

International Journal of Mathematics And its Applications

On Generalized c*-open Sets and Generalized c*-open Maps in Topological Spaces

Research Article

S. Malathi^{1*} and S. Nithyanantha Jothi¹

1 Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce the notion of generalized c*-open sets and generalized c*-open maps in topological spaces and study their basic properties.

Keywords: gc*-open sets and gc*-open maps. © JS Publication.

1. Introduction

In 1963, Norman Levine introduced the concept of generalized closed sets in topological spaces. Also in 1970, he introduced semi-open sets. Bhattacharya and Lahiri introduced and study semi-generalized closed (briefly sg-closed) sets in 1987. Palaniappan and Rao introduced regular generalized closed (briefly, rg-closed) sets in 1993. In the year 1996, Andrijevic introduced and studied b-open sets. Gnanambal introduced generalized pre-regular closed (briefly gpr-closed) sets in 1997. In this paper we introduce generalized c^{*}-open sets, generalized c^{*}-open maps in topological spaces and study their basic properties.

Section 2 deals with the preliminary concepts. In section 3, generalized c^* -open sets are introduced and study its basic properties. The generalized c^* -open maps in topological spaces are introduced in section 4.

2. Preliminaries

Throughout this paper X denotes a topological space on which no separation axioms are assumed. For any subset A of X, cl(A) denotes the closure of A, int(A) denotes the interior of A, pcl(A) denotes the pre-closure of A and bcl(A) denotes the b-closure of A. Further X\A denotes the complement of A in X. The following definitions are very useful in the subsequent sections.

Definition 2.1. A subset A of a topological space X is called

1. a semi-open set [6] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.

2. a pre-open set [12] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.

 $^{^*}$ E-mail: malathis 2795@gmail.com

- 3. a regular-open set [14] if A = int(cl(A)) and a regular-closed set if EA = cl(int(A)).
- 4. $a \gamma$ -open set [8] (b-open set [1]) if $A \subseteq cl(int(A)) \cup int(cl(A))$ and $a \gamma$ -closed set (b-closed set) if $int(cl(A)) \cap cl(int(A)) \subseteq A$.

Definition 2.2 ([10]). A subset A of a topological space X is said to be a c^* -open set if $int(cl(A)) \subseteq A \subseteq cl(int(A))$.

Definition 2.3. A subset A of a topological space X is called

- 1. a generalized closed set (briefly, g-closed) [7] if $cl(A) \subseteq H$ whenever $A \subseteq H$ and H is open in X.
- 2. a regular-generalized closed set (briefly, rg-closed) [13] if $cl(A) \subseteq H$ whenever $A \subseteq H$ and H is regular-open in X.
- 3. a generalized pre-regular closed set (briefly, gpr-closed) [4] if $pcl(A) \subseteq H$ whenever $A \subseteq H$ and H is regular-open in X.
- 4. a regular generalized b-closed set (briefly, rgb-closed) [11] if $bcl(A) \subseteq H$ whenever $A \subseteq H$ and H is regular-open in X.
- 5. a regular weakly generalized closed set (briefly, rwg-closed) [16] if $cl(int(A)) \subseteq H$ whenever $A \subseteq H$ and H is regularopen in X.
- 6. a semi-generalized b-closed set (briefly, sgb-closed) [5] if $bcl(A) \subseteq H$ whenever $A \subseteq H$ and H is semi-open in X.
- 7. a weakly closed set (briefly, w-closed) [15] (equivalently, \hat{g} -closed [17]) if $cl(A) \subseteq H$ whenever $A \subseteq H$ and H is semi-open in X.
- 8. a semi-generalized closed set (briefly, sg-closed) [2] if $scl(A) \subseteq H$ whenever $A \subseteq H$ and H is semi-open in X.

The complements of the above mentioned closed sets are their respectively open sets.

Definition 2.4 ([10]). A subset A of a topological space X is said to be a generalized c*-closed set (briefly, gc*-closed set) if $cl(A) \subseteq H$ whenever $A \subseteq H$ and H is c*-open.

Definition 2.5. A function $f: X \to Y$ is said to be

- 1. a g-open map [9] if f(U) is g-open in Y for every open set U of X.
- 2. a semi-generalized open (briefly, sg-open) [3] map if f(U) is sg-open in Y for every open set U of X.
- 3. a \hat{g} -open map [17] if f(U) is \hat{g} -open in Y for every open set U of X.

3. Generalized c*-open Sets

The complement of a gc^* -closed set need not be gc^* -closed. This leads to the definition of gc^* -open set. In this section we introduce gc^* -open sets and study its basic properties. Now, begin with the definition of gc^* -open set.

Definition 3.1. A subset A of a space X is said to be a generalized c^* -open (briefly, gc^* -open) set if its complement is gc^* -closed.

Example 3.2. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}, X\}$. Then the gc*-open sets are ϕ , $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{b, c\}, \{d, e\}, \{a, d, e\}, \{a, b, d, e\}, \{a, c, d, e\}, X$.

Proposition 3.3. Let X be a topological space. Then every open set is gc^* -open.

Proof. Let A be an open set. Then $X \setminus A$ is a closed set. By Proposition 4.3 [10], $X \setminus A$ is gc*-closed. Therefore, A is gc*-open.

The converse of the Proposition 3.3 need not be true as seen from the following example.

Example 3.4. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$. Then the gc*-open sets are ϕ , $\{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, X$. Here the subset $\{c\}$ is gc*-open but not open.

Proposition 3.5. Let X be a topological space. Then every w-open (equivalently, \hat{g} -open) set is gc^* -open.

Proof. Let A be a w-open set. Then $X \setminus A$ is w-closed. By Proposition 4.5 [10], $X \setminus A$ is gc*-closed. Therefore, A is gc*-open.

The converse of the Proposition 3.5 need not be true as seen from the following example.

Example 3.6. In Example 3.4, the subset $\{c, d\}$ is gc^* -open but not w-open.

Proposition 3.7. Let X be a topological space. Then every clopen set is gc^* -open.

Proof. Let A be a clopen set in X. Then $X \setminus A$ is a clopen set in X. By Proposition 3.9 [10], $X \setminus A$ is c*-open. Also, $cl(X \setminus A) = X \setminus A$. Thus $X \setminus A$ is a c*-open set containing $X \setminus A$ and $cl(X \setminus A) \subseteq X \setminus A$. Therefore, $X \setminus A$ is gc*-closed. Hence A is gc*-open.

The converse of the Proposition 3.7 need not be true as seen from the following example.

Example 3.8. In Example 3.4, the subset $\{a, b, c\}$ is gc^* -open but not clopen.

Proposition 3.9. Let X be a topological space. Then every gc^* -open set is rg-open.

Proof. Let A be a gc*-open set. Then $X \setminus A$ is gc*-closed. By Proposition 4.7 [10], $X \setminus A$ is rg-closed. Therefore, A is rg-open.

The converse of the Proposition 3.9 need not be true as seen from the following example.

Example 3.10. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}, X\}$. Then the subset $\{c, d, e\}$ is rg-open but not gc^* -open.

Proposition 3.11. Let X be a topological space. Then every gc^* -open set is gpr-open.

Proof. Let A be a gc*-open set. Then $X \setminus A$ is gc*-closed. By Proposition 4.9 [10], $X \setminus A$ is gpr-closed. Therefore, A is gpr-open.

The converse of the Proposition 3.11 need not be true as seen from the following example.

Example 3.12. In Example 3.10, the subset $\{c, d, e\}$ is gpr-open but not gc^* -open.

Proposition 3.13. Let X be a topological space. Then every gc*-open set is rgb-open.

Proof. Let A be a gc*-open set. Then $X \setminus A$ is gc*-closed. By Proposition 4.11 [10], $X \setminus A$ is rgb-closed. Therefore, A is rgb-open.

The converse of the Proposition 3.13 need not be true as seen from the following example.

Example 3.14. In Example 3.4, the subset is $\{b, d\}$ rgb-open but not gc^* -open.

Proposition 3.15. Let X be a topological space. Then every gc^* -open set is rwg-open.

Proof. Let A be a gc*-open set. Then $X \setminus A$ is gc*-closed. By Proposition 4.13 [10], $X \setminus A$ is rwg-closed. Therefore, A is rwg-open.

The converse of the Proposition 3.15 need not be true as seen from the following example.

Example 3.16. In Example 3.4, the subset $\{b, c, d\}$ is rwg-open but not gc^* -open.

The g-open and gc*-open sets are independent. For example, let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}, X\}$. Then the subset $\{c, d, e\}$ is g-open but not gc*-open and the subset $\{b, c\}$ is gc*-open but not g-open.

The semi-generalized b-open and gc*-open sets are independent. For example, let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, \{a, b, c, e\}, X\}$. Then the subset $\{b, c, d, e\}$ is sgb-open but not gc*-open and the subset $\{c, d, e\}$ is gc*-open but not sgb-open.

Proposition 3.17. Let X be a topological space and A,B be subsets of X. If A and B are gc^* -open, then $A \cap B$ is gc^* -open.

Proof. Let A and B be gc*-open sets. Then $X \setminus A$ and $X \setminus B$ are gc*-closed sets. By Proposition 4.15 [10], $(X \setminus A) \cup (X \setminus B)$ is gc*-closed. Therefore, $X \setminus [(X \setminus A) \cup (X \setminus B)]$ is gc*-open. Hence $A \cap B$ is gc*-open.

The union of two gc*-open subsets of a space X need not be gc*-open. For example, let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}, X\}$. Then, the subsets $\{c\}$ and $\{d\}$ are gc*-open but their union $\{c, d\}$ is not gc*-open.

Theorem 3.18. Let A be a subset of a topological space X. Then A is gc^* -open if and only if $H \subseteq int(A)$ whenever $H \subseteq A$ and H is c^* -open.

Proof. Assume that A is gc*-open. Then $X \setminus A$ is gc*-closed. Let H be a c*-open set and $H \subseteq A$. Then $X \setminus H$ is the c*-open set and $X \setminus A \subseteq X \setminus H$. Since $X \setminus A$ is gc*-closed, we have $cl(X \setminus A) \subseteq X \setminus H$. This implies, $H \subseteq X \setminus [cl(X \setminus A)]$. That is, $H \subseteq int(A)$. Conversely, let H be a c*-open set containing $X \setminus A$. This implies, $X \setminus H$ is c*-open and $X \setminus H \subseteq A$. Therefore, by hypothesis, $X \setminus H \subseteq int(A)$. This implies, $cl(X \setminus A) \subseteq H$. Thus $X \setminus A$ is gc*-closed. Hence A is gc*-open.

Theorem 3.19. Let X be a topological space. Then for any element $p \in X$, the set $\{p\}$ is either gc^* -open or c^* -open.

Proof. Suppose $\{p\}$ is not a c*-open set. Then $X \setminus \{p\}$ is not a c*-open set. By Proposition 4.18 [10], $X \setminus \{p\}$ is gc*-closed. Therefore, $\{p\}$ is gc*-open.

Theorem 3.20. Let X be a topological space. If A is a gc^* -open subset of X such that $int(A) \subseteq B \subseteq A$, then B is gc^* -open in X.

Proof. Let A be a gc*-open set and $int(A) \subseteq B \subseteq A$. Then $X \setminus A$ is a gc*-closed set and $X \setminus A \subseteq X \setminus B \subseteq cl(X \setminus A)$. Then by Proposition 4.20 [10], $X \setminus B$ is gc*-closed. Hence B is gc*-open.

Theorem 3.21. Let X be the topological space and A,B be subsets of X. If A is open and B is gc^* -open, then $A \cap B$ is gc^* -open.

Proof. Assume that A is open and B is gc*-open. Then $X \setminus A$ is closed and $X \setminus B$ is gc*-closed. Therefore, by Proposition 4.24 [10], $(X \setminus A) \cup (X \setminus B)$ is gc*-closed. That is, $X \setminus (A \cap B)$ is gc*-closed. Hence $A \cap B$ is gc*-open.

4. Generalized c*-open Maps

In this section, we introduce generalized c*-open maps in topological spaces. Also, we derive some of its basic properties.

Definition 4.1. Let X and Y be two topological spaces. A function $f : X \to Y$ is said to be generalized c*-open map (briefly, gc^* -open map) if f(U) is gc^* -open in Y for every open set U in X.

Example 4.2. Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a\}, X\}$ and $Y = \{1, 2, 3\}$ with topology $\sigma = \{\phi, \{1\}, \{1, 2\}, Y\}$. Define $f: X \to Y$ by f(a) = 2, f(b) = 3, f(c) = 1. Then f is gc^* -open.

Proposition 4.3. Let X, Y be two topological spaces. A bijective function $f : X \to Y$ is a gc*-open if and only if the image of each closed subset of X is gc*-closed in Y.

Proof. Assume that $f: X \to Y$ is a gc*-open map. Let V be a closed set in X. Then $X \setminus V$ is open in X. Therefore, by our assumption, $f(X \setminus V)$ is gc*-open in Y. This implies, $Y \setminus f(V)$ is gc*-open in Y. Hence, f(V) is gc*-closed in Y. Conversely, assume that the image of each closed subset of X is gc*-closed in Y. Let U be an open set in X. Then $X \setminus U$ is closed in Y. Therefore, by our assumption, $f(X \setminus U)$ is gc*-closed in Y. This implies, $Y \setminus f(U)$ is gc*-closed in Y. This implies, f(U) is gc*-closed in Y. Therefore, by our assumption, $f(X \setminus U)$ is gc*-closed in Y. This implies, $Y \setminus f(U)$ is gc*-closed in Y. This implies, f(U) is gc*-closed in Y. Therefore, f is a gc*-open map.

Proposition 4.4. Let X, Y be two topological spaces. Then every open map is gc^* -open.

Proof. Let $f: X \to Y$ be an open map and U be an open set in X. Then f(U) is open in Y. By Proposition 3.3, f(U) is a gc*-open set. Therefore, f is a gc*-open map.

The converse of the Proposition 4.4 need not be true as seen from the following example.

Example 4.5. Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3\}$. Then, clearly $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ is a topology on X and $\sigma = \{\phi, \{1\}, \{1, 2\}, \{1, 3\}, Y\}$ is a topology on Y. Define $f : X \to Y$ by f(a) = 2, f(b) = 3, f(c) = 1. Clearly, f is a gc*-open map. But f is not an open map, since the image of an open set $\{b\}$ under f is $\{3\}$, which is not open in Y.

Proposition 4.6. Let X, Y be two topological spaces. Then every \hat{g} -open map is gc*-open.

Proof. Let $f: X \to Y$ be a \hat{g} -open map. Let U be an open set in X. Then f(U) is \hat{g} -open in Y. Therefore, by Proposition 3.5, f(U) is a gc^{*}-open set. Therefore, f is a gc^{*}-open map.

The converse of the Proposition 4.6 need not be true as seen from the following example.

Example 4.7. Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3\}$. Then, clearly $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ is a topology on X and $\sigma = \{\phi, \{1\}, \{1, 2\}, \{1, 3\}, Y\}$ is a topology on Y. Define $f : X \to Y$ by f(a) = 2, f(b) = 3, f(c) = 1. Then f is a gc*-open map. Consider the open set $\{b\}$ in X. Then $f(\{b\}) = \{3\}$, which is not a \hat{g} -open set in Y. Therefore, f is not a \hat{g} -open map.

The g-open and gc*-open maps are independent. For example, let $X = \{a, b, c, d\}$ and $Y = \{1, 2, 3, 4, 5\}$. Then, clearly $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ is a topology on X and $\sigma = \{\phi, \{1\}, \{4\}, \{5\}, \{1, 4\}, \{1, 5\}, \{4, 5\}, \{1, 4, 5\}, Y\}$ is a topology on Y. Define $f : X \to Y$ by f(a) = 1, f(b) = 2, f(c) = f(d) = 3. Then f is a g-open map. Consider the open set $\{a, c\}$ in X. Then $f(\{a, c\}) = \{1, 3\}$, which is not a gc*-open set in Y. Hence f is not a gc*-open map. Define $g : X \to Y$ by g(a) = g(b) = 2, g(c) = 3, g(d) = 5. Then g is a gc*-open map. Consider the open set $\{a, c\}$ in X. Then $g(\{a, c\}) = \{2, 3\}$, which is not a g-open set in Y. Hence f is not a g-open set in X. Then $g(\{a, c\}) = \{2, 3\}$, which is not a g-open map.

The sg-open and gc*-open maps are independent. For example, let $X = \{a, b, c, d\}$ and $Y = \{1, 2, 3, 4, 5\}$. Then, clearly $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ is a topology on X and $\sigma = \{\phi, \{1\}, \{4\}, \{5\}, \{1, 4\}, \{1, 5\}, \{4, 5\}, \{1, 4, 5\}, Y\}$ is a

topology on Y. Define $f: X \to Y$ by f(a) = 1, f(b) = 4, f(c) = f(d) = 3. Then f is a sg-open map. Consider the open set $\{a, c\}$ in X. Then $f(\{a, c\}) = \{1, 3\}$, which is not a gc*-open set in Y. Hence f is not a gc*-open map. Define $g: X \to Y$ by g(a) = g(b) = 2, g(c) = 3, g(d) = 5. Then g is a gc*-open map. Consider the open set $\{b\}$ in X. Then $g(\{b\}) = \{2\}$, which is not a sg-open set in Y. Therefore, g is not a sg-open map.

Proposition 4.8. Let X, Y and Z be topological spaces. If $f: X \to Y$ is an open map and $g: Y \to Z$ is a gc*-open map, then $g \circ f: X \to Z$ is gc*-open map.

Proof. Let U be an open set in X. Since f is an open map, f(U) is open in Y. Then $g(f(U)) = (g \circ f)(U)$ is a gc*-open set in Z. Therefore, $g \circ f$ is a gc*-open map.

Proposition 4.9. Let X, Y and Z be topological spaces. If $f: X \to Y$ and $g: Y \to Z$ are open maps, then $g \circ f: X \to Z$ is a gc^* -open map.

Proof. Let U be an open set in X. Since f is an open map, f(U) is open in Y. Also, since g is an open map, g(f(U)) is open in Z. That is, $(g \circ f)(U)$ is a open set in Z. By proposition 3.3, $(g \circ f)(U)$ is a gc*-open set in Z. Therefore, $g \circ f$ is a gc*-open map.

Proposition 4.10. Let X, Y and Z be topological spaces. If $f : X \to Y$ is an open map and $g : Y \to Z$ is a \hat{g} -open map, then $g \circ f : X \to Z$ is a gc^* -open map.

Proof. Let U be an open set in X. Since f is an open map, f(U) is open in Y. Then g(f(U)) is a \hat{g} -open set in Z. That is, $(g \circ f)(U)$ is a \hat{g} -open set in Z. Therefore, by Proposition 3.5, $(g \circ f)(U)$ is a gc*-open set in Z. Hence $g \circ f$ is a gc*-open map.

Proposition 4.11. Let X, Y be two topological spaces. A surjective function $f : X \to Y$ is a gc*-open map if and only if for each subset B of Y and for each closed set U containing $f^{-1}(B)$, there is a gc*-closed set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof. Suppose $f: X \to Y$ is a surjective gc*-open map and B is a subset of Y. Let U be a closed set in X such that $f^{-1}(B) \subset U$. Then $V = Y \setminus f(X \setminus U)$ is a gc*-closed subset of Y containing B and $f^{-1}(V) \subset U$. Conversely, suppose F is an open subset of X. Then $X \setminus F$ is closed. Also, $f^{-1}(Y \setminus f(F)) = X \setminus f^{-1}(f(F)) \subset X \setminus F$. Therefore, by hypothesis, there exists a gc*-closed set V of Y such that $Y \setminus f(F) \subset V$ and $f^{-1}(V) \subset X \setminus F$. This implies, $F \subset X \setminus f^{-1}(V)$. Therefore, $f(F) \subset f(X \setminus f^{-1}(V)) = Y \setminus V$. Also, $f(F) \supset Y \setminus V$. Therefore, $f(F) = Y \setminus V$, which is gc*-open in Y. Therefore, f is a gc*-open map.

5. Conclusion

In this paper we have introduced gc^* -open sets and gc^* -open maps in topological spaces and studied some of its basic properties. Also, we have studied the relationship between gc^* -open sets with some generalized sets in topological spaces.

References

^[1] D.Andrijevic, On b-open sets, Mat. Vesnik, 48(1996), 59-64.

^[2] P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.

- [3] R.Devi, H.Maki and K.Balachandran, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 14(1993), 41-54.
- [4] Y.Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. Pure Appl. Math., 28(1997), 351-360.
- [5] D.Iyappan and N.Nagaveni, On semi generalized b-closed set, Nat. Sem. on Mat. and comp.sci, Jan(2010), Proc.6.
- [6] N.Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70(1963), 39-41.
- [7] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [8] A.I.EL-Maghrabi and A.M.Zahran, Regular generalized-γ-closed sets in topological spaces, Int. Journal of Mathematics and Computing Applications, 3(1-2)(2011), 1-15.
- [9] H.Maki, P.Sundaram and K.Balachandran, On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 13-21.
- [10] S.Malathi and S.Nithyanantha Jothi, On c*-open sets and generalized c*-closed sets in topological spaces, (communicated).
- [11] K.Mariappa and S.Sekar, On regular generalized b-closed set, Int. Journal of Math. Analysis, 7(13)(2013), 613-624.
- [12] A.S.Mashhour, M.E.Monsef and S.N.El-Deep, On precontinuous and weak precontinuous mapping, Proc. Math. Phy. Soc. Egypt, 53(1982), 47-53.
- [13] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyung-pook Math. J., 33(1993), 211-219.
- [14] M.Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
- [15] P.Sundaram and M.Sheik John, On w-closed sets in topology, Acta ciencia indica, 4(2000), 389-392.
- [16] A.Vadivel and K.Vairamanickam, rgα-closed sets and rgα-open sets in topological spaces, Int. J. Math. Analysis, 3(37) (2009), 1803-1819.
- [17] M.K.R.S.Veera kumar, On ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc, 18(2003), 99-112.