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1. Introduction

In literature [1–3], there exists several methods to compute the eigenvalues of a given real symmetric matrix. The eigenvalues

plays important role in computer engineering and control engineering. The Jacobi method [1, 4] uses plane rotations in each

step to compute the eigenvalues of a given real symmetric matrix. The rotation is applied till the off-diagonal elements zero.

The principal diagonal elements are the eigenvalues of the matrix. In Givens method [1, 4] we tridiagonalise the given real

symmetric matrix A by employing the orthogonal matrices. Tridiagonalise is that form in which the only non-zero elements

are on the principal diagonal and the two diagonals just above and below of principal diagonal. Solving tridiagonal linear

systems [5, 6] is one of the most important problems in scientific computing. It is involved in the solution of differential

equations and in various areas of science and engineering applications such as control system and computer science. There

are various numerical techniques available in the literature [7–9] which are useful for determining eigenvalues of a real

symmetric matrices. In most of these methods, the given real symmetric matrix is converted into tridiagonal form. In this

method, Sturm sequence and bisection method is used to determine the eigenvalues of a given real symmetric matrix. One

of the leading methods for computing the eigenvalues of a real symmetric matrix is Givens method. In that method, after

transforming the matrix into tridiagonal form say, ‘S’, the leading principal minors of |S − λI| form a Sturm sequence.

Then, using bisection approach, change of sign in various Sturm sequence is observed. Further, based on this, eigenvalue

can be determined by repeatedly using bisection method. In order to show the comparative result, we have considered the

example for the illustration of Jacobi method and Givens method.

∗ E-mail: alanur.hkd@gmail.com
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2. Preliminaries

In this section, we recall some basic concepts which would be used in the sequel.

Definition 2.1. A square matrix A is said to be symmetric if AT = A.

Definition 2.2. A square matrix A of order n is said to be orthogonal if AAT = In = ATA.

Definition 2.3. Let A = [aij ]n×n be a given square matrix. If there exists a number λ and a non zero vector X such that

AX = λX (1)

Then λ is termed as eigenvalue or latent root or characteristic value and X is termed as the corresponding eigenvector or

characteristic vector of the matrix A.

Equation (1) can be written as 

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann − λ


X = 0 (2)

This is a homogeneous system of n linear equations. It will have a non-trivial solution if and only if |A− λI| vanishes, i.e.,

if 

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann − λ


= 0

On expanding the determinant we can get an algebraic equation of degree n in λ, i.e., we get

λn − (a11 + a22 + · · ·+ ann)λn−1 + · · ·+ (−1)n |A| = 0 (3)

This equation is termed as characteristic equation. It will have n roots (n value of λ) say λ1, λ2, . . . , λn. These are the values

of λ for which the system (2) has non-trivial solution. These are known as eigenvalues or latent roots or characteristic values

of the matrix A. The corresponding values of vector X say X1, X2, . . . , Xn such that AX1 = λ1X1, AX2 = λ2X2, . . . , AXn =

λnXn are called the eigenvectors. Out of the n eigenvalues, some or all of them may coincide. From here it is obvious that

problem of determining the eigenvalues is merely a problem of solving the algebraic equation (3), which is a polynomial

equation of degree n. But this method is not suitable for matrices of higher orders. In this paper, we have discussed Jacobi

method and givens method for determining the eigenvalues of a real symmetric matrices. From equation (3), we observe

that
n∑
i=1

λi = a11 + a22 + · · ·+ ann (4)

i.e., Sum of the eigenvalues = Sum of the diagonal values and

n∏
i=1

λi = λ1λ2 . . . λn = |A| (5)

These properties can be used to find the remaining latent root of a matrix whose all except one latent roots are known.
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2.1. Bisection Method (Bolzano Method)

If a function f(x) is continuous between a and b and f(a) and f(b) are of opposite signs, then there exists at least one root

between a and b. Let f(a) be negative and f(b) be positive so that the approximate value of the root between them is

x0 = a+b
2
. If f(x0) = 0, then it asserts that x0 is the correct root of f(x) = 0. On the other hand, if f(x0) 6= 0, then the root

either lies in between
(
a, a+b

2

)
or
(
a+b
2
, b
)

depending on whether f(x0) is negative or positive. We again bisect the interval

and repeat the process until the root is obtained to desired accuracy.

3. Jacobi Method for Symmetric Matrices

The Jacobi method is suitable for finding the eigenvalues of a real symmetric matrices. A real symmetric matrix is system-

atically reduced to a diagonal matrix by Jacobi method. This method use the similarity transformed matrix which is simpler

but has the same eigenvalues as the given matrix. The transformation matrices which are used are orthogonal matrices.

The advantage of using orthogonal matrices is that it minimizes errors in the process. Jacobi method can be used to find

all eigenvalues simultaneously of any real symmetric matrix A. We know from matrix theory that, the eigenvalues of a real

symmetric matrix A are real. This method reduces the given matrix to a diagonal form, where the diagonal elements are

the eigenvalues of the given matrix. In this method, the given matrix A is transformed to a new matrix A1 by the scheme

A1 = P−1
1 AP1 (6)

Where P1 is an orthogonal matrix. Therefore, P−1
1 = PT1 . This transformation introduces a zero at a non-diagonal position

of A. Then another matrix A2 is produced by the equation

A2 = P−1
2 A1P2 = P−1

2 P−1
1 AP1P2 [by (6)]

in which a new non-diagonal element is reduced to zero. Continuing this process of reducing the non-diagonal elements to

zero one by one, we finally obtain a matrix

Ak = P−1
k P−1

k−1 . . . P
−1
1 AP1P2 . . . Pk−1Pk (7)

Which is a diagonal matrix. The eigenvalues are the diagonal elements of Ak. The non-diagonal element need not be reduced

exactly to zero but must be less than a specified small quantity. The orthogonal matrices Pi used above are extensions of

a rotation matrix in a two-dimensional system. Pi’s are chosen as follows. Suppose a non-diagonal element, say aij , has to

be reduced to zero. If A is an n× n matrix, then P is also an n× n matrix, where the sub matrix

 aii aij

aji ajj


consisting of the ith and jth rows and columns is replaced by

 cos θ − sin θ

sin θ cos θ


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All the other diagonal elements of P are equal to unity. The other non-diagonal elements are taken as zero. For example, if

A is a 4× 4 matrix and a non-diagonal element, say a23, has to be reduced to zero. Then, we take

P1 =



1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1


(8)

Note the second and third rows and columns in (8). Now, let

A =



a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44


(9)

is a given symmetric matrix. The transformation PT1 AP1 gives

A1 = PT1 AP1 (10)

The element equated to zero in the (2, 3) position of A1 gives the equation

−a22 sin θ cos θ + a23 cos2 θ − a23 sin2 θ + a33 sin θ cos θ = 0

This equation yields,

tan 2θ =
2a23

a22 − a33
⇒ θ =

1

2
tan−1

[
2a23

a22 − a33

]
Solving this trigonometric equation we get four values of θ. If θ has to be small, we take −π

4
≤ θ ≤ π

4
. Substituting for

θ in equations (8) and (10), we get the values of P1 and A1 respectively. Next, we work with A1 to annihilate some other

non-diagonal element to zero. The process is truncated when all the non-diagonal elements are numerically less than the

desired accuracy. The eigenvectors are obtained as the corresponding columns of

P = P1P2 . . . Pk (11)

Each step of reduction in the above method is called a rotation. The pair (i, j) is called the plane of rotation and θ is the

angle of rotation. The sequence in which the elements are reduced to zero is a12, a13, . . . , a1n; a23, a24, . . . , a2n and so on.

If aij(i 6= j) is reduced to zero, the element aji also gets reduced to zero automatically by symmetry. In Jacobi method,

the number of iterations increase if the matrix is large. If A is an n× n matrix, the minimum number of rotations required

to reduce A into a diagonal form may be n(n−1)
2

. For example, if A is a matrix of order 10, then the minimum number of

operations may be 45. The Jacobi method is illustrated in Examples 3.1 and 3.2.

Example 3.1. Let us now consider the real symmetric matrix

A =


1
√

2 2
√

2 3
√

2

2
√

2 1


to find the eigenvalues and the corresponding eigenvectors by Jacobi method.
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Solution.

The given matrix is real and symmetric. The largest off-diagonal element is a13 = a31 = 2. The other two elements in

this 2 × 2 sub matrix are a11 = 1 and a33 = 1. Now, we compute tan 2θ =
2aij

aii−ajj
, where |aij | be numerically the largest

off-diagonal element of A. Therfore

tan 2θ =
2a13

a11 − a33
=

2× 2

1− 1
=∞⇒ 2θ =

π

2
⇒ θ =

π

4

Therefore

S1 =


cos θ 0 − sin θ

0 1 0

sinθ 0 cosθ



=


cos π

4
0 − sin π

4

0 1 0

sinπ
4

0 cosπ
4



=


1√
2

0 − 1√
2

0 1 0

1√
2

0 1√
2


The first rotation gives,

D1 = S−1
1 AS1 = ST1 AS1

=


1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2




1
√

2 2
√

2 3
√

2

2
√

2 1




1√
2

0 − 1√
2

0 1 0

1√
2

0 1√
2



=


3 2 0

2 3 0

0 0 − 1


We may observe that the elements d13 and d31 got annihilated. To make sure that our calculations are correct up to this

step, we may also observe that the sum of the diagonal elements of D1 is same as the sum of the diagonal elements of the

original matrix A. As a second step, we choose the largest off-diagonal element of D1 and is found to be d12 = d21 = 2. The

other elements are d11 = 3, d22 = 3. Now, we compute

tan 2θ =
2d12

d11 − d22
=

2× 2

3− 3
=

4

0
=∞⇒ 2θ =

π

2
⇒ θ =

π

4

Thus, we construct the second rotation matrix as

S2 =


cos θ − sin θ 0

sinθ cosθ 0

0 0 1

 =


cos π

4
− sin π

4
0

sinπ
4

cosπ
4

0

0 0 1



=


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1


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At the end of second rotation, we get

D2 = S−1
2 D1S2 = ST2 D1S2

=


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1




3 2 0

2 3 0

0 0 − 1




1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1



=


5 0 0

0 1 0

0 0 − 1

 (12)

Which turned out to be a diagonal matrix and therefore we stop the computation. From equation (12), we notice that the

eigenvalues of the given matrix are 5, 1 and −1. The eigenvectors are the column vectors of S = S1S2. Therefore,

S = S1S2 =


1√
2

0 − 1√
2

0 1 0

1√
2

0 1√
2




1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1



=


1
2

− 1
2

− 1√
2

1√
2

1√
2

0

1
2

− 1
2

1√
2


Hence the eigenvectors corresponding to 5, 1 and −1 are respectively

[
1
2
, 1√

2
, 1
2

]T
,
[
− 1

2
, 1√

2
,− 1

2

]T
and

[
− 1√

2
, 0, 1√

2

]T
. �

Example 3.2. Let us consider the real symmetric matrix

A =


2 3 1

3 2 2

1 2 1


to find the eigenvalues and the corresponding eigenvectors by Jacobi method.

Solution.

If we find that all the off-diagonal elements are of the same order of magnitude. Then, we can choose any one of them. In

this example, we shall first reduce the largest off-diagonal element a12 = 3 to zero. For this, we take

S1 =


cos θ − sin θ 0

sinθ cosθ 0

0 0 1


Let us compute

A1 = S−1
1 AS1 = ST1 AS1

=


cos θ sinθ 0

− sin θ cosθ 0

0 0 1




2 3 1

3 2 2

1 2 1




cos θ − sin θ 0

sinθ cosθ 0

0 0 1



=


2 + 6 sin θ cos θ 3cos2θ cosθ+2sinθ

3cos2θ 2− 6 sin θ cos θ − sin θ + 2 cos θ

cosθ+2sinθ − sin θ + 2 cos θ 1


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Equating the element in the (1, 2) position to zero, we get cos 2θ = 0, which gives θ = π
4

. With this value of θ, A1 and S1

become

A1 =


5 0 3√

2

0 − 1 1√
2

3√
2

1√
2

1

 and S1 =


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1


Starting with A1, we reduce the largest off-diagonal element a13 = 3√

2
to zero, we set

S2 =


cos θ 0 − sin θ

0 1 0

sinθ 0 cosθ


Computing A2 = S−1

2 A1S2 = ST2 A1S2, we get

A2 =


3 + 2 cos 2θ + 3√

2
sin 2θ 1√

2
sin θ − 2 sin 2θ + 3√

2
cos 2θ

1√
2

sin θ − 1 1√
2

cos θ

−2 sin 2θ + 3√
2

cos 2θ 1√
2

cos θ − 3√
2

sin 2θ + 3− 2 cos 2θ


Equating the element in the (1, 3) position to zero, i.e.,

−2 sin 2θ +
3√
2

cos 2θ = 0⇒ tan 2θ =
3

2
√

2

Therefore sin 2θ = 3√
17

= 0.7276 and cos 2θ = 2
√
2√

17
= 0.6860. Hence, sin θ = 0.3963 and cos θ = 0.9182 (calculated to four

decimal places using a calculator). Substituting the values of sin θ and cos θ in A2 and S2, we get

A2 =


5.9155 0.2802 0

0.2802 − 1 0.6493

0 0.6493 0.0845

 and S2 =


0.9182 0 − 0.3963

0 1 0

0.3963 0 0.9182


From above two transformations, we have seen that the element in the (1, 2) position of A1, which was reduced to zero, is

replaced by an element ( 6= 0) in A2. But, this element, i.e., 0.2802 is definitely less than the corresponding element in A.

Finally, all the off-diagonal elements will be gradually reduced to zero (almost zero). Continuing the above process with A2,

we get the following matrices successively:

A3 =


5.9155 0.2538 0.1187

0.2538 − 1.3036 0

0.1187 0 0.3882

 and S3 =


1 0 0

0 0.9058 − 0.4237

0 0.4237 0.9058



A4 =


5.9246 0 0.1186

0 − 1.2993 − 0.005

0.1186 − 0.005 0.3882

 and S4 =


0.9994 − 0.0351 0

0.0351 0.9994 0

0 0 1



A5 =


5.9273 − 0.00011 0

−0.00011 − 1.2923 − 0.005

0 − 0.005 0.3857

 and S5 =


0.9988 0 − 0.0214

0 1 0

0.0214 0 0.9988



A6 =


5.9273 − 0.00011 7.46× 10−7

−0.00011 − 1.2993 0

7.46× 10−7 0 0.3857

 and S6 =


1 0 0

0 0.9999 − 0.003

0 0.003 0.9999


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Since the off-diagonal elements are very nearly equal to zero (at least up to the 4th decimal place), A6 can be considered as

a diagonal matrix. However, iterations can be continued further to get greater accuracy, if needed. Hence the eigenvalues

of A are the diagonal elements of A6. That is, λ1 = 5.9273, λ2 = −1.2993 and λ3 = 0.3857. Here we have,

A6 = S−1
6 A5S6 = S−1

6 S−1
5 A4S5S6

= S−1
6 S−1

5 S−1
4 A3S4S5S6

= S−1
6 S−1

5 S−1
4 S−1

3 A2S3S4S5S6

= S−1
6 S−1

5 S−1
4 S−1

3 S−1
2 A1S2S3S4S5S6

= S−1
6 S−1

5 S−1
4 S−1

3 S−1
2 S−1

1 AS1S2S3S4S5S6

⇒ A6 = S−1AS, where S = S1S2S3S4S5S6. To obtain the eigenvectors, we find S = S1S2S3S4S5S6. We get,

S =


0.6145 − 0.5504 − 0.5648

0.6814 0.7313 0.0287

0.3972 − 0.3710 0.8246


Thus the eigenvectors corresponding to λ1, λ2 and λ3 are respectively the first, second and third columns of S. �

4. Givens Method For Symmetric Matrices

The Givens method leads to a tridiagonal matrix. The eigenvalues and eigenvectors of the original matrix are to determined

from those of the tridiagonal matrix. Let A be a real symmetric matrix. The Givens method consists of the following steps:

Step 1. Reduce A to a tridiagonal symmetric matrix using plane rotations. The reduction to a tridiagonal form is achieved

by using the orthogonal transformations as in the Jacobi method. However, in this case we start with the subspace containing

the elements a22, a23, a32, a33. Perform the plane rotation S−1
1 AS1 using the orthogonal matrix

 cos θ − sin θ

sin θ cosθ


Now, let us consider the matrix

A =


a11 a12 a13

a12 a22 a23

a13 a23 a33

 (13)

and let the orthogonal rotation matrix S1 in the plane (2, 3) be

S1 =


1 0 0

0 cosθ − sin θ

0 sinθ cosθ

 . ∴ S−1
1 AS1 = ST1 AS1 =


1 0 0

0 cosθ sin θ

0 − sinθ cosθ



a11 a12 a13

a12 a22 a23

a13 a23 a33




1 0 0

0 cosθ − sin θ

0 sinθ cosθ



=


a11 a12 cos θ + a13 sin θ − a12 sin θ + a13 cos θ

a12 cos θ + a13 sin θ a23 sin 2θ + a22 cos2 θ + a33 sin2 θ a23 cos 2θ − a22 sin θ cos θ + a33 sin θ cos θ

−a12 sin θ + a13 cos θ a23 cos 2θ − a22 sin θ cos θ + a33 sin θ cos θ − a23 sin 2θ + a22 sin2 θ + a33 cos2 θ


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Then in the resulting matrix, equating the element in the (1, 3) position to zero for reducing S−1
1 AS1 to tridiagonal matrix,

we get

− a12 sin θ + a13 cos θ = 0⇒ tan θ =
a13
a12
⇒ θ = tan−1

(
a13
a12

)
(14)

By this value of θ, the above transformation gives zeros in (1, 3) and (3, 1) positions. Let us further perform rotation in the

plane (2, 4) and put the resulting element (1, 4) = 0. This would not affect the zeros obtained earlier. Then the transforma-

tions are applied to the matrix in turn so as to annihilate the elements (1, 3), (1, 4), (1, 5), . . . , (1, n); (2, 4), (2, 5), . . . , (2, n)

and finally we arrive at the tridiagonal matrix

P =



p1 q1 0 0 · · · · · · · · · 0

q1 p2 q2 0 · · · · · · · · · 0

0 q2 p3 q3 · · · · · · · · · 0

...
...

...
. . .

. . .
...

...
...

0 0 0 0 · · · qn−2 pn−1 qn−1

0 0 0 0 · · · 0 qn−1 pn


Step 2. To obtain the eigenvalues of the tridiagonal matrix. Let the resulting tridiagonal matrix after first transformation

be obtained as

S−1
1 AS1 = ST1 AS1 = B =


α11 α12 0

α12 α22 α23

0 α23 α33

 (15)

Now, the eigenvalues of (13) and (15) are the same. To find the eigenvalues of (15), we consider

det(B − λI) = 0⇒

∣∣∣∣∣∣∣∣∣∣
α11 − λ α12 0

α12 α22 − λ α23

0 α23 α33 − λ

∣∣∣∣∣∣∣∣∣∣
= 0

Say f3(λ) = 0. Then we have,

f0(λ) = 1, f1(λ) = α11 − λ = α11 − λf0(λ)

and

f2(λ) =

∣∣∣∣∣∣∣
α11 − λ α12

α12 α22 − λ

∣∣∣∣∣∣∣ = (α22 − λ)f1(λ)− α2
12f0(λ)

Now expanding f3(λ) in terms of the third row, we immediately obtain

f3(λ) = (α33 − λ)

∣∣∣∣∣∣∣
α11 − λ α12

α12 α22 − λ

∣∣∣∣∣∣∣− α23

∣∣∣∣∣∣∣
α11 − λ 0

α12 α23

∣∣∣∣∣∣∣
⇒ f3(λ) = (α33 − λ)f2(λ)− α2

23f1(λ)

The recurrence formula in general is,

fk(λ) = (αkk − λ)fk−1(λ)− (α(k−1)k)2fk−2(λ), 2 ≤ k ≤ n (16)

Above is the characteristic equation which can be solved by any standard method. Thus the roots of (16) will be the

eigenvalues of the given real symmetric matrix. If none of the αij (i 6= j) vanish then this equation generate a sequence
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{fk(λ) : k = 0, 1, . . . , n}, which is called the Sturm sequence. A table of the sequence for various λ is prepared and the

number of changes in sign of the Sturm sequence is noted, the difference between the number of changes of sign for consecutive

values of λ gives an approximate location of the eigenvalues. Knowing the location of the eigenvalues, their exact values can

be obtained by any iterative method. That is, if V (x) denotes the number of changes in sign in the sequence for a given

number x, then the number of zeros of fn in (a, b) is |V (a)− V (b)| provided a or b is not a zero of fn. In this way, we can

approximately compute the eigenvalues and by repeated bisections, we can improve these estimates.

Step 3. To obtain the eigenvectors of the tridiagonal matrix. Let Y be the eigenvector of the tridiagonal matrix B and let

S1, S2, . . . , Sj be the orthogonal matrices employed in reducing the given real symmetric matrix A to the tridiagonal form

B, then the corresponding eigenvector X of A is given by X = SY, where S = S1S2 . . . Sj is the product of the orthogonal

matrices used in the plane rotations. The number of rotations needed for Givens method are equivalent to the number

of non-tridiagonal elements of the matrix. For a 3 × 3 matrix, only one rotation is required; whereas for a 4 × 4 matrix,

three rotations are required etc. That is, the total number of plane rotations required to bring a matrix of order n to its

tridiagonal form is (n−1)(n−2)
2

.

The Givens method is illustrated in examples 4.1 and 4.2.

Example 4.1. Let us now consider the real symmetric matrix

A =


1
√

2 2
√

2 3
√

2

2
√

2 1


to find the eigenvalues and the corresponding eigenvectors by Givens method.

Solution.

There is only one non-tridiagonal element a13 = 2. This is to be reduced to zero, hence one rotation is required. Now, to

annihilate a13, we define the orthogonal matrix in the plane (2, 3) as:

O =


1 0 0

0 cosθ − sin θ

0 sinθ cosθ


where θ is obtained by tan θ = a13

a12
= 2√

2
⇒ sin θ =

√
2
3

and cos θ = 1√
3
. Therefore

O =


1 0 0

0 1√
3
−
√

2
3

0
√

2
3

1√
3


THerefore

A1 = O−1AO = OTAO =


1 0 0

0 1√
3

√
2
3

0 −
√

2
3

1√
3




1
√

2 2
√

2 3
√

2

2
√

2 1




1 0 0

0 1√
3
−
√

2
3

0
√

2
3

1√
3



=


1

√
2 2

√
6 5√

3
2
√

2
3

0 −
√

6 +
√

2
3

− 1√
3




1 0 0

0 1√
3
−
√

2
3

0
√

2
3

1√
3


160



Alanur Hussain Laskar and Samira Behera

A1 =


1

√
6 0

√
6 3 −

√
2

0 −
√

2 1

 ,
which is a tridiagonal matrix. Now, to find the eigenvalues of A1, we proceed as follows:

The characteristic equation of A1 is 
1− λ

√
6 0

√
6 3− λ −

√
2

0 −
√

2 1− λ

 = 0

The Sturm sequence, i.e., the leading minors of order 0, 1, 2, 3 are given by f0(λ) = 1, f1(λ) = 1− λ, f2(λ) = (3− λ)f1(λ)−

6f0(λ) and f3(λ) = (1− λ)f2(λ)− 2f1(λ). Let us now consider the changes of sign in the Sturm sequence as

λ f0(λ) f1(λ) f2(λ) f3(λ) N(λ)

−2 1 3 9 21 0

0 1 1 −3 −5 1

2 1 −1 −7 9 2

3 1 −2 −6 16 2

4 1 −3 −3 15 2

6 1 −5 9 −35 3

Above table shows that there is an eigenvalue in the intervals (−2, 0), (0, 2) and (4, 6). We now find better estimates of the

eigenvalues by repeated bisections. First, we shall find the eigenvalue in the interval (−2, 0) by bisecting it at −1.

λ f0(λ) f1(λ) f2(λ) f3(λ) N(λ)

−2 1 3 9 21 0

−1 1 2 2 0 . . .

Note that f3(−1) = 0, so that λ = −1 is an eigenvalue. Now, we shall find the eigenvalue in the interval (0, 2) by bisecting

it at 1.

λ f0(λ) f1(λ) f2(λ) f3(λ) N(λ)

0 1 1 −3 −5 1

1 1 0 −6 0 . . .

Since f3(1) = 0, so λ = 1 is an eigenvalue. Next, we shall find the eigenvalue in the interval (4, 6) by bisecting it at 5.

λ f0(λ) f1(λ) f2(λ) f3(λ) N(λ)

5 1 −4 2 0 . . .

6 1 −5 9 −35 3

Again, since f3(5) = 0, so λ = 5 is an eigenvalue. Therefore, the eigenvalues of A1 are 5, 1 and −1 and hence the eigenvalues

of A are also 5, 1 and −1. Now, to find the eigenvectors of A1 for each of the eigenvalues, we proceed as follows:

For λ = 5, let the eigenvector of A1 be Y =


y1

y2

y3

. Then we have,

A1Y = λY ⇒


1

√
6 0

√
6 3 −

√
2

0 −
√

2 1



y1

y2

y3

 = 5


y1

y2

y3


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Which gives the equations,

y1 +
√

6y2 = 5y1 (17)

√
6y1 + 3y2 −

√
2y3 = 5y2

and −
√

2y2 + y3 = 5y3 (18)

Equation (17) gives,

4y1 =
√

6y2 ⇒
y1√

6
=
y2
4
⇒ y1

1
2

=
y2√

2
3

Equation (18) gives,

−
√

2y2 = 4y3 ⇒
y2
4

=
y3

−
√

2
⇒ y2√

2
3

=
y3

− 1

2
√
3

Therefore, the eigenvector of A1 for λ = 5 is Y =
[
1
2
,
√

2
3
,− 1

2
√
3

]T
. Therefore, the eigenvector X of A for λ = 5 is given by

X = OY =


1 0 0

0 1√
3
−
√

2
3

0
√

2
3

1√
3




1
2√
2
3

− 1

2
√
3


=

[
1

2
,

1√
2
,

1

2

]T

where O is the orthogonal matrix used in the plane rotation. For λ = −1, let the eigenvector of A1 be Y =


y1

y2

y3

 . Then

we have,

A1Y = λY ⇒


1

√
6 0

√
6 3 −

√
2

0 −
√

2 1



y1

y2

y3

 = −1


y1

y2

y3


Which gives the equations,

y1 +
√

6y2 = −y1 (19)

√
6y1 + 3y2 −

√
2y3 = −y2

and −
√

2y2 + y3 = −y3 (20)

Equation (19) gives,

2y1 = −
√

6y2 ⇒
y1

−
√

6
=
y2
2
⇒ y1

− 1√
2

=
y2
1√
3

Equation (20) gives,
√

2y2 = 2y3 ⇒
y2
2

=
y3√

2
⇒ y2

1√
3

=
y3
1√
6

Therefore, the eigenvector of A1 for λ = −1 is Y =
[
− 1√

2
, 1√

3
, 1√

6

]T
. Therefore, the eigenvector X of A for λ = −1 is given

by

X = OY =


1 0 0

0 1√
3
−
√

2
3

0
√

2
3

1√
3



− 1√

2

1√
3

1√
6


=

[
− 1√

2
, 0,

1√
2

]T
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Similarly, the eigenvector of A1 for λ = 1 is Y =
[
− 1

2
, 0,−

√
3

2

]T
. Therefore, the eigenvector X of A for λ = 1 is given by

X = OY =


1 0 0

0 1√
3
−
√

2
3

0
√

2
3

1√
3



− 1

2

0

−
√
3

2


=

[
−1

2
,

1√
2
,−1

2

]T
�

Example 4.2. Let us now consider the real symmetric matrix

A =



1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20


to find the eigenvalues by Givens method.

Solution.

To annihilate, i.e., to make zero a13, we take the orthogonal matrix P1 as

P1 =



1 0 0 0

0 cosθ − sinθ 0

0 sinθ cosθ 0

0 0 0 1


Computing P−1

1 AP1, we get

A1 = P−1
1 AP1 = PT1 AP1

=



1 cosθ+sinθ − sin θ + cos θ 1

cosθ+sinθ 2cos2θ + 6 sin2 θ + 3 sin 2θ 4cosθsinθ+3cos2θ − 3 sin2 θ 4cosθ+10sinθ

− sin θ + cos θ 4cosθsinθ+3cos2θ − 3 sin2 θ 2sin2θ + 6 cos2 θ − 6 cos θ sin θ − 4 sin θ + 10 cos θ

1 4cosθ+10sinθ − 4 sin θ + 10 cos θ 20


Equating the element in the (1, 3) position to zero, we get tan θ = 1⇒ θ = π

4
. Substituting θ = π

4
in A1, we get

A1 =



1
√

2 0 1
√

2 7 2 7
√

2

0 2 1 3
√

2

1 7
√

2 3
√

2 20


As the matrix is symmetric, so the (3, 1) element is also reduced to zero. Now, to reduce the element in the (1, 4) position

to zero, we take P2 as

P2 =



1 0 0 0

0 cosθ 0 − sin θ

0 0 1 0

0 sinθ 0 cosθ


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Computing A2 = P−1
2 A1P2 = PT2 A1P2 and equating the element in the (1, 4) position to zero, we get (using a calculator)

sin θ = 0.5774, cos θ = 0.8165. Substituting these values in A2, we get

A2 =



1 1.7321 0 0

1.7321 20.6687 4.0827 9.4281

0 4.0827 1 2.3093

0 9.4281 2.3093 6.333


To annihilate the element in the (2, 4) position of A2, we take

P3 =



1 0 0 0

0 1 0 0

0 0 cosθ − sin θ

0 0 sinθ cosθ


As before, we again compute A3 = P−1

3 A2P3 = PT3 A2P3 and equating the element in the (2, 4) position to zero, we get

sin θ = 0.9177, cos θ = 0.3974. Substituting these values in A3, we get

A3 =



1 1.7321 0 0

1.7321 20.6687 10.2746 0

0 10.2746 7.1758 0.3648

0 0 0.3648 0.1580


This is the final tridiagonal form of the given matrix A. The matrices A and A3 have the same eigenvalues. To find the

eigenvalues of A3, we proceed as follows:

The characteristic equation of A3 is

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ 1.7321 0 0

1.7321 20.6687− λ 10.2746 0

0 10.2746 7.1758− λ 0.3648

0 0 0.3648 0.1580− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The Sturm sequence, i.e., the leading minors of order 0, 1, 2, 3, 4 are given by f0(λ) = 1, f1(λ) = 1− λ, f2(λ) = (20.6687−

λ)f1(λ) − (1.7321)2, f3(λ) = (7.1758 − λ)f2(λ) − (10.2746)2f1(λ) and f4(λ) = (0.1580 − λ)f3(λ) − (0.3648)2f2(λ). Let us

now consider the changes of sign in the Sturm sequence as

λ f0(λ) f1(λ) f2(λ) f3(λ) f4(λ) N(λ)

0 + + + + + 0

0.1 + + + + 1

0.5 + + + + 2

2 + + 2

3 + + 3

From the above table, it is clear that there is an eigenvalue in the intervals (0, 0.1), (0.1, 0.5) and (2, 3). First, we shall find

the eigenvalue in the interval (0, 0.1) by bisecting it at 0.05.
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λ f0(λ) f1(λ) f2(λ) f3(λ) f4(λ) N(λ)

0 + + + + + 0

0.05 + + + + − 1

Therefore, the eigenvalue lies in the interval (0, 0.05). Proceeding in this way, using the method of successive bisection, we

get an eigenvalue λ1 = 0.0379309. Similarly, the eigenvalues in (0.1, 0.5) and (2, 3) are λ2 = 0.453835 and λ3 = 2.20363.

But A3 is a 4× 4 matrix and hence has four eigenvalues. The fourth eigenvalue is obtained from the equation

λ1 + λ2 + λ3 + λ4 = a11 + a22 + a33 + a44 (of A3)⇒ 2.6953959 + λ4 = 29.0025⇒ λ4 = 26.3071

Since λ1, λ2 and λ3 are approximate eigenvalues, so λ4 is also the approximate eigenvalue, i.e., λ4 ≈ 26.3071. �

5. Conclusion

In this paper, we have studied Jacobi method and Givens method for finding the eigenvalues and the corresponding eigen-

vectors of a real symmetric matrices. In Jacobi method, we have seen that with examples that the elements that are reduced

to zero by a transformation may not necessarily remain zero during subsequent transformations. But in Givens method, we

have seen that with examples that this method preserves the zeros in the off-diagonal elements, once they are created, i.e.,

Givens method does not disturb zeros already obtained. In Jacobi method, the minimum number of rotation required to

transform the given n×n real symmetric matrix A in to diagonal form is n(n−1)
2

but in Givens method, the total number of

plane rotations required to bring a real symmetric matrix of order n to its tridiagonal form is (n−1)(n−2)
2

. So, Givens method

takes less number of rotation as compared to Jacobi method. Although, Jacobi method leads to a diagonal matrix but

Givens method leads to a tridiagonal matrix. However, the advantage of Jacobi method is that it gives all the eigenvalues

and eigenvectors of a real symmetric matrix at a time where as Givens method finds the eigenvalues one at a time and the

method is very well suited for arbitrary real symmetric matrices. Finally, by analyzing all the things we can conclude that

Givens method is more efficient than Jacobi method.
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