

International Journal of Mathematics And its Applications

A Class of *-Simple Type A I-Semigroups

R. U. Ndubuisi^{1,*}, U. I. Asibong-Ibe¹ and I. U. UdoAkpan¹

1 Department of Mathematics & Statistics, University of Port Harcourt, Port Harcourt, Nigeria.

Abstract: *-simple type A I-semigroups as the generalized Bruck-Reilly *-extensions is studied and properties obtained. It is proved that a semigroup S is a *-simple type A I-semigroup if and only if it can be expressed as $S = GBR^*(T, \theta)$ where T is a finite chain of cancellative monoids. Thus the structure of *-simple type A I-semigroups is described and the results obtained is amplified in the light of studies on simple I-regular semigroups by Warne and that of *-simple type A ω -semigroups by Asibong-Ibe.

Keywords: Type A I-semigroups, cancellative monoids, generalized Bruck-Reilly *-extensions. © JS Publication.

1. Introduction and Preliminaries

Earlier investigations in [8] studied *-bisimple type A I-semigroups and characterized them as the generalized Bruck-Reilly *-extensions of cancellative monoids. Their congruences were later studied in [7] while the results of [8] generalized those of regular I-bisimple semigroups obtained in [10], the study of *-simple type A I-semigroup undertaken here follow naturally from that of simple I-regular semigroups by Warne in [11]. The theory developed here draws inspiration from facts in [6, 9, 11] and [1]. In this section some basic facts on type A semigroups are presented. In section 2 we construct a *-simple type A I-semigroup from a sequence of cancellative monoids M_i $(i = 0, 1, \dots, d-1)$, a homomorphism θ by the generalized Bruck-Reilly *-extensions. The integer d is the number of distinct \mathcal{D}^* -classes in such a semigroup. Section 3 considers the structure theorem for *-simple type A I-semigroups which is invariably analogous to that of *-simple type A ω -semigroups. For a semigroup S E(S) denotes the set of idempotents of S. Let S be a semigroup whose set E(S) is non-empty. We define a partial order " \leq " on E(S) such that $e \leq f$ if and only if ef = fe = e. Let I denote the set of all integers and let \mathbb{N}^0 denote the set of non-negative integers. A semigroup S is said to be an I-semigroup if and only if E(S) is order isomorphic to I under the reverse of the partial order. Let S be a semigroup and let $a, b \in S$. Then the elements a and b are said to be \mathcal{R}^* -related written $a\mathcal{R}^*b$ if and only if for all $x, y \in S^1$, xa = ya if and only if xb = yb. The relation \mathcal{L}^* is defined dually. The join of the equivalence relations \mathcal{R}^* and \mathcal{L}^* is denoted by \mathcal{D}^* and their intersection by \mathcal{H}^* . Thus a \mathcal{H}^*b if and only if $a\mathcal{R}^*b$ and $a\mathcal{L}^*b$. In general $\mathcal{R}^*\circ\mathcal{L}^*\neq\mathcal{L}^*\circ\mathcal{R}^*$ (see [3]). Following Fountain [4], a semigroup is an abundant semigroup if every \mathcal{L}^* -class and every \mathcal{R}^* -class in S contain idempotents. An abundant semigroup S is said to be adequate [3] if E(S)forms a semilattice. In an adequate semigroup every \mathcal{L}^* -class \mathcal{R}^* -class contains a unique idempotent. If a is an element in an adequate semigroup S, then $a^*(a^{\dagger})$ denotes the unique idempotent in the \mathcal{L}^* -class L_a^* (\mathcal{R}^* -class R_a^*) containing a. Fountain in [2] introduced the concept of right type A semigroup as special type of right PP monoids which is e-cancellable

^{*} E-mail: $u_ndubuisi@yahoo.com$

for an idempotent. He followed it in [3] with introduction of type A as an adequate semigroup satisfying certain internal conditions. An adequate semigroup S is a type A semigroup if $ea = a(ea)^*$ and $ae = (ae)^{\dagger}a$ for all $a \in S$ and $e \in E(S)$. We conclude this section by defining the relation \mathcal{J}^* . Let S be a semigroup and I^* be an ideal of S. Then I^* is said to be a *-ideal if $L_a^* \subseteq I^*$ and $R_a^* \subseteq I^*$ for all $a \in I^*$. The smallest *-ideal containing an element 'a' is the principal *-ideal generated by 'a' and is denoted by $J^*(a)$. For $a, b \in S$, $a\mathcal{J}^*b$ if and only if $J^*(a) = J^*(b)$. The relations \mathcal{J}^* contains \mathcal{D}^* . A semigroup S is said to be *-simple if the only *-ideal of S is itself. Clearly a semigroup is *-simple if all its elements are \mathcal{J}^* -related.

Lemma 1.1 ([3]). Let S be a semigroup and $a, b \in S$. Then $b \in J^*(a)$ if and only if there are elements $a_0, a_1, \ldots, a_n \in S$, $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in S^1$ such that $a = a_0, b = a_n$ and $a_i \mathcal{D}^* x_i a_{i-1} y_i$, for $i = 1, 2, \ldots, n$.

Other basic results discussed in [3] and [8] will be assumed. The notation used in this paper is similar to that in Fountain [3], Howie [5] and Asibong-Ibe [1]. Recently type A semigroups have been shown to be special type of restriction semigroups. In this case type A ω -semigroup will essentially be an ω -restriction semigroups. The idea developed here will prove useful in the study of restriction semigroups. However, we will in this work retain the term type A semigroups generally.

2. The *-Simple Type A I-Semigroup: Construction

Consider a chain of cancellative monoids $T = \bigcup_{i=0}^{d-1} M_i$. Each element $x_i \in T$ is necessarily in M_i for $0 \le i \le d-1$. An identity $e_i \in M_i$ is an idempotent in T. Thus in $T, e_i \in T$ form a chain of idempotents $e_0 > e_i > \cdots > e_{d-1}$. Let $\theta : T \to M_0$ be a monoid morphism and let $S = T \times I \times I$ (where I is the set of all integers) be the set of all ordered triples (x_i, m, n) where $m \in \mathbb{N}^0$, $n \in I$, $0 \le i \le d-1$ and $x_i \in T$. Define multiplication on S by the rule

$$(x_i, m, n)(y_j, p, q) = \begin{cases} (x_i . f_{n-p,p}^{-1} . y_j \theta^{n-p} . f_{n-p,q}, m, n+q-p) & \text{if } n \ge p \\ (f_{p-n,m}^{-1} . x_i \theta^{p-n} . f_{p-n,n} . y_j, m+p-n, q) & \text{if } n \le p \end{cases}$$

where θ^0 is the identity automorphism of T, and for $m \in \mathbb{N}^0$, $n \in I$, $f_{0,n} = e_i$, the identity of M_i , while for m > 0, $f_{m,n} = u_{n+1}\theta^{m-1}.u_{n+2}\theta^{m-2}...u_{n+(m-1)}\theta.u_{n+m}$, and $f_{m,n}^{-1} = u_{n+m}^{-1}.u_{n+(m-1)}^{-1}\theta...u_{n+2}^{-1}\theta^{m-2}.u_{n+1}^{-1}\theta^{m-1}$, where $\{u_n : n \in I\}$ is a collection of T with $u_n = e_i$ for n > 0. A routine calculation shows that $S = T \times I \times I$ is a semigroup. This semigroup constructed will be called the generalized Bruck-Reilly *-extension of the semillatice of cancellative monoid T determined by θ and will be denoted by $S = GBR^*(T, \theta)$ where $T = \bigcup_{i=0}^{d-1} M_i$. If for each i we now let $M_i = \{e_i\}$, a monoid with one element, we obtain the set $I \times I$ under the multiplication

$$(md+i, nd+i)(pd+j, qd+j) = \begin{cases} (md+i, (n+q-p)d+i) & \text{if } n \ge p \\ ((m+p-n)d+j, qd+j) & \text{if } n \le p \end{cases}$$

We denote $I \times I$ under the above multiplication by B_d^* and call it the extended bicyclic semigroup. Now let (x_i, m, n) be an idempotent in S. Then

$$(x_i, m, n) = (x_i, m, n)(x_i, m, n) = \begin{cases} (x_i.f_{n-m,m}^{-1}.x_i\theta^{n-m}.f_{n-m,n}, m, n-m+n) & \text{if } n \ge m \\ (f_{m-n,m}^{-1}.x_i\theta^{m-n}.f_{m-n,n}.x_i, m-n+m, n) & \text{if } n \le m \end{cases}$$

in which case m = n, $x_i^2 = x_i$.

Conversely, suppose $x_i^2 = x_i$ then certainly $(x_i, m, n) (x_i, m, n) = (x_i, m, n)$. Thus (x_i, m, n) is an idempotent if and only if m = n and x_i is an idempotent in S.

Lemma 2.1. Let $S = GBR^*(T, \theta)$ be the generalized Bruck-Reilly *-extension of the semilattice of cancellative monoid $T = \bigcup_{i=0}^{d-1} M_i$. Let $(x_i, m, n), (y_j, p, q) \in S$. Then

- (1). $(x_i, m, n) \mathcal{R}^*(y_j, p, q)$ if and only if m = p and i = j.
- (2). $(x_i, m, n) \mathcal{L}^*(y_j, p, q)$ if and only if n = q and i = j.
- (3). $(x_i, m, n) \mathcal{J}^*(y_j, p, q)$. That is S is *-simple.

Proof.

(1). Suppose (x_i, m, n) , (y_j, p, q) are elements in S such that $(x_i, m, n) \mathcal{R}^* (y_j, p, q)$ where $x_i \in M_i$ and $y_j \in M_j$. Then there exists $(e_i, 0, 0)$, $(e_i, m, m) \in S = GBR^* (T, \theta)$ such that

$$(e_0, 0, 0) (x_i, m, n) = (e_i, m, m) (x_i, m, n),$$

$$(e_0, 0, 0) (y_j, p, q) = (e_i, m, m) (y_j, p, q).$$

Consequently, we have that

$$(y_j, p, q) = (e_i, m, m) (y_j, p, q)$$
$$= \begin{cases} (e_i \cdot y_j \theta^{m-p}, m, m+q-p) & \text{if } m \ge p \\ (e_i \theta^{p-m} \cdot y_j, m+p-m, q) & \text{if } m \le p \end{cases}$$

If m > p, this gives $(y_j, p, q) = (e_i \cdot y_j \theta^{m-p}, m, m+q-p)$. If we compare the middle coordinates, then m = p, which is a contradiction. Thus $m \le p$. Similarly it can be shown that $p \le m$, and from inequality follows m = p. Obviously $e_i \in M_i, y_j \in M_j$, thus $e_i \cdot y_j \in M_{i,j}$. But $e_i \cdot y_j = y_j$ implies $i \le j$. Similarly, $e_j \cdot x_i = x_i$ implies that $j \le i$. As a result m = p and i = j.

Conversely, let m = p and $x_i, y_j \in M_i$. Then for any arbitrary elements $(v_i, c, z), (w_j, l, k) \in S = GBR^*(T, \theta)$, where $v_i, w_j \in M_i$,

$$(v_i, c, z) (x_i, m, n) = (w_j, l, k) (x_i, m, n).$$

If $z \ge m$ and $k \ge m$. Then

$$\left(v_{i}.f_{z-m,m}^{-1}.x_{i}\theta^{z-m}.f_{z-m,n},c,z+n-m\right) = \left(w_{j}.f_{k-m,m}^{-1}.x_{i}\theta^{k-m}.f_{k-m,n},l,k+n-m\right)$$

Comparing the first and the third coordinates we have

$$v_i \cdot f_{z-m,m}^{-1} \cdot x_i \theta^{z-m} \cdot f_{z-m,n} = w_j \cdot f_{k-m,m}^{-1} \cdot x_i \theta^{k-m} \cdot f_{k-m,n}, z+n-m = k+n-m$$

respectively. Consequently,

$$v_i \cdot f_{z-m,m}^{-1} \cdot y_j \theta^{z-m} \cdot f_{z-m,q} = w_j \cdot f_{k-m,m}^{-1} \cdot y_j \theta^{k-m} \cdot f_{k-m,q}, \ z+n-m = k+n-m.$$

Hence, $(v_i, c, z) (y_j, m, q) = (w_j, l, k) (y_j, m, q)$. A similar argument shows that

$$(v_i,c,z)(y_j,m,q) = (w_j,l,k)(y_j,m,q) \Longrightarrow (v_i,c,z)(x_i,m,n) = (w_j,l,k)(x_i,m,n).$$

Thus $(x_i, m, n) \mathcal{R}^* (y_j, p, q)$.

- (2). The proof is similar to that of (1).
- (3). Let $(x_i, m, n), (y_j, p, q) \in S = GBR^*(T, \theta)$ where $x_i \in M_i$ and $y_j \in M_j$. Then

$$(e_j, p, m+1)(x_i, m, n) = (e_j.x_i\theta, p, n+1).$$

Obviously, $e_j . x_i \theta \in M_j$. Then $(e_j . x_i \theta, p, n+1) \mathcal{D}^*(y_j, p, q)$. In a similar way, we have

$$(e_i, m, p+1)(y_j, p, q) = (e_i.y_j\theta, m, q+1)$$

So $e_i \cdot y_j \theta \in M_i$. Hence $(e_i \cdot y_j \theta, m, q+1) \mathcal{D}^*(x_j, m, n)$. Thus $(x_i, m, n) \mathcal{J}^*(y_j, p, q)$. Then by Lemma 1.1, we conclude that S is *-simple.

Lemma 2.2. $S = GBR^*(T, \theta)$ is an adequate semigroup if and only if T is adequate.

Proof. Let $S = GBR^*(T, \theta)$ be adequate. Suppose that $x_i \in T$, $(x_i, 0, 0)\mathcal{L}^*(e_i, m, m) \in S$. Thus, each \mathcal{L}^* -class contains an idempotent. Similarly, each \mathcal{R}^* -class contains an idempotent. Let e_i, e_j be idempotents in T. Then $(e_i, 0, 0)$ and $(e_j, 0, 0)$ are idempotents in S. Consequently,

$$(e_i, 0, 0)(e_j, 0, 0) = (e_i e_j, 0, 0)$$

 $(e_j, 0, 0)(e_i, 0, 0) = (e_j e_i, 0, 0)$

which implies that

$$(e_i, 0, 0)(e_j, 0, 0) = (e_i e_j, 0, 0) = (e_j, 0, 0)(e_i, 0, 0)$$

= $(e_j e_i, 0, 0)$

hence $e_i e_j = e_j e_i$. Thus idempotents commute showing that T is adequate.

Conversely, let T be adequate, it follows from Lemma 2.1 that each \mathcal{L}^* -class and \mathcal{R}^* -class of $S = GBR^*(T, \theta)$ contain an idempotent element. Suppose (e_i, m, m) and (e_j, n, n) be any two idempotents in $S = GBR^*(T, \theta)$ where $e_i, e_j \in T$. Let m > n. Then we have

$$(e_i, m, m)(e_j, n, n) = (e_j, n, n)(e_i, m, m)$$

since $e_j \theta^{m-n} = e_i, \ f_{m-m,n}^{-1} f_{m-n,n} = e_i \text{ and } e_i e_j = e_j e_i.$

Lemma 2.3. $S = GBR^*(T, \theta)$ is a type A semigroup if and only T is a type A semigroup.

Proof. Let $S = GBR^*(T, \theta)$ be a type A semigroup. It follows from Lemma 2.2 that S is adequate and T is also adequate. Let $(x_i, 0, 0), (e_i, 0, 0) \in S$ where $x_i \in T$ and $e_i \in E(T)$. So we have that

$$(e_i, 0, 0) (x_i, 0, 0) = (e_i x_i, 0, 0),$$
$$(x_i, 0, 0) ((e_i, 0, 0) (x_i, 0, 0))^* = (x_i (e_i x_i)^*, 0, 0).$$

Consequently, $(e_i x_i, 0, 0) = (x_i (e_i x_i)^*, 0, 0)$. Hence $e_i x_i = x_i (e_i x_i)^*$ which implies that T is right type A. That T is left type A follows similarly. Thus T is a type A semigroup.

Conversely, let T be a type A semigroup. We are to check that for $(x_i, p, q) \in S$, $(e_i, m, m) \in E(S)$,

$$(e_i, m, m) (x_i, p, q) = (x_i, p, q) ((e_i, m, m) (x_i, p, q))^*$$
 (for right type A)

 $(x_i, p, q) (e_i, m, m) = ((x_i, p, q) (e_i, m, m))^{\dagger} (x_i, p, q) \quad \text{(for left type A)}$

Suppose $m \ge p$, we have that

$$(e_i, m, m)(x_i, p, q) = (e_i \cdot f_{m-p,p}^{-1} \cdot x_i)^{m-p} \cdot f_{m-p,q}, m, m+q-p).$$

Consequently,

$$(x_{i}, p, q) ((e_{i}, m, m) (x_{i}, p, q))^{*} = \left(f_{m+q-p-q,p}^{-1} \cdot x_{i} \theta^{m+q-p-q} \cdot f_{m+q-p-q,q} \cdot \left(e_{i} \cdot f_{m-p,p}^{-1} \cdot x_{i} \theta^{m-p} \cdot f_{m-p,q}\right)^{*}, \\ p+m+q-p-q, m+q-p) \\ = \left(f_{m-p,p}^{-1} \cdot x_{i} \theta^{m-p} \cdot f_{m-p,q} (e_{i} \cdot f_{m-p,p}^{-1} \cdot x_{i} \theta^{m-p} \cdot f_{m-p,q})^{*}, m, m+q-p\right)$$

Since T is type A, we have that

$$f_{m-p,p}^{-1} \cdot x_i \theta^{m-p} \cdot f_{m-p,q} \cdot \left(e_i \cdot f_{m-p,p}^{-1} \cdot x_i \theta^{m-p} \cdot f_{m-p,q} \right)^* = e_i \cdot f_{m-p,p}^{-1} \cdot x_i \theta^{m-p} \cdot f_{m-p,q}$$

Thus $(e_i, m, m)(x_i, p, q) = (x_i, p, q)((e_i, m, m)(x_i, p, q))^*$. Hence S is a right type A semigroup. That S is a left type A semigroup follows similarly. Therefore S is a type A semigroup.

Theorem 2.4. Let $S = GBR^*(T, \theta)$ be the generalized Bruck-Reilly *-extension of the semilattice of cancellative monoids $T = \bigcup_{i=0}^{d-1} M_i$. Then S is a *-simple type A I-semigroup with $d \mathcal{D}^*$ -classes.

Proof. Since $S = GBR^*(T, \theta)$ is a *-simple type A semigroup, we need to show that S is an I-semigroup. Let $(e_i, m, m), (e_j, n, n) \in E(S)$ where m > n. Then

$$(e_i, m, m) (e_j, n, n) = (e_j, n, n) (e_i, m, m)$$

because $(e_j\theta\theta m - n)$ is the identity of T. Thus $(e_i, m, n) < (e_j, n, n)$ if and only if m > n. On the other hand, if m = n and $i \ge j$, then

$$(e_i, m, m) (e_j, m, m) = (e_i e_j, m, m) = (e_i, m, m)$$

Thus $(e_i, m, m) \leq (e_j, m, m)$ if and only if $e_i \leq e_j \in T$. This shows that E(S) is a chain

$$\cdots \\ > (e_0, -1, -1) > (e_1, -1, -1) > \cdots > (e_{d-1}, -1, -1) \\ > (e_0, 0, 0) > (e_1, 0, 0) > \cdots > (e_{d-1}, 0, 0) \\ > (e_0, 1, 1) > (e_1, 1, 1) > \cdots > (e_{d-1}, 1, 1) \\ > \cdots$$

Hence S is a *-simple type A I-semigroup.

Finally, we show that S has $d \mathcal{D}^*$ -classes. But $\mathcal{D}^* = \mathcal{L}^* \circ \mathcal{R}^*$. Let $(x_i, m, n) \mathcal{L}^*(z_k, p, q) \mathcal{R}^*(y_j, h, k)$. Then it follows that n = q, p = h and $x_i \mathcal{L}^*(T) z_k, z_k \mathcal{R}^*(T) y_j$. If $x_i \in M_i, y_j \in M_j$ and $z_k \in M_k$, then it is evident that i = j = k, which shows that a \mathcal{D}^* -class of $S = GBR^*(T, \theta)$ is contained in $M_i \times I \times I$. Also, $(x_i, m, n) \mathcal{D}^*(y_j, p, q)$. Thus each \mathcal{D}^* -class of $S = GBR^*(T, \theta)$ equals $M_i \times I \times I, 0 \leq i \leq d-1$ and the proof of the theorem is completed.

3. The Structure Theorem

Let S denote a *-simple type A I-semigroup and let C^* be a *-ideal of S consisting of the \mathcal{H}^* -classes.

$$S = \bigcup_{(md+i,nd+i)\in B_d^*} H_{md+i,nd+i}^*,$$

where d denotes the number of \mathcal{D}^* -classes of S. Observe that with respect to *-simple type A ω -semigroups, we have $B_d = \{(m,n) : \mathbb{N}^0 \times \mathbb{N}^0 : m \equiv n \pmod{d}\},$ the bicyclic semigroup. Let us put

$$B_d^* = \{ (md + i, nd + i) \in I \times I : md + i \equiv nd + i \pmod{d} \},\$$

the extended bicyclic semigroup. Put $T = \bigcup_{i=0}^{d-1} M_i$ where $M_i = H_{i,i}^*$, $i = 0, 1, 2, \dots, d-1$. Then T is a finite chain of cancellative monoids, and the idempotents form a chain $e_0 > e_1 > \dots > e_{d-1}$. Let $H_{i,i}^*$, $H_{j,j}^* \in T$, then we have that $H_{i,i}^*$. $H_{j,j}^* \subseteq H_{i,j}^*$. Define a map $f_{i,j} : H_{i,i}^* \to H_{j,j}^*$ by the rule $mf_{i,j} = e_j m$ where $i \leq j$ For all $m \in H_{i,i}^*$ and $e_j \in H_{j,j}^*$ we have that $me_j, e_j m \in H_{j,j}^*$ so that $me_j = e_j m$. Since $mn = m\varphi_{i,j}.n\varphi_{i,j}$, it follows that the maps are morphisms and they satisfy the following

- (a). $\varphi_{i,i}$ is the identity map.
- (b). $\varphi_{i,j}\varphi_{j,k} = \varphi_{i,k}$ for $k \leq j \leq i$.

The following Lemma establishes some important relationship

Lemma 3.1. Let $a \in H_{0,d}^* \cap C^*$ then $a^{-1} \in H_{d,0}^*$ and $a^k a^{-k} = e_0, a^{-k} a^k = e_{kd}$.

Proof. Since $(0,d)^{-1} = (d,0) \in B_d^* \cong C^*$, we have that $a^{-1} \in H_{d,0}^*$. Also we have that $a^2 = a.a \in H_{0,d}^* H_{0,d}^* \subseteq H_{0,2d}^*$, and more generally by induction we have that $a^k \in H_{0,kd}^*$, $a^{-k} \in H_{kd,0}^*$ $(k \in I)$. Now $a^k a^{-k} \in H_{0,kd}^* H_{kd,0}^* \subseteq H_{0,0}^*$ which implies that $a^k a^{-k} \in C^*$. Similarly, we have $a^{-k} a^k \in H_{kd,0}^* H_{0,kd}^* \subseteq H_{kd,kd}^*$ which implies that $a^{-k} a^k = e_{kd}$.

Lemma 3.2. Every element $z \in S$ can be uniquely written in the form: $z = x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n$ where $m, n, u, v, w \in I$, $x_i \in H_{i,i}^*, f_{u,v}^{-1} f_{u,w} = f_{u,w} f_{u,v}^{-1} = e_i \in T$.

Proof. First we show that m, n, u, v, w are uniquely determined by the \mathcal{H}^* -class of z. By Lemma 3.1, we have that for any $m \in I$, $a^m \in H^*_{0,md}$, $a^{-m} \in H^*_{md,0}$, $a^m a^{-m} \in H^*_{md,md}$. Let $m, n \in I$ and $x_i \in H^*_{i,i}$, then we have

$$x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n \in H_{i,i}^* H_{i,i}^* H_{md,0}^* H_{i,i}^* H_{0,nd}^* \subseteq H_{md+i,nd+i}^*.$$

So if $z \in H_{k,l}^*$ and $z = x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n$ then $i \equiv k \equiv l \pmod{d}$ and k = md + i, l = nd + i. So $m = \frac{(k-i)}{d}$ and $n = \frac{(l-i)}{d}$. Hence we can define a map $f : H_{i,i}^* \to H_{md+i,nd+i}^*$ by the rule that $x_i f = x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n$. It is clear that f is injective and surjective. Consequently,

$$x_{i}f_{u,v}^{-1}a^{-m}f_{u,w}a^{n} = \left(uf_{u,w}a^{m}f_{u,v}^{-1}a^{-n}\right)f_{u,v}^{-1}a^{-m}f_{u,w}a^{n}$$
$$= ua^{-m}a^{m}a^{-n}a^{n}$$
$$= ue_{md}e_{nd}$$

 $= u e_{md} e_{md+i} e_{nd+i} e_{nd}$

$$= u.$$

Hence φ is a bijection from $H_{i,i}^* \to H_{md+i,nd+i}^*$ with the inverse map given by

$$v \longmapsto v a^m a^{-n} \qquad (v \in H^*_{md+i,nd+i})$$

showing that z can be uniquely as $x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n$ where $x_i \in H_{i,i}^*$.

Lemma 3.3. For any $x_i f_{u,v}^{-1} \in T$ there exists a unique $x_i^* f_{u,v}^{-1} \in H_{0,0}^*$ such that $ax_i f_{u,v}^{-1} = x_i^* f_{u,v}^{-1} a$, $x_i f_{u,v}^{-1} a^{-1} = a^{-1} x_i^* f_{u,v}^{-1}$. Let $\theta : T \to H_{0,0}^*$, $x_i f_{u,v}^{-1} \longmapsto ax^*$. Then $f_{u,v}^{-1} a^k x_i = f_{u,v}^{-1} (x_i \theta^k) a^k$, $x_i f_{u,v}^{-1} a^{-k} = f_{u,v}^{-1} a^{-k} (x_i \theta^k)$ and θ is a monoid morphism. Proof. Suppose $x_i^* = ax_i f_{u,v}^{-1} a^{-1}$. Then we have that

$$x_i^* = ax_i f_{u,v}^{-1} a^{-1} \in H_{0,d}^* H_{i,i}^* H_{d,0}^* \subseteq H_{0,0}^*.$$

Consequently, we have

$$x_i^* f_{u,v}^{-1} a = a x_i f_{u,v}^{-1} a^{-1} a = a x_i f_{u,v}^{-1}$$

That $x_i f_{u,v}^{-1} a^{-1} = a^{-1} x_i^* f_{u,v}^{-1}$ follows similarly. Now let us define $\theta: T \to H_{0,0}^*, x_i f_{u,v}^{-1} \longmapsto a x_i^*$. Then for $x_i, y_i \in T$ we have that

$$\begin{aligned} \left(x_i f_{u,v}^{-1} y_i f_{u,v}^{-1}\right) \theta &= a \left(x_i f_{u,v}^{-1} y_i f_{u,v}^{-1}\right) a^{-1} \quad \left(x_i^* = \left(x_i f_{u,v}^{-1}\right) \theta = a x_i f_{u,v}^{-1} a^{-1} \subseteq H_{0,0}^* \right) \\ &= a x_i f_{u,v}^{-1} e_d y_i f_{u,v}^{-1} a^{-1} \\ &= \left(x_i f_{u,v}^{-1}\right) \theta \left(y_i f_{u,v}^{-1}\right) \theta. \end{aligned}$$

Thus θ is a morphism. Also it can be easily seen that $f_{u,v}^{-1}(x_i\theta^k)a^k = f_{u,v}^{-1}a^kx_i$. That $x_i f_{u,v}^{-1}a^{-k} = f_{u,v}^{-1}a^{-k}(x_i\theta^k)$ follows similarly.

Lemma 3.4. Let $u_n \in T$, $m \in \mathbb{N}^0$, $n \in I$ and let $\theta : T \to T$ where $T = \bigcup_{i=0}^{d-1} H_{i,i}^*$. Then for m > 0, $f_{m,n} = u_{n+1}\theta^{m-1}.u_{n+2}\theta^{m-2}...u_{n+(m-1)}\theta^{m-(m-1)}.u_{n+m}\theta^{m-m}$, where $f_{0,n} = e_0$ is the identity of T.

Proof. Now since $u_n \in T$, then $u_{n+i} \in T$. Obviously, $u_n \theta$, $u_{n+i} \theta^{m-i} \in T$ for $m \in \mathbb{N}^0$ and $i = 0, 1, \ldots d - 1$ where d is a positive integer. For i = 0, we have $u_n \theta^m$ while for i = 1, we have $u_{n+1} \theta^{m-1}$ and subsequently $\ldots i = d - 1$, we have $u_{n+(d-1)} \theta^{m-(d-1)}$. For i = m, we have $u_{n+m} \theta^{m-m} = u_{n+m}$. Now if we let $f_{m,n}$ be the collection of the images of T and m > 0, we obtain the desired result.

We will now prove the structure theorem for *-simple type A I-semigroups.

Theorem 3.5. Let S be a *-simple type A I-semigroup with $d \mathcal{D}^*$ -classes. Then S is isomorphic to a generalized Bruck-Reilly *-extension $S = GBR^*(T, \theta)$ of a monoid T, where $T = \bigcup_{i=0}^{d-1} H_{i,i}^*$ is a finite chain of cancellative monoids M_i and θ is an endomorphism of T with image in M_0 .

Proof. Let S be a *-simple type A I-semigroup. From Lemma 3.2, every element of S has a unique expression in the form $x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n$ for $x_i \in H_{i,i}^*$, $u, v, w \in I$ and a is a fixed regular element in $H_{0,d}^*$ and $T = \bigcup_{i=0}^{d-1} H_{i,i}^*$. Thus we can define a bijection $\psi: S \to T \times I \times I$ by the rule that

$$(x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n) \psi = (x_i, m, n).$$

1233

From Lemma 3.3, we have that for any $x_i \in T$, there exists a unique $x_i^* f_{u,v}^{-1} \in H_{0,0}^*$ such that $ax_i f_{u,v}^{-1} = x_i^* f_{u,v}^{-1} a$, $x_i f_{u,v}^{-1} a^{-1} = a^{-1}x_i^* f_{u,v}^{-1}$. Let us define $\theta : T \to H_{0,0}^*$ as $x_i f_{u,v}^{-1} \longmapsto ax_i^*$. Thus θ is a monoid morphism, and for all $k \in I$ clearly $f_{u,v}^{-1} a^k x_i = f_{u,v}^{-1} (x_i \theta^k) a^k$ and $x_i f_{u,v}^{-1} a^{-k} = f_{u,v}^{-1} a^{-k} (x_i \theta^k)$. Let $x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n$, $y_j f_{u,v}^{-1} a^{-m} f_{u,w} a^n \in S$ where $x_i, y_j \in T$. We consider the following cases;

Case 1: If $n \ge p$, we have that

$$(x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n) (y_j f_{u,v}^{-1} a^{-m} f_{u,w} a^n) = x_i f_{u,v}^{-1} a^{n-p} y_j f_{u,w} a^{-m} a^q$$

$$= x_i f_{u,v}^{-1} (y_j \theta^{n-p}) a^{n-p} f_{u,w} a^{-m} a^q \quad (\text{since} \quad f_{u,v}^{-1} a^k x_i = f_{u,v}^{-1} (x_i \theta^k) a^k)$$

$$= x_i f_{u,v}^{-1} y_j \theta^{n-p} f_{u,w} a^{-m} a^{n+q-p}$$

$$= x_i f_{n-p,p}^{-1} y_j \theta^{n-p} f_{n-p,q} a^{-m} a^{n+q-p}$$

where u, v = n - p, p and u, w = n - p, q (since $n - p, p, q \in I$).

Case 2: If $n \leq p$, we have that

$$\begin{aligned} \left(x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n\right) \left(y_j f_{u,v}^{-1} a^{-m} f_{u,w} a^n\right) &= x_i f_{u,v}^{-1} a^{-(p-n)} y_j f_{u,w} a^{-m} a^q \\ &= f_{u,v}^{-1} a^{-(p-n)} (x_i \theta^{p-n}) y_j f_{u,w} a^{-m} a^q \quad (\text{since} \ x_i f_{u,v}^{-1} a^{-k} = f_{u,v}^{-1} a^{-k} (x_i \theta^k)) \\ &= f_{u,v}^{-1} x_i \theta^{p-n} f_{u,w} y_j a^{-(m+p-n)} a^q \\ &= f_{p-n,m}^{-1} x_i \theta^{p-n} f_{p-n,n} y_j a^{-(m+p-n)} a^q \end{aligned}$$

where u, v = p - n, m and u, w = p - n, n (since $p - n, m, n \in I$). Thus the mapping $\psi : S \to T \times I \times I$ defined by the rule that

$$(x_i f_{u,v}^{-1} a^{-m} f_{u,w} a^n) \psi = (x_i, m, n)$$

is an isomorphism. This completes the proof.

References

- [1] U.I. Asibong-Ibe, *-Simple type A ω-semigroups, Semigroup Forum, 47(1993), 135-149.
- [2] J.B. Fountain, A class of right PP monoids, Quart. J. Math. Oxford, 28(2)(1974), 28-44.
- [3] J.B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc., 22(1979), 113-125.
- [4] J.B. Fountain, Abundant semigroups, Proc. London. Math. Soc., 44(3)(1982), 103-129.
- [5] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, Inc. USA, (1995).
- [6] W.D. Munn, Regular ω -semigroups, Glasgow Math. J., 9(1968), 46-66.
- [7] R.U. Ndubuisi and U.I. Asibong-Ibe, Congruences on *-bisimple type A I-semigroup, Journal of Semigroup Theory and Applications, 2018(2018), 1-14.
- [8] Y. Shang and L. Wang, *-Bisimple type A I-semigroups, Southeast Asian Bull. Math., 36(2012), 535-545.
- [9] Y. Shang and L. Wang, A class of regular simple ω^2 -semigroups-1, Advances in Math., 42(5)(2013), 631-643.
- [10] R.J. Warne, I-Bisimple semigroups, Trans. Amer. Math. Soc., 130(1968), 367-386.
- [11] R.J. Warne, Some properties of simple I-regular semigroup, Compositio Math., 22(1970), 181-195.