}, m, n-m+n\right) & \text { if } n \geq m \\ \left(f_{m-n, m}^{-1} \cdot x_{i} \theta^{m-n} \cdot f_{m-n, n} \cdot x_{i}, m-n+m, n\right) & \text { if } n \leq m\end{cases}
$$

in which case $m=n, x_{i}^{2}=x_{i}$.
Conversely, suppose $x_{i}^{2}=x_{i}$ then certainly $\left(x_{i}, m, n\right)\left(x_{i}, m, n\right)=\left(x_{i}, m, n\right)$. Thus $\left(x_{i}, m, n\right)$ is an idempotent if and only if $m=n$ and x_{i} is an idempotent in S.

Lemma 2.1. Let $S=G B R^{*}(T, \theta)$ be the generalized Bruck-Reilly *-extension of the semilattice of cancellative monoid $T=\bigcup_{i=0}^{d-1} M_{i}$. Let $\left(x_{i}, m, n\right),\left(y_{j}, p, q\right) \in S$. Then
(1). $\left(x_{i}, m, n\right) \mathcal{R}^{*}\left(y_{j}, p, q\right)$ if and only if $m=p$ and $i=j$.
(2). $\left(x_{i}, m, n\right) \mathcal{L}^{*}\left(y_{j}, p, q\right)$ if and only if $n=q$ and $i=j$.
(3). $\left(x_{i}, m, n\right) \mathcal{J}^{*}\left(y_{j}, p, q\right)$. That is S is ${ }^{*}$-simple.

Proof.
(1). Suppose $\left(x_{i}, m, n\right),\left(y_{j}, p, q\right)$ are elements in S such that $\left(x_{i}, m, n\right) \mathcal{R}^{*}\left(y_{j}, p, q\right)$ where $x_{i} \in M_{i}$ and $y_{j} \in M_{j}$. Then there exists $\left(e_{i}, 0,0\right),\left(e_{i}, m, m\right) \in S=G B R^{*}(T, \theta)$ such that

$$
\begin{aligned}
\left(e_{0}, 0,0\right)\left(x_{i}, m, n\right) & =\left(e_{i}, m, m\right)\left(x_{i}, m, n\right), \\
\left(e_{0}, 0,0\right)\left(y_{j}, p, q\right) & =\left(e_{i}, m, m\right)\left(y_{j}, p, q\right) .
\end{aligned}
$$

Consequently, we have that

$$
\begin{aligned}
\left(y_{j}, p, q\right) & =\left(e_{i}, m, m\right)\left(y_{j}, p, q\right) \\
& = \begin{cases}\left(e_{i} \cdot y_{j} \theta^{m-p}, m, m+q-p\right) & \text { if } m \geq p \\
\left(e_{i} \theta^{p-m} \cdot y_{j}, m+p-m, q\right) & \text { if } m \leq p\end{cases}
\end{aligned}
$$

If $m>p$, this gives $\left(y_{j}, p, q\right)=\left(e_{i} \cdot y_{j} \theta^{m-p}, m, m+q-p\right)$. If we compare the middle coordinates, then $m=p$, which is a contradiction. Thus $m \leq p$. Similarly it can be shown that $p \leq m$, and from inequality follows $m=p$. Obviously $e_{i} \in M_{i}, y_{j} \in M_{j}$, thus $e_{i} \cdot y_{j} \in M_{i, j}$. But $e_{i} . y_{j}=y_{j}$ implies $i \leq j$. Similarly, $e_{j} \cdot x_{i}=x_{i}$ implies that $j \leq i$. As a result $m=p$ and $i=j$.

Conversely, let $m=p$ and $x_{i}, y_{j} \in M_{i}$. Then for any arbitrary elements $\left(v_{i}, c, z\right),\left(w_{j}, l, k\right) \in S=G B R^{*}(T, \theta)$, where $v_{i}, w_{j} \in M_{i}$,

$$
\left(v_{i}, c, z\right)\left(x_{i}, m, n\right)=\left(w_{j}, l, k\right)\left(x_{i}, m, n\right) .
$$

If $z \geq m$ and $k \geq m$. Then

$$
\left(v_{i} \cdot f_{z-m, m}^{-1} \cdot x_{i} \theta^{z-m} \cdot f_{z-m, n}, c, z+n-m\right)=\left(w_{j} \cdot f_{k-m, m}^{-1} \cdot x_{i} \theta^{k-m} \cdot f_{k-m, n}, l, k+n-m\right) .
$$

Comparing the first and the third coordinates we have

$$
v_{i} \cdot f_{z-m, m}^{-1} \cdot x_{i} \theta^{z-m} \cdot f_{z-m, n}=w_{j} \cdot f_{k-m, m}^{-1} \cdot x_{i} \theta^{k-m} \cdot f_{k-m, n}, z+n-m=k+n-m
$$

respectively. Consequently,

$$
v_{i} \cdot f_{z-m, m}^{-1} \cdot y_{j} \theta^{z-m} \cdot f_{z-m, q}=w_{j} \cdot f_{k-m, m}^{-1} \cdot y_{j} \theta^{k-m} \cdot f_{k-m, q}, z+n-m=k+n-m
$$

Hence, $\left(v_{i}, c, z\right)\left(y_{j}, m, q\right)=\left(w_{j}, l, k\right)\left(y_{j}, m, q\right)$. A similar argument shows that

$$
\left(v_{i}, c, z\right)\left(y_{j}, m, q\right)=\left(w_{j}, l, k\right)\left(y_{j}, m, q\right) \Longrightarrow\left(v_{i}, c, z\right)\left(x_{i}, m, n\right)=\left(w_{j}, l, k\right)\left(x_{i}, m, n\right)
$$

Thus $\left(x_{i}, m, n\right) \mathcal{R}^{*}\left(y_{j}, p, q\right)$.
(2). The proof is similar to that of (1).
(3). Let $\left(x_{i}, m, n\right),\left(y_{j}, p, q\right) \in S=G B R^{*}(T, \theta)$ where $x_{i} \in M_{i}$ and $y_{j} \in M_{j}$. Then

$$
\left(e_{j}, p, m+1\right)\left(x_{i}, m, n\right)=\left(e_{j} \cdot x_{i} \theta, p, n+1\right)
$$

Obviously, $e_{j} \cdot x_{i} \theta \in M_{j}$. Then $\left(e_{j} \cdot x_{i} \theta, p, n+1\right) \mathcal{D}^{*}\left(y_{j}, p, q\right)$. In a similar way, we have

$$
\left(e_{i}, m, p+1\right)\left(y_{j}, p, q\right)=\left(e_{i} \cdot y_{j} \theta, m, q+1\right)
$$

So $e_{i} . y_{j} \theta \in M_{i}$. Hence $\left(e_{i} . y_{j} \theta, m, q+1\right) \mathcal{D}^{*}\left(x_{j}, m, n\right)$. Thus $\left(x_{i}, m, n\right) \mathcal{J}^{*}\left(y_{j}, p, q\right)$. Then by Lemma 1.1 , we conclude that S is ${ }^{*}$-simple.

Lemma 2.2. $S=G B R^{*}(T, \theta)$ is an adequate semigroup if and only if T is adequate.

Proof. Let $S=G B R^{*}(T, \theta)$ be adequate. Suppose that $x_{i} \in T,\left(x_{i}, 0,0\right) \mathcal{L}^{*}\left(e_{i}, m, m\right) \in S$. Thus, each \mathcal{L}^{*}-class contains an idempotent. Similarly, each \mathcal{R}^{*}-class contains an idempotent. Let e_{i}, e_{j} be idempotents in T. Then $\left(e_{i}, 0,0\right)$ and $\left(e_{j}, 0,0\right)$ are idempotents in S. Consequently,

$$
\begin{aligned}
& \left(e_{i}, 0,0\right)\left(e_{j}, 0,0\right)=\left(e_{i} e_{j}, 0,0\right) \\
& \left(e_{j}, 0,0\right)\left(e_{i}, 0,0\right)=\left(e_{j} e_{i}, 0,0\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left(e_{i}, 0,0\right)\left(e_{j}, 0,0\right) & =\left(e_{i} e_{j}, 0,0\right)=\left(e_{j}, 0,0\right)\left(e_{i}, 0,0\right) \\
& =\left(e_{j} e_{i}, 0,0\right)
\end{aligned}
$$

hence $e_{i} e_{j}=e_{j} e_{i}$. Thus idempotents commute showing that T is adequate.
Conversely, let T be adequate, it follows from Lemma 2.1 that each \mathcal{L}^{*}-class and \mathcal{R}^{*}-class of $S=G B R^{*}(T, \theta)$ contain an idempotent element. Suppose $\left(e_{i}, m, m\right)$ and $\left(e_{j}, n, n\right)$ be any two idempotents in $S=G B R^{*}(T, \theta)$ where $e_{i}, e_{j} \in T$. Let $m>n$. Then we have

$$
\left(e_{i}, m, m\right)\left(e_{j}, n, n\right)=\left(e_{j}, n, n\right)\left(e_{i}, m, m\right)
$$

since $e_{j} \theta^{m-n}=e_{i}, f_{m-m, n}^{-1} f_{m-n, n}=e_{i}$ and $e_{i} e_{j}=e_{j} e_{i}$.

Lemma 2.3. $S=G B R^{*}(T, \theta)$ is a type A semigroup if and only T is a type A semigroup.

Proof. Let $S=G B R^{*}(T, \theta)$ be a type A semigroup. It follows from Lemma 2.2 that S is adequate and T is also adequate. Let $\left(x_{i}, 0,0\right),\left(e_{i}, 0,0\right) \in S$ where $x_{i} \in T$ and $e_{i} \in E(T)$. So we have that

$$
\begin{aligned}
\left(e_{i}, 0,0\right)\left(x_{i}, 0,0\right) & =\left(e_{i} x_{i}, 0,0\right) \\
\left(x_{i}, 0,0\right)\left(\left(e_{i}, 0,0\right)\left(x_{i}, 0,0\right)\right)^{*} & =\left(x_{i}\left(e_{i} x_{i}\right)^{*}, 0,0\right)
\end{aligned}
$$

Consequently, $\left(e_{i} x_{i}, 0,0\right)=\left(x_{i}\left(e_{i} x_{i}\right)^{*}, 0,0\right)$. Hence $e_{i} x_{i}=x_{i}\left(e_{i} x_{i}\right)^{*}$ which implies that T is right type A. That T is left type A follows similarly. Thus T is a type A semigroup.

Conversely, let T be a type A semigroup. We are to check that for $\left(x_{i}, p, q\right) \in S,\left(e_{i}, m, m\right) \in E(S)$,

$$
\begin{array}{ll}
\left(e_{i}, m, m\right)\left(x_{i}, p, q\right)=\left(x_{i}, p, q\right)\left(\left(e_{i}, m, m\right)\left(x_{i}, p, q\right)\right)^{*} & (\text { for right type A) } \\
\left(x_{i}, p, q\right)\left(e_{i}, m, m\right)=\left(\left(x_{i}, p, q\right)\left(e_{i}, m, m\right)\right)^{\dagger}\left(x_{i}, p, q\right) & (\text { for left type A) }
\end{array}
$$

Suppose $m \geq p$, we have that

$$
\left(e_{i}, m, m\right)\left(x_{i}, p, q\right)=\left(e_{i} \cdot f_{m-p, p}^{-1} \cdot x_{i} ?^{m-p} \cdot f_{m-p, q}, m, m+q-p\right) .
$$

Consequently,

$$
\begin{aligned}
\left(x_{i}, p, q\right)\left(\left(e_{i}, m, m\right)\left(x_{i}, p, q\right)\right)^{*}= & \left(f_{m+q-p-q, p}^{-1} \cdot x_{i} \theta^{m+q-p-q} \cdot f_{m+q-p-q, q} \cdot\left(e_{i} \cdot f_{m-p, p}^{-1} \cdot x_{i} \theta^{m-p} \cdot f_{m-p, q}\right)^{*},\right. \\
& p+m+q-p-q, m+q-p) \\
= & \left(f_{m-p, p}^{-1} \cdot x_{i} \theta^{m-p} \cdot f_{m-p, q}\left(e_{i} \cdot f_{m-p, p}^{-1} \cdot x_{i} \theta^{m-p} \cdot f_{m-p, q}\right)^{*}, m, m+q-p\right)
\end{aligned}
$$

Since T is type A, we have that

$$
f_{m-p, p}^{-1} \cdot x_{i} \theta^{m-p} \cdot f_{m-p, q} \cdot\left(e_{i} \cdot f_{m-p, p}^{-1} \cdot x_{i} \theta^{m-p} \cdot f_{m-p, q}\right)^{*}=e_{i} \cdot f_{m-p, p}^{-1} \cdot x_{i} \theta^{m-p} \cdot f_{m-p, q}
$$

Thus $\left(e_{i}, m, m\right)\left(x_{i}, p, q\right)=\left(x_{i}, p, q\right)\left(\left(e_{i}, m, m\right)\left(x_{i}, p, q\right)\right)^{*}$. Hence S is a right type A semigroup. That S is a left type A semigroup follows similarly. Therefore S is a type A semigroup.

Theorem 2.4. Let $S=G B R^{*}(T, \theta)$ be the generalized Bruck-Reilly *-extension of the semilattice of cancellative monoids $T=\bigcup_{i=0}^{d-1} M_{i}$. Then S is a ${ }^{*}$-simple type A I-semigroup with $d \mathcal{D}^{*}$-classes.

Proof. Since $S=G B R^{*}(T, \theta)$ is a *-simple type A semigroup, we need to show that S is an I-semigroup. Let $\left(e_{i}, m, m\right),\left(e_{j}, n, n\right) \in E(S)$ where $m>n$. Then

$$
\left(e_{i}, m, m\right)\left(e_{j}, n, n\right)=\left(e_{j}, n, n\right)\left(e_{i}, m, m\right)
$$

because $\left(e_{j} \theta \theta m-n\right)$ is the identity of T. Thus $\left(e_{i}, m, n\right)<\left(e_{j}, n, n\right)$ if and only if $m>n$. On the other hand, if $m=n$ and $i \geq j$, then

$$
\left(e_{i}, m, m\right)\left(e_{j}, m, m\right)=\left(e_{i} e_{j}, m, m\right)=\left(e_{i}, m, m\right)
$$

Thus $\left(e_{i}, m, m\right) \leq\left(e_{j}, m, m\right)$ if and only if $e_{i} \leq e_{j} \in T$. This shows that $E(S)$ is a chain

$$
\begin{aligned}
& >\left(e_{0},-1,-1\right)>\left(e_{1},-1,-1\right)>\cdots>\left(e_{d-1},-1,-1\right) \\
& >\left(e_{0}, 0,0\right)>\left(e_{1}, 0,0\right)>\cdots>\left(e_{d-1}, 0,0\right) \\
& >\left(e_{0}, 1,1\right)>\left(e_{1}, 1,1\right)>\cdots>\left(e_{d-1}, 1,1\right) \\
& >\ldots
\end{aligned}
$$

Hence S is a ${ }^{*}$-simple type A I-semigroup.
Finally, we show that S has $d \mathcal{D}^{*}$-classes. But $\mathcal{D}^{*}=\mathcal{L}^{*} \circ \mathcal{R}^{*}$. Let $\left(x_{i}, m, n\right) \mathcal{L}^{*}\left(z_{k}, p, q\right) \mathcal{R}^{*}\left(y_{j}, h, k\right)$. Then it follows that $n=q, p=h$ and $x_{i} \mathcal{L}^{*}(T) z_{k}, z_{k} \mathcal{R}^{*}(T) y_{j}$. If $x_{i} \in M_{i}, y_{j} \in M_{j}$ and $z_{k} \in M_{k}$, then it is evident that $i=j=k$, which shows that a \mathcal{D}^{*}-class of $S=G B R^{*}(T, \theta)$ is contained in $M_{i} \times I \times I$. Also, $\left(x_{i}, m, n\right) \mathcal{D}^{*}\left(y_{j}, p, q\right)$. Thus each \mathcal{D}^{*}-class of $S=G B R^{*}(T, \theta)$ equals $M_{i} \times I \times I, 0 \leq i \leq d-1$ and the proof of the theorem is completed.

3. The Structure Theorem

Let S denote a ${ }^{*}$-simple type A I-semigroup and let C^{*} be a ${ }^{*}$-ideal of S consisting of the \mathcal{H}^{*}-classes.

$$
S=\bigcup_{(m d+i, n d+i) \in B_{d}^{*}} H_{m d+i, n d+i}^{*},
$$

where d denotes the number of \mathcal{D}^{*}-classes of S. Observe that with respect to ${ }^{*}$-simple type A ω-semigroups, we have $B_{d}=\left\{(m, n): \mathbb{N}^{0} \times \mathbb{N}^{0}: m \equiv n(\bmod d)\right\}$, the bicyclic semigroup. Let us put

$$
B_{d}^{*}=\{(m d+i, n d+i) \in I \times I: m d+i \equiv n d+i(\bmod d)\},
$$

the extended bicyclic semigroup. Put $T=\bigcup_{i=0}^{d-1} M_{i}$ where $M_{i}=H_{i, i}^{*}, i=0,1,2, \ldots, d-1$. Then T is a finite chain of cancellative monoids, and the idempotents form a chain $e_{0}>e_{1}>\cdots>e_{d-1}$. Let $H_{i, i}^{*}, H_{j, j}^{*} \in T$, then we have that $H_{i, i}^{*} \cdot H_{j, j}^{*} \subseteq H_{i, j}^{*}$. Define a map $f_{i, j}: H_{i, i}^{*} \rightarrow H_{j, j}^{*}$ by the rule $m f_{i, j}=e_{j} m$ where $i \leq j$ For all $m \in H_{i, i}^{*}$ and $e_{j} \in H_{j, j}^{*}$ we have that $m e_{j}, e_{j} m \in H_{j, j}^{*}$ so that $m e_{j}=e_{j} m$. Since $m n=m \varphi_{i, j} \cdot n \varphi_{i, j}$, it follows that the maps are morphisms and they satisfy the following
(a). $\varphi_{i, i}$ is the identity map.
(b). $\varphi_{i, j} \varphi_{j, k}=\varphi_{i, k}$ for $k \leq j \leq i$.

The following Lemma establishes some important relationship

Lemma 3.1. Let $a \in H_{0, d}^{*} \cap C^{*}$ then $a^{-1} \in H_{d, 0}^{*}$ and $a^{k} a^{-k}=e_{0}, a^{-k} a^{k}=e_{k d}$.
Proof. Since $(0, d)^{-1}=(d, 0) \in B_{d}^{*} \cong C^{*}$, we have that $a^{-1} \in H_{d, 0}^{*}$. Also we have that $a^{2}=a . a \in H_{0, d}^{*} H_{0, d}^{*} \subseteq H_{0,2 d}^{*}$, and more generally by induction we have that $a^{k} \in H_{0, k d}^{*}, a^{-k} \in H_{k d, 0}^{*} \quad(k \in I)$. Now $a^{k} a^{-k} \in H_{0, k d}^{*} H_{k d, 0}^{*} \subseteq H_{0,0}^{*}$ which implies that $a^{k} a^{-k}=e_{0}$, since $a^{k} a^{-k} \in C^{*}$. Similarly, we have $a^{-k} a^{k} \in H_{k d, 0}^{*} H_{0, k d}^{*} \subseteq H_{k d, k d}^{*}$ which implies that $a^{-k} a^{k}=e_{k d}$.

Lemma 3.2. Every element $z \in S$ can be uniquely written in the form: $z=x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}$ where $m, n, u, v, w \in I$, $x_{i} \in H_{i, i}^{*}, f_{u, v}^{-1} f_{u, w}=f_{u, w} f_{u, v}^{-1}=e_{i} \in T$.

Proof. First we show that m, n, u, v, w are uniquely determined by the \mathcal{H}^{*}-class of z. By Lemma 3.1, we have that for any $m \in I, a^{m} \in H_{0, m d}^{*}, a^{-m} \in H_{m d, 0}^{*}, a^{m} a^{-m} \in H_{m d, m d}^{*}$. Let $m, n \in I$ and $x_{i} \in H_{i, i}^{*}$, then we have

$$
x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n} \in H_{i, i}^{*} H_{i, i}^{*} H_{m d, 0}^{*} H_{i, i}^{*} H_{0, n d}^{*} \subseteq H_{m d+i, n d+i}^{*} .
$$

So if $z \in H_{k, l}^{*}$ and $z=x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}$ then $i \equiv k \equiv l(\bmod d)$ and $k=m d+i, l=n d+i$. So $m=\frac{(k-i)}{d}$ and $n=\frac{(l-i)}{d}$. Hence we can define a map $f: H_{i, i}^{*} \rightarrow H_{m d+i, n d+i}^{*}$ by the rule that $x_{i} f=x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}$. It is clear that f is injective and surjective. Consequently,

$$
\begin{aligned}
x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n} & =\left(u f_{u, w} a^{m} f_{u, v}^{-1} a^{-n}\right) f_{u, v}^{-1} a^{-m} f_{u, w} a^{n} \\
& =u a^{-m} a^{m} a^{-n} a^{n} \\
& =u e_{m d} e_{n d} \\
& =u e_{m d} e_{m d+i} e_{n d+i} e_{n d}
\end{aligned}
$$

$$
=u
$$

Hence φ is a bijection from $H_{i, i}^{*} \rightarrow H_{m d+i, n d+i}^{*}$ with the inverse map given by

$$
v \longmapsto v a^{m} a^{-n} \quad\left(v \in H_{m d+i, n d+i}^{*}\right)
$$

showing that z can be uniquely as $x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}$ where $x_{i} \in H_{i, i}^{*}$.

Lemma 3.3. For any $x_{i} f_{u, v}^{-1} \in T$ there exists a unique $x_{i}^{*} f_{u, v}^{-1} \in H_{0,0}^{*}$ such that axi $f_{u, v}^{-1}=x_{i}^{*} f_{u, v}^{-1} a, x_{i} f_{u, v}^{-1} a^{-1}=a^{-1} x_{i}^{*} f_{u, v}^{-1}$. Let $\theta: T \rightarrow H_{0,0}^{*}, x_{i} f_{u, v}^{-1} \longmapsto a x^{*}$. Then $f_{u, v}^{-1} a^{k} x_{i}=f_{u, v}^{-1}\left(x_{i} \theta^{k}\right) a^{k}, x_{i} f_{u, v}^{-1} a^{-k}=f_{u, v}^{-1} a^{-k}\left(x_{i} \theta^{k}\right)$ and θ is a monoid morphism.

Proof. \quad Suppose $x_{i}^{*}=a x_{i} f_{u, v}^{-1} a^{-1}$. Then we have that

$$
x_{i}^{*}=a x_{i} f_{u, v}^{-1} a^{-1} \in H_{0, d}^{*} H_{i, i}^{*} H_{d, 0}^{*} \subseteq H_{0,0}^{*}
$$

Consequently, we have

$$
x_{i}^{*} f_{u, v}^{-1} a=a x_{i} f_{u, v}^{-1} a^{-1} a=a x_{i} f_{u, v}^{-1}
$$

That $x_{i} f_{u, v}^{-1} a^{-1}=a^{-1} x_{i}^{*} f_{u, v}^{-1}$ follows similarly. Now let us define $\theta: T \rightarrow H_{0,0}^{*}, x_{i} f_{u, v}^{-1} \longmapsto a x_{i}^{*}$. Then for $x_{i}, y_{i} \in T$ we have that

$$
\begin{aligned}
\left(x_{i} f_{u, v}^{-1} y_{i} f_{u, v}^{-1}\right) \theta & =a\left(x_{i} f_{u, v}^{-1} y_{i} f_{u, v}^{-1}\right) a^{-1} \quad\left(x_{i}^{*}=\left(x_{i} f_{u, v}^{-1}\right) \theta=a x_{i} f_{u, v}^{-1} a^{-1} \subseteq H_{0,0}^{*}\right) \\
& =a x_{i} f_{u, v}^{-1} e_{d} y_{i} f_{u, v}^{-1} a^{-1} \\
& =\left(x_{i} f_{u, v}^{-1}\right) \theta\left(y_{i} f_{u, v}^{-1}\right) \theta
\end{aligned}
$$

Thus θ is a morphism. Also it can be easily seen that $f_{u, v}^{-1}\left(x_{i} \theta^{k}\right) a^{k}=f_{u, v}^{-1} a^{k} x_{i}$. That $x_{i} f_{u, v}^{-1} a^{-k}=f_{u, v}^{-1} a^{-k}\left(x_{i} \theta^{k}\right)$ follows similarly.

Lemma 3.4. Let $u_{n} \in T, m \in \mathbb{N}^{0}, n \in I$ and let $\theta: T \rightarrow T$ where $T=\bigcup_{i=0}^{d-1} H_{i, i}^{*}$. Then for $m>0$, $f_{m, n}=$ $u_{n+1} \theta^{m-1} \cdot u_{n+2} \theta^{m-2} \ldots u_{n+(m-1)} \theta^{m-(m-1)} \cdot u_{n+m} \theta^{m-m}$, where $f_{0, n}=e_{0}$ is the identity of T.

Proof. Now since $u_{n} \in T$, then $u_{n+i} \in T$. Obviously, $u_{n} \theta, u_{n+i} \theta^{m-i} \in T$ for $m \in \mathbb{N}^{0}$ and $i=0,1, \ldots d-1$ where d is a positive integer. For $i=0$, we have $u_{n} \theta^{m}$ while for $i=1$, we have $u_{n+1} \theta^{m-1}$ and subsequently $\ldots i=d-1$, we have $u_{n+(d-1)} \theta^{m-(d-1)}$. For $i=m$, we have $u_{n+m} \theta^{m-m}=u_{n+m}$. Now if we let $f_{m, n}$ be the collection of the images of T and $m>0$, we obtain the desired result.

We will now prove the structure theorem for ${ }^{*}$-simple type A I-semigroups.

Theorem 3.5. Let S be a^{*}-simple type A I-semigroup with d \mathcal{D}^{*}-classes. Then S is isomorphic to a generalized BruckReilly *-extension $S=G B R^{*}(T, \theta)$ of a monoid T, where $T=\bigcup_{i=0}^{d-1} H_{i, i}^{*}$ is a finite chain of cancellative monoids M_{i} and θ is an endomorphism of T with image in M_{0}.

Proof. Let S be a ${ }^{*}$-simple type A I-semigroup. From Lemma 3.2, every element of S has a unique expression in the form $x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}$ for $x_{i} \in H_{i, i}^{*}, u, v, w \in I$ and a is a fixed regular element in $H_{0, d}^{*}$ and $T=\bigcup_{i=0}^{d-1} H_{i, i}^{*}$. Thus we can define a bijection $\psi: S \rightarrow T \times I \times I$ by the rule that

$$
\left(x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}\right) \psi=\left(x_{i}, m, n\right)
$$

From Lemma 3.3, we have that for any $x_{i} \in T$, there exists a unique $x_{i}^{*} f_{u, v}^{-1} \in H_{0,0}^{*}$ such that $a x_{i} f_{u, v}^{-1}=x_{i}^{*} f_{u, v}^{-1} a, x_{i} f_{u, v}^{-1} a^{-1}=$ $a^{-1} x_{i}^{*} f_{u, v}^{-1}$. Let us define $\theta: T \rightarrow H_{0,0}^{*}$ as $x_{i} f_{u, v}^{-1} \longmapsto a x_{i}^{*}$. Thus θ is a monoid morphism, and for all $k \in I$ clearly $f_{u, v}^{-1} a^{k} x_{i}=f_{u, v}^{-1}\left(x_{i} \theta^{k}\right) a^{k}$ and $x_{i} f_{u, v}^{-1} a^{-k}=f_{u, v}^{-1} a^{-k}\left(x_{i} \theta^{k}\right)$. Let $x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}, y_{j} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n} \in S$ where $x_{i}, y_{j} \in T$. We consider the following cases;

Case 1: If $n \geq p$, we have that

$$
\begin{aligned}
\left(x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}\right)\left(y_{j} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}\right) & =x_{i} f_{u, v}^{-1} a^{n-p} y_{j} f_{u, w} a^{-m} a^{q} \\
& =x_{i} f_{u, v}^{-1}\left(y_{j} \theta^{n-p}\right) a^{n-p} f_{u, w} a^{-m} a^{q} \quad\left(\text { since } f_{u, v}^{-1} a^{k} x_{i}=f_{u, v}^{-1}\left(x_{i} \theta^{k}\right) a^{k}\right) \\
& =x_{i} f_{u, v}^{-1} y_{j} \theta^{n-p} f_{u, w} a^{-m} a^{n+q-p} \\
& =x_{i} f_{n-p, p}^{-1} y_{j} \theta^{n-p} f_{n-p, q} a^{-m} a^{n+q-p}
\end{aligned}
$$

where $u, v=n-p, p$ and $u, w=n-p, q$ (since $n-p, p, q \in I$).
Case 2: If $n \leq p$, we have that

$$
\begin{aligned}
\left(x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}\right)\left(y_{j} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}\right) & =x_{i} f_{u, v}^{-1} a^{-(p-n)} y_{j} f_{u, w} a^{-m} a^{q} \\
& =f_{u, v}^{-1} a^{-(p-n)}\left(x_{i} \theta^{p-n}\right) y_{j} f_{u, w} a^{-m} a^{q} \quad\left(\text { since } x_{i} f_{u, v}^{-1} a^{-k}=f_{u, v}^{-1} a^{-k}\left(x_{i} \theta^{k}\right)\right) \\
& =f_{u, v}^{-1} x_{i} \theta^{p-n} f_{u, w} y_{j} a^{-(m+p-n)} a^{q} \\
& =f_{p-n, m}^{-1} x_{i} \theta^{p-n} f_{p-n, n} y_{j} a^{-(m+p-n)} a^{q}
\end{aligned}
$$

where $u, v=p-n, m$ and $u, w=p-n, n$ (since $p-n, m, n \in I$). Thus the mapping $\psi: S \rightarrow T \times I \times I$ defined by the rule that

$$
\left(x_{i} f_{u, v}^{-1} a^{-m} f_{u, w} a^{n}\right) \psi=\left(x_{i}, m, n\right)
$$

is an isomorphism. This completes the proof.

References

[1] U.I. Asibong-Ibe, ${ }^{*}$-Simple type A-semigroups, Semigroup Forum, 47(1993), 135-149.
[2] J.B. Fountain, A class of right PP monoids, Quart. J. Math. Oxford, 28(2)(1974), 28-44.
[3] J.B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc., 22(1979), 113-125.
[4] J.B. Fountain, Abundant semigroups, Proc. London. Math. Soc., 44(3)(1982), 103-129.
[5] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, Inc. USA, (1995).
[6] W.D. Munn, Regular ω-semigroups, Glasgow Math. J., 9(1968), 46-66.
[7] R.U. Ndubuisi and U.I. Asibong-Ibe, Congruences on *-bisimple type A I-semigroup, Journal of Semigroup Theory and Applications, 2018(2018), 1-14.
[8] Y. Shang and L. Wang, *-Bisimple type A I-semigroups, Southeast Asian Bull. Math., 36(2012), 535-545.
[9] Y. Shang and L. Wang, A class of regular simple ω^{2}-semigroups-1, Advances in Math., 42(5)(2013), 631-643.
[10] R.J. Warne, I-Bisimple semigroups, Trans. Amer. Math. Soc., 130(1968), 367-386.
[11] R.J. Warne, Some properties of simple I-regular semigroup, Compositio Math., 22(1970), 181-195.

[^0]: * E-mail: u_ndubuisi@yahoo.com

