ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Contra Semi* δ -Continuous Functions in Topological Spaces

Research Article

S. Pious Missier^{1*}, C. Reena² and G. Mahadevan³

- 1 P.G. Department of Mathematics, V.O.Chidambaram College, Thoothukudi, Tamilnadu, India.
- 2 Department of Mathematics, St.Mary's College, Thoothukudi, Tamilnadu, India.
- 3 Department of Mathematics, Gandhigram Rural Institute-Deemed University, Gandhigram, Dindigul, Tamilnadu, India.

Abstract: In this paper we define contra-semi* δ -continuous, contra-semi* δ -irresolute, semi* δ -open and semi* δ -closed functions and

investigate their properties.

MSC: 54C05.

Keywords: Contra-semi* δ -continuous, contra-semi* δ -irresolute, semi* δ -open map, semi* δ -closed map.

© JS Publication.

1. Introduction

In 1996, Dontchev introduced and investigated the notions of contra-continuity. Later Zainab Aodia Athbanaih introduced and investigated the concept of contra $(\delta, g\delta)$ -continuous functions. Quite recently the authors have introduced the concept of semi* δ -open sets and studied their properties. The aim of this paper is to introduce and investigate a new class of functions called contra-semi* δ -continuous, contra-semi* δ -irresolute, semi* δ -open and semi* δ -closed.

2. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) will always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X, τ) , cl(A) and int(A) denote the closure and the interior of A respectively. We recall some known definitions needed in this paper.

Definition 2.1. Let (X, τ) be a topological space. A subset A of the space X is said to be

- (1). Semi-open if $A \subseteq Cl(Int(A))$ and semi*-open if $A \subseteq Cl^*(Int(A))$.
- (2). Pre open if $A \subseteq Int(Cl(A))$ and pre*open if $A \subseteq Int^*(Cl(A))$.
- (3). Semi-pre open if $A \subseteq Cl(Int(Cl(A)))$ and semi*-pre open if $A \subseteq Cl^*(pInt(A))$.
- (4). α -open if $A \subseteq Int(Cl(Int(A)))$ and α^* -open if $A \subseteq Int^*(Cl(Int^*(A)))$.

^{*} E-mail: spmissier@qmail.com

- (5). Regular-open if A = Int(Cl(A)) and δ -open if $A = \delta Int(A)$.
- (6). semi α -open if $A \subseteq Cl(\alpha Int(A))$ and semi* α -open if $A \subseteq Cl^*(\alpha Int(A))$.
- (7). δ -semi-open if $A \subseteq Cl(\delta Int(A))$ and semi* δ -open $A \subseteq Cl^*(\delta Int(A))$.

The complements of the above mentioned sets are called their respective closed sets.

Definition 2.2. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be

- (1). contra-continuous [4] if $f^{-1}(V)$ is closed in (X, τ) for every open set V in (Y, σ) .
- (2). contra-g-continuous [2] if $f^{-1}(V)$ is g-closed in (X,τ) for every open set V in (Y,σ) .
- (3). contra-semi-continuous [5] if $f^{-1}(V)$ is semi-closed in (X,τ) for every open set V in (Y,σ) .
- (4). contra-semi*-continuous [10] if $f^{-1}(V)$ is semi*-closed in (X,τ) for every open set V in (Y,σ) .
- (5). contra-pre-continuous [7] if $f^{-1}(V)$ is pre-closed in (X,τ) for every open set V in (Y,σ) .
- (6). $contra-\alpha$ -continuous [6] if $f^{-1}(V)$ is α -closed in (X,τ) for every open set V in (Y,σ) .
- (7). $contra-\alpha^*$ -continuous [9] if $f^{-1}(V)$ is α^* -closed in (X,τ) for every open set V in (Y,σ) .
- (8). contra-semi-pre-continuous [3] if $f^{-1}(V)$ is semi-pre closed in (X,τ) for every open set V in (Y,σ) .
- (9). contra-semi*pre-continuous [8] if $f^{-1}(V)$ is semi*-pre closed in (X,τ) for every open set V in (Y,σ) .
- (10). $contra-semi\alpha-continuous$ [15] if $f^{-1}(V)$ is $semi-\alpha-closed$ in (X,τ) for every open set V in (Y,σ) .
- (11). $contra-semi^*\alpha$ -continuous [15] if $f^{-1}(V)$ is $semi^*\alpha$ -closed in (X,τ) for every open set V in (Y,σ) .
- (12). contra- δ -continuous [16] if $f^{-1}(V)$ is δ -closed in (X, τ) for every open set V in (Y, σ) .

Theorem 2.3 ([14]). Every δ -open set is open.

Theorem 2.4 ([11, 12]). Every δ -open set is semi* δ -open and every δ -closed set is semi* δ -closed.

Theorem 2.5 ([11]). In any topological space,

- (1). Every semi* δ -open set is δ -semi-open.
- (2). Every $semi*\delta$ -open set is semi-open.
- (3). Every $semi*\delta$ -open set is semi*-open.
- (4). Every $semi*\delta$ -open set is semi*-preopen.
- (5). Every semi* δ -open set is semi-preopen.
- (6). Every semi* δ -open set is semi* α -open
- (7). Every semi* δ -open set is semi α -open.

Remark 2.6 ([12]). Similar results for semi* δ -closed sets are also true.

Theorem 2.7 ([11]). Arbitrary union of semi* δ -open sets in X is also semi* δ -open in X.

Theorem 2.8 ([11]). For a subset A of a topological space (X, τ) the following statements are equivalent:

- (1). A is semi* δ -open.
- (2). $A \subseteq Cl^*(\delta Int(A))$.
- (3). $Cl^*(\delta Int(A)) = Cl^*(A)$.

Theorem 2.9 ([12]). For a subset A of a topological space (X, τ) , the following statements are equivalent:

- (1). A is semi* δ -closed.
- (2). $Int^*(\delta Cl(A)) \subseteq A$.
- (3). $Int^*(\delta Cl(A)) = Int^*(A)$.

Theorem 2.10. A subset A of a space X is

- (1). $semi*\delta-open if and only if <math>s*\delta Int(A) = A$ [11].
- (2). $semi*\delta$ -closed if and only if $s*\delta Cl(A) = A$ [12].

3. Contra-Semi*δ-Continuous Functions

Definition 3.1. A function $f:(X,\tau)\to (Y,\sigma)$ is called contra-semi* δ -continuous if $f^{-1}(V)$ is semi* δ -closed in (X,τ) for every open set V in (Y,σ) .

Example 3.2. Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, Y\}$. $S*\delta C(X, \tau) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = d, f(b) = c, f(c) = a, f(d) = b. clearly, f is contra-semi* δ -continuous.

Theorem 3.3. Every contra- δ -continuous function is contra-semi* δ -continuous.

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ be contra-δ-continuous. Let V be an open set in (Y,σ) . Since f is contra-δ-continuous, $f^{-1}(V)$ is δ-closed in (X,τ) . By Theorem 2.4, $f^{-1}(V)$ is semi*δ-closed in (X,τ) . Hence f is contra-semi*δ-continuous.

Remark 3.4. It can be seen that the converse of the above theorem is not true.

Definition 3.5. A function $f:(X,\tau)\to (Y,\sigma)$ is called contra- δ -semi-continuous if $f^{-1}(V)$ is δ -semi-closed in (X,τ) for every open set V in (Y,σ) .

Theorem 3.6. In any topological space,

- (1). Every contra-semi* δ -continuous function is contra- δ -semi-continuous.
- (2). Every contra-semi*δ-continuous function is contra-semi-continuous.
- (3). Every contra-semi* δ -continuous function is contra-semi*-continuous.
- (4). Every contra-semi* δ -continuous function is contra-semi*pre-continuous.
- (5). Every contra-semi* δ -continuous function is contra-semi-pre-continuous.
- (6). Every contra-semi * δ -continuous function is contra-semi * α -continuous.

(7). Every contra-semi* δ -continuous function is contra-semi α -continuous.

Proof.

- (1). Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -continuous. Let V be an open set in (Y,σ) . Since f is contra-semi* δ -continuous, $f^{-1}(V)$ is semi* δ -closed in (X,τ) . By Remark 2.6, $f^{-1}(V)$ is δ -semi-closed in (X,τ) . Hence f is contra- δ -semi-continuous.
- (2). Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -continuous. Let V be an open set in (Y,σ) . Since f is contra-semi* δ -continuous, $f^{-1}(V)$ is semi* δ -closed in (X,τ) . By Remark 2.6, $f^{-1}(V)$ is semi-closed in (X,τ) . Hence f is contra-semi-continuous.
- (3). Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -continuous. Let V be an open set in (Y,σ) . Since f is contra-semi* δ -continuous, $f^{-1}(V)$ is semi* δ -closed in (X,τ) . By Remark 2.6, $f^{-1}(V)$ is semi*-closed in (X,τ) . Hence f is contra-semi*-continuous.
- (4). Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -continuous. Let V be an open set in (Y,σ) . Since f is contra-semi* δ -continuous, $f^{-1}(V)$ is semi* δ -closed in (X,τ) . By Remark 2.6, $f^{-1}(V)$ is semi*pre-closed in (X,τ) . Hence f is contra-semi*pre-continuous.
- (5). Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -continuous. Let V be an open set in (Y,σ) . Since f is contra-semi* δ -continuous, $f^{-1}(V)$ is semi* δ -closed in (X,τ) . By Remark 2.6, $f^{-1}(V)$ is semi-pre-closed in (X,τ) . Hence f is contra-semi-pre-continuous.
- (6). Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -continuous. Let V be an open set in (Y,σ) . Since f is contra-semi* δ -continuous, $f^{-1}(V)$ is semi* δ -closed in (X,τ) . By Remark 2.6, $f^{-1}(V)$ is semi* α -closed in (X,τ) . Hence f is contra-semi* α -continuous.
- (7). Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -continuous. Let V be an open set in (Y,σ) . Since f is contra-semi* δ -continuous, $f^{-1}(V)$ is semi* δ -closed in (X,τ) . By Remark 2.6, $f^{-1}(V)$ is semi α -closed in (X,τ) . Hence f is contrasemi* α -continuous.

Remark 3.7. The converse of each of the statements in Theorem 3.6 is not true.

Remark 3.8. The concepts of contra-semi* δ -continuous and contra-continuous (resp. contra-g-continuous, contra- α -continuous, contra- precontinuous, contra- α *-continuous, contra-pre*-continuous) are independent.

Remark 3.9. The composition of two contra-semi* δ -continuous functions need not be contra-semi* δ -continuous and this can be shown by the following example.

Example 3.10. Let $X = Y = Z = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$, $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, Y\}$ and $\eta = \{\phi, \{a\}, Z\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = d; f(b) = c; f(c) = b; f(d) = a and define $g : (Y, \sigma) \to (Z, \eta)$ by g(a) = c; g(b) = g(c) = g(d) = a. Then f and g are contra-semi* δ -continuous but $g \circ f$ is not semi* δ -continuous. Since $\{a\}$ is open in (Z, η) but $(g \circ f)^{-1}(\{a\}) = f^{-1}(g^{-1}(\{a\})) = f^{-1}(\{b, c, d\}) = \{a, b, c\}$ which is not semi* δ -closed in (X, τ) .

Theorem 3.11. For a function $f:(X,\tau)\to (Y,\sigma)$, the following are equivalent:

- (1). f is $contra-semi*\delta-continuous$.
- (2). For each $x \in X$ and each closed set F in Y containing f(x), there exists a semi* δ -open set U in X containing x such that $f(U) \subseteq F$.

- (3). The inverse image of each closed set in Y is semi* δ -open in X.
- (4). $Cl^*(\delta Int(f^{-1}(F))) = Cl^*(f^{-1}(F))$ for every closed set F in Y.
- (5). $Int^*(\delta Cl(f^{-1}(V))) = Int^*(f^{-1}(V))$ for every open set V in Y.

- $(1)\Rightarrow (2)$ Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -continuous. Let $x\in X$ and F be a closed set in Y containing f(x). Then $V=Y\backslash F$ is an open set in Y not containing f(x). Since f is contra-semi* δ -continuous, $f^{-1}(V)$ is semi* δ -closed set in X not containing X. That is, $f^{-1}(V)=X\backslash f^{-1}(F)$ is a semi* δ -closed set in X not containing X. Therefore $U=f^{-1}(F)$ is a semi* δ -open set in X containing X such that $f(U)\subseteq F$.
- (2) \Rightarrow (3) Let F be a closed set in Y. Let $x \in f^{-1}(F)$, then $f(x) \in F$. By (2), there is a semi* δ -open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq F$. That is, $x \in U_x \subseteq f^{-1}(F)$. Therefore $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$. By Theorem 2.7, $f^{-1}(F)$ is semi* δ -open in X.
- $(3)\Rightarrow (4)$ Let F be a closed set in Y. By (3), $f^{-1}(F)$ is a semi* δ -open set in X. By Theorem 2.8, $Cl^*(\delta Int(f^{-1}(F))) = Cl^*(f^{-1}(F))$.
- (4) \Rightarrow (5) If V is any open set in Y, then $Y \setminus V$ is closed in Y. By (4), we have $Cl^*(\delta Int(f^{-1}(Y \setminus V))) = Cl^*(f^{-1}(Y \setminus V))$. Taking the complements, we get $Int^*(\delta Cl(f^{-1}(V))) = Int^*(f^{-1}(V))$.
- (5) \Rightarrow (1) Let V be any open set in Y. Then by assumption, $Int^*(\delta Cl(f^{-1}(V))) = Int^*(f^{-1}(V))$. By Theorem 2.9, $f^{-1}(V)$ is semi* δ -closed.

Theorem 3.12. If $f:(X,\tau)\to (Y,\sigma)$ is $semi^*\delta$ -continuous and $g:(Y,\sigma)\to (Z,\eta)$ is contra-continuous, then $g\circ f:(X,\tau)\to (Z,\eta)$ is $contra-semi^*\delta$ -continuous.

Proof. Let V be an open set in (Z, η) . Since g is contra-continuous, $g^{-1}(V)$ is closed in (Y, σ) . Since f is semi* δ -continuous, and hence by Theorem 3.36 [13], $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is semi* δ -closed in (X, τ) . Hence $g \circ f$ is contra-semi* δ -continuous.

Theorem 3.13. If $f:(X,\tau)\to (Y,\sigma)$ is contra-semi* δ -continuous and $g:(Y,\sigma)\to (Z,\eta)$ is continuous, then $g\circ f:(X,\tau)\to (Z,\eta)$ is contra-semi* δ -continuous.

Proof. Let V be an open set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is open in (Y, σ) . Since f is contra-semi* δ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is semi* δ -closed in (X, τ) . Hence $g \circ f$ is contra-semi* δ -continuous.

Theorem 3.14. If $f:(X,\tau)\to (Y,\sigma)$ is contra-semi* δ -continuous and $g:(Y,\sigma)\to (Z,\eta)$ is contra-continuous, then $g\circ f:(X,\tau)\to (Z,\eta)$ is semi* δ -continuous.

Proof. Let V be an open set in (Z, η) . Since g is contra-continuous, $g^{-1}(V)$ is closed in (Y, σ) . Since f is contra-semi* δ -continuous, and hence by Theorem 3.11 $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is semi* δ -open in (X, τ) . Therefore, $g \circ f$ is semi* δ -continuous.

Theorem 3.15. If $f:(X,\tau)\to (Y,\sigma)$ is semi* δ -irresolute and $g:(Y,\sigma)\to (Z,\eta)$ is contra semi* δ -continuous, then their composition $g\circ f:(X,\tau)\to (Z,\eta)$ is contra semi* δ -continuous.

Proof. Let V be an open set in (Z, η) . Since, g is contra semi* δ -continuous, then $g^{-1}(V)$ is semi* δ -closed in (Y, σ) and since f is semi* δ -irresolute, by invoking Theorem 4.5 [13], $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is semi* δ -closed in (X, τ) . Therefore, $g \circ f$ is contra semi* δ -continuous.

Theorem 3.16.	If $f:(X,\tau) \to (Y,\sigma)$ is contra- δ -continuous $g:(Y,\sigma) \to (Z,\eta)$ is continuous,	then their	composition
$g \circ f: (X, \tau) \to (Z, \tau)$	(Z,η) is contra-semi* δ -continuous.		

Proof. Let V be an open set in (Z, η) . Since, g is continuous, then $g^{-1}(V)$ is open in (Y, σ) and since f is contra- δ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is δ -closed in (X, τ) . Hence by Theorem 2.4, $(g \circ f)^{-1}(V)$ is semi* δ -closed in (X, τ) . Therefore, $g \circ f$ is contra semi* δ -continuous.

Theorem 3.17. If $f:(X,\tau)\to (Y,\sigma)$ is contra semi* δ -continuous $g:(Y,\sigma)\to (Z,\eta)$ is δ -continuous, then their composition $g\circ f:(X,\tau)\to (Z,\eta)$ is contra-semi* δ -continuous.

Proof. Let V be an open set in (Z, η) . Since, g is δ-continuous, then $g^{-1}(V)$ is δ-open in (Y, σ) and by Theorem 2.3 $g^{-1}(V)$ is open in (Y, σ) . Since f is contra-semi*δ-continuous, then $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is semi*δ-closed in (X, τ) . Therefore, $g \circ f$ is contra-semi*δ-continuous.

Theorem 3.18. Let X, Y be any topological spaces and Y be $T_{\frac{1}{2}}$ space. Then the composition $g \circ f: (X, \tau) \to (Z, \eta)$ of contra-semi* δ -continuous function $f: (X, \tau) \to (Y, \sigma)$ and the g-continuous function $g: (Y, \sigma) \to (Z, \eta)$ is contra-semi* δ -continuous.

Proof. Let V be an closed set in (Z, η) . Since g is g-continuous, then $g^{-1}(V)$ is g-closed in (Y, σ) and Y is $T_{\frac{1}{2}}$ space, $g^{-1}(V)$ is closed in (Y, σ) . Since f is contra-semi*δ-continuous, by Theorem 3.11 $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is semi*δ-open in (X, τ) . Therefore, again by Theorem 3.11 $g \circ f$ is contra-semi*δ-continuous.

Definition 3.19. A topological space (X, τ) is said to be $T_{S^*\delta}$ -space, if every semi* δ -open set of X is open in X.

Theorem 3.20. Let $f:(X,\tau)\to (Y,\sigma)$ be a contra-semi* δ -continuous function and X be a $T_{S^*\delta}$ -space. Then f is contra-continuous.

Proof. Let V be any closed set in (Y, σ) . Since f is contra semi* δ -continuous, $f^{-1}(V)$ is semi* δ -open in (X, τ) . Then by assumption, $f^{-1}(V)$ is open in (X, τ) . Therefore, f is contra-continuous.

Theorem 3.21. If a function $f:(X,\tau)\to (Y,\sigma)$ is $semi^*\delta$ -continuous and if Y is locally indiscrete, then f is contra-semi^* δ -continuous.

Proof. Let V be an open set in (Y, σ) . Since Y is locally discrete, V is closed in (Y, σ) . Since, f is semi* δ -continuous, $f^{-1}(V)$ is semi* δ -closed in (X, τ) . Therefore, f is contra-semi* δ -continuous.

Theorem 3.22. Let $f:(X,\tau)to(Y,\sigma)$ be a function and $g:X\to X\times Y$ the graph function, given by g(x)=(x,f(x)) for every $x\in X$. Then f is contra-semi* δ -continuous if g is contra-semi* δ -continuous.

Proof. Let V be an open subset of (Y, σ) . Then $X \times V$ is an open subset of $X \times Y$. Since g is a contra-semi* δ -continuous, then $g^{-1}(X \times V)$ is semi* δ -closed subset of X. Also, $g^{-1}(X \times V) = f^{-1}(V)$. Hence, f is contra-semi* δ -continuous.

4. Contra Semi*δ-Irresolute Functions

Definition 4.1. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be contra-semi* δ -irresolute if $f^{-1}(V)$ is semi* δ -closed in (X,τ) for every semi* δ -open set V in (Y,σ) .

Theorem 4.2. For a function $f:(X,\tau)\to (Y,\sigma)$, the following are equivalent:

- (1). f is contra- $semi*\delta$ -irresolute.
- (2). For each $x \in X$ and each semi* δ -closed set F in Y with $f(x) \in F$, there exists a semi* δ -open set U in X such that $x \in U$ and $f(U) \subseteq F$.
- (3). The inverse image of each semi* δ -closed set in Y is semi* δ -open in X.
- (4). $Cl^*(\delta Int(f^{-1}(F))) = Cl^*(f^{-1}(F))$ for every semi* δ -closed set F in Y.
- (5). $Int^*(\delta Cl(f^{-1}(V))) = Int^*(f^{-1}(V))$ for every semi* δ -open set V in Y.

- (1) \Rightarrow (2) Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -irresolute. Let $x\in X$ and F be a semi* δ -closed set in Y containing f(x). Then $V=Y\backslash F$ is semi* δ -open set in Y not containing f(x). Since f is contra-semi* δ -irresolute, $f^{-1}(V)$ is semi* δ -closed set in X not containing x. That is, $f^{-1}(V)=f^{-1}(Y\backslash F)=X\backslash f^{-1}(F)$ is a semi* δ -closed set in X not containing x. Therefore $U=f^{-1}(F)$ is a semi* δ -open set in X containing x such that $f(U)\subseteq F$.
- (2) \Rightarrow (3) Let F be a semi* δ -closed set in Y. Let $x \in f^{-1}(F)$, then $f(x) \in F$. By (2), there exists a semi* δ -open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq F$. That is, $x \in U_x \subseteq f^{-1}(F)$. Therefore $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$. By Theorem 2.7, $f^{-1}(F)$ is semi* δ -open in X.
- $(3)\Rightarrow (4)$ Let F be a semi* δ -closed set in Y. By (3), $f^{-1}(F)$ is a semi* δ -open set in X. By Theorem 2.8, $Cl^*(\delta Int(f^{-1}(F))) = Cl^*(f^{-1}(F))$.
- $(4)\Rightarrow(5)$ If V is any semi*δ-open set in Y, then $Y\setminus V$ is semi*δ-closed in Y. By (4), we have $Cl^*(\delta Int(f^{-1}(Y\setminus V)))=Cl^*(f^{-1}(Y\setminus V))$. Taking the complements, we get $Int^*(\delta Cl(f^{-1}(V)))=Int^*(f^{-1}(V))$.
- (5) \Rightarrow (1) Let V be any semi* δ -open set in Y. Then by (5), $Int^*(\delta Cl(f^{-1}(V))) = Int^*(f^{-1}(V))$. By Theorem 2.9, $f^{-1}(V)$ is semi* δ -closed . Therefore f is contra-semi* δ -irresolute.
- **Theorem 4.3.** Let $f:(X,\tau) \to (Y,\sigma)$ be semi* δ -irresolute and $g:(Y,\sigma) \to (Z,\eta)$ be contra-semi* δ -irresolute. Then $g \circ f:(X,\tau) \to (Z,\eta)$ is contra-semi* δ -irresolute.
- *Proof.* Let V be a semi* δ -open set in (Z, η) . Since g is contra-semi* δ -irresolute, $g^{-1}(V)$ is semi* δ -closed in (Y, σ) . Since f is semi* δ -irresolute, by invoking Theorem 4.5 [13], $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is semi* δ -closed in (X, τ) . Hence $g \circ f$ is contra-semi* δ -irresolute.
- **Theorem 4.4.** Let $f:(X,\tau) \to (Y,\sigma)$ be contra-semi* δ -irresolute and $g:(Y,\sigma) \to (Z,\eta)$ be semi* δ -irresolute. Then $g \circ f:(X,\tau) \to (Z,\eta)$ is contra-semi* δ -irresolute.
- Proof. Let V be a semi*δ-open set in (Z, η) . Since g is semi*δ-irresolute, $g^{-1}(V)$ is semi*δ-open in (Y, σ) . Since f is contra-semi*δ-irresolute, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is semi*δ-closed in (X, τ) . Hence $g \circ f$ is contra-semi*δ-irresolute. \square
- **Theorem 4.5.** Let $f:(X,\tau)\to (Y,\sigma)$ be contra-semi* δ -irresolute and $g:(Y,\sigma)\to (Z,\eta)$ be contra-semi* δ -irresolute. Then $g\circ f:(X,\tau)\to (Z,\eta)$ is semi* δ -irresolute.
- *Proof.* Let V be a semi* δ -open set in (Z, η) . Since g is contra-semi* δ -irresolute, $g^{-1}(V)$ is semi* δ -closed in (Y, σ) . Since f is contra-semi* δ -irresolute, by Theorem 4.2, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is semi* δ -open in (X, τ) . Hence $g \circ f$ is semi* δ -irresolute.

5. Open and Closed Functions Associated with Semi* δ -Open Sets

Definition 5.1. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be semi* δ -open if f(V) is semi* δ -open in Y for every open set V in X.

Definition 5.2. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be contra-semi* δ -open if f(V) is semi* δ -closed in Y for every open set V in X.

Definition 5.3. A function $f: X \to Y$ is said to be pre-semi* δ -open if f(V) is semi* δ -open in Y for every semi* δ -open set V in X.

Definition 5.4. A function $f: X \to Y$ is said to be contra-pre-semi* δ -open if f(V) is semi* δ -closed in Y for every $semi*\delta$ -open set V in X.

Definition 5.5. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be semi* δ -closed if f(F) is semi* δ -closed in Y for every closed set F in X.

Definition 5.6. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be contra-semi* δ -closed if f(F) is semi* δ -open in Y for every closed set F in X.

Definition 5.7. A function $f: X \to Y$ is said to be pre-semi* δ -closed if f(F) is semi* δ -closed in Y for every semi* δ -closed set F in X.

Definition 5.8. A function $f: X \to Y$ is said to be contra-pre-semi* δ -closed if f(F) is semi* δ -open in Y for every $semi*\delta$ -closed set F in X.

Remark 5.9. The composition of two semi* δ -closed maps need not be semi* δ -closed in general as shown in the following example.

Example 5.10. Consider $X = Y = Z = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$, $\sigma = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$, $\sigma = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, c\}, \{c\}, \{a\}, \{a, c\}, \{a, c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, c, d\}, \{a, c, d\}, \{b, c, d\}, Y\}$, $S*\delta C(Z, \eta) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, Y\}$, $S*\delta C(Z, \eta) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, c, d\}, \{a, c\}, \{$

Theorem 5.11. Let $f:(X,\tau)\to (Y,\sigma)$ be a bijection. Then the following are equivalent:

- (1). f^{-1} is semi* δ -continuous.
- (2). f is $semi*\delta$ -open.
- (3). f is $semi*\delta$ -closed.

Proof.

- (1) \Rightarrow (2) Let V be an open set in X. Since, f^{-1} is semi* δ -continuous map then $(f^{-1})^{-1}(V) = f(V)$ is semi* δ -open set in Y. Hence, f is semi* δ -open map.
- (2) \Rightarrow (3) Let F be a closed set of X. Then $X \setminus F$ is an open set in X. By hypothesis $f(X \setminus F)$ is semi* δ -open in Y. Since, $f(X \setminus F) = Y \setminus f(F)$. Hence, f(F) is semi* δ -closed in Y. Therefore, f is semi* δ -closed.

(3) \Rightarrow (1) Let F be a closed set in X. Then f(F) is semi* δ -closed in Y. Since $(f^{-1})^{-1}(F) = f(F)$, which is semi* δ -closed set in Y. Therefore, f is semi* δ -continuous.

Theorem 5.12. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be surjective.

- (1). If $(g \circ f)$ is $semi*\delta$ -open and f is continuous, then g is $semi*\delta$ -open.
- (2). If $(g \circ f)$ is continuous and f is semi* δ -open, then g is semi* δ -continuous.
- (3). If $(g \circ f)$ is $semi^*\delta$ -continuous and g is an open map, then f is $semi^*\delta$ -continuous.
- (4). If $(g \circ f)$ is open and g is semi* δ -continuous, then f is semi* δ -open.
- (5). If $(g \circ f)$ is $semi^*\delta$ -open, f is $semi^*\delta$ -continuous, and (X, τ) is a $T_{S^*\delta}$ -pace, then g is $semi^*\delta$ -open.

Proof.

- (1). Let V be an open set in (Y, σ) . Then, $f^{-1}(V)$ is an open set in (X, τ) . Since $(g \circ f)$ is semi* δ -open, $(g \circ f)(f^{-1}(V)) = g(f(f^{-1}(V))) = g(V)$ is semi* δ -open in (Z, η) . Therefore, g is semi* δ -open.
- (2). Let V be any open set in (Z, η) . Since $(g \circ f)$ is continuous $(g \circ f)^{-1}(V)$ is open in (X, τ) . Since f is semi* δ -open $f((g \circ f)^{-1}(V))$ is semi* δ -open in (Y, σ) . Since $f((g \circ f)^{-1}(V)) = f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ which is semi* δ -open in (Y, σ) . Therefore g is semi* δ -continuous.
- (3). Let V be any open set in (Y, σ) . Since g is open, g(V) is open in (Z, η) . Also since $(g \circ f)$ is semi* δ -continuous $(g \circ f)^{-1}(g(V)) = f^{-1}(g^{-1}(g(V))) = f^{-1}(V)$ is semi* δ -open in (X, τ) . Therefore f is semi* δ -continuous.
- (4). Let V be an open set in (X, τ) . Since $(g \circ f)$ is open, $(g \circ f)(V)$ is an open set in (Z, η) . Also since g is semi* δ -continuous, $g^{-1}(g \circ f)(V) = f(V)$ is semi* δ -open in (Y, σ) . Hence, f is semi* δ -open.
- (5). Let V be a open set in (Y, σ) . Since f is semi* δ -continuous, $f^{-1}(V)$ is semi* δ -open in (X, τ) . Since X is a $T_{S^*\delta}$ -space, $f^{-1}(V)$ is open in (X, τ) . Since $g \circ f$ is semi* δ -open and f is surjective, $(g \circ f)(f^{-1}(V)) = g(V)$ is semi* δ -open in (Z, η) . Thus g is semi* δ -open map.

Theorem 5.13. Let $f:(X,\tau)\to (Y,\sigma)$ be a function. Then the following are equivalent:

- (1). f is $semi*\delta$ -open.
- (2). $f(Int(A)) \subseteq s^* \delta Int(f(A))$ for every subset A of X.

Proof.

- $(1)\Rightarrow(2)$ Let $f:(X,\tau)\to (Y,\sigma)$ be semi* δ -open. Let A be a subset of X. Then Int(A) is an open set in X. Since f is a semi* δ -open map, f(Int(A)) is a semi* δ -open set in Y. We have $Int(A)\subseteq (A)$. Thus $f(Int(A))\subseteq f(A)$. Then $s^*\delta Int(f(Int(A)))\subseteq s^*\delta Int(f(A))$ which implies $f(Int(A))\subseteq s^*\delta Int(f(A))$.
- $(2)\Rightarrow (1)$ Let A be any open set in X. Then Int(A)=A. Thus f(Int(A))=f(A). But $f(Int(A))\subseteq s^*\delta Int(f(A))$. That is $f(A)\subseteq s^*\delta Int(f(A))$. Also $s^*\delta Int(f(A))\subseteq f(A)$. By Theorem 2.10 (1), f(A) is semi* δ -open and hence f is semi* δ -open. \square

Theorem 5.14. Let $f:(X,\tau)\to (Y,\sigma)$ be a function. Then the following are equivalent:

- (1). f is $semi*\delta$ -closed.
- (2). $s*\delta Cl(f(A)) \subseteq f(Cl(A))$ for every subset A of X.

 $(1)\Rightarrow(2)$ Let $f:(X,\tau)\to (Y,\sigma)$ be semi* δ -closed. Let A be a subset of X. Then cl(A) is a closed set in X. Since f is a semi* δ -closed map, f(cl(A)) is a semi* δ -closed set in Y. We have $A\subseteq cl(A)$. Thus $f(A)\subseteq f(cl(A))$. Then s* $\delta cl(f(A))\subseteq s^*\delta cl(f(cl(A)))=f(cl(A))$.

(2) \Rightarrow (1) Let A be any closed set in X. Then A = cl(A). Thus f(A) = f(cl(A)). But $s*\delta cl(f(A)) \subseteq f(cl(A)) = f(A)$. Also $f(A) \subseteq s*\delta cl(f(A))$. By Theorem 2.10 (2), f(A) is semi* δ -closed and hence f is semi* δ -closed.

Theorem 5.15. A map $f:(X,\tau)\to (Y,\sigma)$ is semi* δ -open if and only if for each subset S of (Y,σ) and for each closed set F of (X,τ) containing $f^{-1}(S)$, there exists a semi* δ -closed set V of (Y,σ) such that $S\subseteq V$ and $f^{-1}(V)\subseteq F$.

Proof. Suppose that f is semi* δ -open. Let $S \subseteq Y$ and F be a closed set of (X, τ) such that $f^{-1}(S) \subseteq F$. Now $X \setminus F$ is an open set in (X, τ) . Since f is semi* δ -open map, $f(X \setminus F)$ is semi* δ -open set in (Y, σ) . Then, $V = Y \setminus f(X \setminus F)$ is a semi* δ -closed set in (Y, σ) . Note that $f^{-1}(S) \subset F$ implies $S \subset V$ and $f^{-1}(V) = X \setminus f^{-1}(X \setminus F) \subseteq X \setminus (X \setminus F) = F$. That is , $f^{-1}(V) \subseteq F$.

Conversely, let B be an open set of (X,τ) . Then, $f^{-1}((f(B))^c) \subseteq B^c$ and B^c is a closed set in (X,τ) . By hypothesis, there exists a semi* δ -closed set V of (Y,σ) such that $(f(B))^c \subseteq V$ and $f^{-1}(V) \subseteq B^c$ and so $B \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(B) \subseteq f((f^{-1}(V)))^c$ which implies $f(B) = V^c$. Since V^c is a semi* δ -open. f(B) is semi* δ -open in (Y,σ) and therefore f is semi* δ -open.

Theorem 5.16. If $f:(X,\tau)\to (Y,\sigma)$ is closed map and $g:(Y,\sigma)\to (Z,\eta)$ is semi* δ -closed, then the composition $g\circ f:(X,\tau)\to (Z,\eta)$ is semi* δ -closed map.

Proof. Let V be any closed set in (X, τ) . Since f is closed map, f(V) is a closed set in (Y, σ) . Since g is semi* δ -closed map, g(f(V)) is semi* δ -closed in (Z, η) which implies $(g \circ f)(V) = g(f(V))$ is semi* δ -closed in (Z, η) and hence $g \circ f$ is semi* δ -closed.

Remark 5.17. If $f: (X, \tau) \to (Y, \sigma)$ is $semi^*\delta$ -closed map and $g: (Y, \sigma) \to (Z, \eta)$ is closed, then the composition $g \circ f: (X, \tau) \to (Z, \eta)$ is not $semi^*\delta$ -closed map as shown in the following example.

Example 5.18. Consider $X = Y = Z = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, Y\}$, $\eta = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, Z\}$, $S*\delta C(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, d\}, Y\}$; $S*\delta C(Z, \eta) = \{\phi, \{a\}, \{d\}, \{a, d\}, \{b, c\}, \{b, c, d\}, Z\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = b, f(b) = a, f(c) = d, f(d) = a. Clearly, f is semi* δ -closed. Consider the map $g: (Y, \sigma) \to (Z, \eta)$ defined by g(a) = c, g(b) = d, g(c) = a, g(d) = d, clearly g is closed. But $g \circ f: (X, \tau) \to (Z, \eta)$ is not semi* δ -closed, since $g \circ f(\{c, d\}) = g(f\{c, d\}) = g\{a, d\} = \{c, d\}$ which is not semi* δ -closed in (Z, η) .

Theorem 5.19. If $f:(X,\tau)\to (Y,\sigma)$ is g-closed, $g:(Y,\sigma)\to (Z,\eta)$ is semi* δ -closed and (Y,σ) is $T_{\frac{1}{2}}$ space, then the composition $g\circ f:(X,\tau)\to (Z,\eta)$ is semi* δ -closed.

Proof. Let V be any closed set in (X, τ) . Since f is g-closed, f(V) is g-closed in (Y, σ) and since Y is $T_{\frac{1}{2}}$ space, f(V) is closed in (Y, σ) . Also g is semi* δ -closed, $g(f(V)) = (g \circ f)(V)$ is semi* δ -closed in (Z, η) . Therefore, $g \circ f$ is semi* δ -closed. \square

Theorem 5.20. Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be two mappings such that their composition $g \circ f:(X,\tau) \to (Z,\eta)$ be semi* δ -closed mapping. Then the following statements are true.

(1). If f is continuous and surjective, then g is semi* δ -closed.

- (2). If g is semi* δ -irresolute and injective, then f is semi* δ -closed.
- (3). If f is g-continuous, surjective and (X,τ) is a $T_{\frac{1}{2}}$ space, then g is semi* δ -closed.

- (1). Let V be a closed set in (Y, σ) . Since f is continuous, $f^{-1}(V)$ is closed in (X, τ) . Also since $g \circ f$ is semi* δ -closed which implies $(g \circ f)(f^{-1}(V))$ is semi* δ -closed in (Z, \circ) . That is g(V) is semi* δ -closed in (Z, \circ) , since f is surjective. Therefore, g is semi* δ -closed.
- (2). Let V be a closed set in (X, τ) . Since $g \circ f$ is semi* δ -closed, $(g \circ f)(V)$ is semi* δ -closed in (Z, \circ) . Also since g is semi* δ -irresolute, $g^{-1}(g \circ f(V))$ is semi* δ -closed in (Y, σ) . That is f(V) is semi* δ -closed in (Y, σ) , since g is injective. Therefore, f is semi* δ -closed.
- (3). Let V be a closed set in (Y, σ) . Since, f is g-continuous, $f^{-1}(V)$ is g-closed in (X, τ) and X is a $T_{\frac{1}{2}}$ space, $f^{-1}(V)$ is closed in (X, τ) . Since g ?f is semi* δ -closed, $(g \circ f)(f^{-1}(V))$ is semi* δ -closed in (Z, η) . That is g(V) is semi* δ -closed in (Z, η) , since f is surjective. Therefore, g is semi* δ -closed.

Theorem 5.21. Let $f:(X,\tau)\to (Y,\sigma),\ g:(Y,\sigma)\to (Z,\eta)$ be semi* δ -open maps and (Y,σ) be $T_{S^*\delta}$ -space. Then their composition $g\circ f:(X,\tau)\to (Z,\eta)$ is semi* δ -open.

Proof. Let V be an open set in (X, τ) . By assumption f(V) is semi* δ -open in (Y, σ) . Since Y is a $T_{S^*\delta}$ -space, f(V) is open in (Y, σ) and again by assumption g(f(V)) is semi* δ -open in (Z, η) . Thus $g \circ f(V)$ is semi* δ -open in (Z, η) . Hence $g \circ f$ is semi* δ -open.

Theorem 5.22. Let $f: X \to Y$ and be $g: Y \to Z$ be functions.

- (1). $g \circ f$ is pre-semi* δ -open if both f and g are pre-semi* δ -open.
- (2). $g \circ f$ is $semi*\delta$ -open if f is $semi*\delta$ -open and g is pre-semi* δ -open.
- (3). $g \circ f$ is pre-semi* δ -closed if both f and g are pre-semi* δ -closed.
- (4). $g \circ f$ is $semi*\delta$ -closed if f is $semi*\delta$ -closed and g is pre-semi* δ -closed.

Proof.

- (1). Let V be any semi* δ -open set in (X, τ) . Since f is pre-semi* δ -open, f(V) is semi* δ -open set in (Y, σ) . Also since g is pre-semi* δ -open, $g(f(V)) = (g \circ f)(V)$ is semi* δ -open set in (Z, η) . Hence $g \circ f$ is pre-semi* δ -open.
- (2). Let V be any open set in (X, τ) . Since f is semi* δ -open, f(V) is semi* δ -open set in (Y, σ) . Also since g is pre-semi* δ -open, $g(f(V)) = (g \circ f)(V)$ is semi* δ -open set in (Z, η) . Hence $g \circ f$ is semi* δ -open.
- (3). Let F be any semi* δ -closed set in (X, τ) . Since f is pre-semi* δ -closed, f(F) is semi* δ -closed set in (Y, σ) . Also since g is pre-semi* δ -closed, $g(f(F)) = (g \circ f)(F)$ is semi* δ -closed set in (Z, η) . Hence $g \circ f$ is pre-semi* δ -closed.
- (4). Let F be any closed set in (X, τ) . Since f is semi* δ -closed, f(F) is semi* δ -closed set in (Y, σ) . Also since g is pre-semi* δ -closed, $g(f(F)) = (g \circ f)(F)$ is semi* δ -closed set in (Z, η) . Hence $g \circ f$ is semi* δ -closed.

Acknowledgment

The first author is thankful to University Grants Commission, New Delhi, for sponsoring this work under grants of Major Research Project-MRP-MATH-MAJOR-2013-30929. F.No. 43-433/2014(SR) Dt. 11.09.2015.

References

- [1] B.Y.Lee, M.J.Son and J.H.Park, δ -semiopen sets and its applications, Far East J. Math. Sci., 3(5)(2001), 745-759.
- [2] M.Caldas, S.Jafari, T.Noiri and M.Simeos, A new generalization of contra-continuity via Levines g-closed sets, Chaos Solitons Fractals, 42(2007), 1595-1603.
- [3] M.Caldas and S.Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 22(2001), 19-28.
- [4] J.Dontchev, Contra-continuous functions and strongly s-closed spaces, Internat. J. Math. & Math. Sci., 19(2)(1996), 303-310.
- [5] J.Dontchev and T.Noiri, Contra-Semi continuous functions, Mathematica Pannonica, 10(2)(1999), 159-168.
- [6] S.Jafari and T.Noiri, Contra-α-continuous functions between topological spaces, Iranian. Int. J. Sci., 2(2001), 153-167.
- [7] S.Jafari and T.Noiri, On contra-pre-continuous functions, Bull. Malaysian Math.Sc. Soc. (second series), 25(2002), 115-128.
- [8] S.Pasunkili Pandian, A Study on Semi Star-Preopen Sets in Topological Spaces, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, India, (2013).
- [9] S.Pious Missier and P.Anbarasi Rodrigo, Contra-α*-Continuous Functions in Topological Spaces, International Journal Of Modern Engineering Research, 4(8)(2014).
- [10] S.Pious Missier et. al., Functions Associated with Semi*-Open Sets, International Journal of Modern Sciences and Engineering Technology, 1(2)(2014).
- [11] S.Pious Missier and C.Reena, On Semi*δ-Open Sets in Topological Spaces, IOSR Journal of Mathematics, (2016), 01-06.
- [12] S.Pious Missier and C.Reena, Between δ -Closed Sets and δ -Semi-Closed Sets, International Journal of Mathematical Archive, 7(11)(2016), 60-67.
- [13] S.Pious Missier and C.Reena, Continuous and Irresolute Functions Via Star Generalised Closed Sets, International Journal Of Modern Engineering Research, 7(2)(2017), 58-64.
- [14] Raja Mohammad Latif, Characterizations Of Delta-Open Sets And Mappings in Topological Spaces, May 12, (2014).
- [15] A.Robert and S.Pious Missier, Semi-Star-Alpha-Open Sets and Associated Functions, International Journal of Computer Applications, 104(16)(2014).
- [16] Zainab Aodia Athbanaih, On Contra $(\delta, g\delta)$ -Continuous Functions, University of Al-Qadissiya, College of Education.