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1. Introduction

Let G be a finite, simple, connected graph with vertex set V (G) and edge set E(G). The degree dG(v) of a vertex v is

the number of vertices adjacent to v. Let ∆(G) denote the maximum degree among the vertices of G. The reverse vertex

degree of a vertex v in G is defined as cv = ∆(G) + 1 − dG(v). The reverse edge connecting the reverse vertices u and v

will be denoted by uv. We refer [1] for undefined term and notation. Chemical graph theory is a branch of Mathematical

Chemistry which has an important effect on the development of the chemical sciences. Several topological indices have been

considered in Theoretical Chemistry, see [2]. In [3], Ediz defined the first reverse Zagreb beta index and the second reverse

Zagreb index of a graph G. These indices are defined respectively as

CM1 (G) =
∑

uv∈E(G)

(cu + cv) , CM2 (G) =
∑

uv∈E(G)

cucv.

In [4], Kulli introduced the sum connectivity reverse index of a graph G and defined it as

SC (G) =
∑

uv∈E(G)

1√
cu + cv

.

We now introduce the product connectivity reverse index of a graph G as follows:

PC (G) =
∑

uv∈E(G)

1√
cucv

. (1)

Recently several topological indices were studied, for example, in [5–13]. In this paper, we compute the first and second

reverse Zagreb indices and the product connectivity reverse index of some important chemical structures like silicate networks

and hexagonal networks. For networks see [14] and references cited therein.
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2. Silicate Networks

A silicate network is symbolized by SLn where n is the number of hexagons between the center and boundary of SLn.

Silicates are obtained by fusing metal oxide or metal carbonates with sand. A silicate network of dimension two is shown in

Figure 1.

Figure 1. A 2-dimensional silicate network

In the following theorem, we determine the value of CM1(SLn), CM2(SLn) for silicate networks.

Theorem 2.1. Let SLn be the silicate networks. Then

(1). CM1(SLn) = 126n2 + 54n.

(2). CM2(SLn) = 90n2 + 108n.

Proof. Let G be the graph of silicate network SLn. The graph G has 15 n2 + 3n vertices and 36n2 edges. From Figure

1, we see that the vertices of SLn are either of degree 3 or 6. In G, by algebraic method, there are three types of edges as

follows:

E33 = {uv ∈ E(G)|dG(u) = dG(v) = 3}, |E33| = 6n.

E36 = {uv ∈ E(G)|dG(u) = 3, dG(v) = 6}, |E36| = 18n2 + 6n.

E66 = {uv ∈ E(G)|dG(u) = dG(v) = 6}, |E66| = 18n2 − 12n.

We have cu = ∆(G)− dG(u) + 1 = 7− dG(u). Thus there are three types of reverse edges of follows:

CE44 = {uv ∈ E(G)|cu = cv = 4}, |CE44| = 6n.

CE41 = {uv ∈ E(G)|cu = 4, cv = 1}, |CE41| = 18n2 + 6n.

CE11 = {uv ∈ E(G)|cu = cv = 1}, |CE11| = 18n2 − 12n.

(1). To determine CM1(SLn), we see that

CM1 (SLn) =
∑

uv∈E(G)

(cu + cv)

=
∑
CE44

(cu + cv) +
∑
CE41

(cu + cv) +
∑
CE11

(cu + cv)

= (4 + 4)6n+ (4 + 1)(18n2 + 6n) + (1 + 1)(18n2 − 12n)

= 126n2 + 54n.
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(2). To determine CM2(SLn), we see that

CM2 (SLn) =
∑

uv∈E(G)

cucv

=
∑
CE44

cucv +
∑
CE41

cucv +
∑
CE11

cucv

= (4× 4)6n+ (4× 1)(18n2 + 6n) + (1× 1)(18n2 − 12n)

= 90n2 + 108n.

In the next theorem, we determine the product connectivity reverse index of SLn.

Theorem 2.2. Let SLn be the silicate networks. Then

PC (SLn) = 27n2 − 15

2
n.

Proof. Let G = SLn. From equation (1) and by cardinalities of the reverse edge partition of SLn, we have

PC (SLn) =
∑

uv∈E(G)

1√
cucv

=
∑
CE44

1√
cucv

+
∑
CE41

1√
cucv

+
∑
CE11

1√
cucv

=
1√

4× 4
(6n) +

1√
4× 1

(
18n2 + 6n

)
+

1√
1× 1

(
18n2 − 12n

)
= 27n2 − 15

2
n.

3. Hexagonal Networks

It is known that there exist three regular plane tilings with composition of same kind of regular polygons such as triangular,

hexagonal and square. Triangular tiling is used in the construction of hexagonal networks. This network is symbolized by

HXn where n is the number of vertices in each side of hexagon. A 6-dimensional hexagonal network is shown in Figure 2.

Figure 2. Hexagonal network of dimension six

In the following theorem, we determine the exact formulas of CM1(HXn), CM2(HXn) for hexagonal networks.
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Theorem 3.1. Let HXn be the hexagonal networks. Then

(1). CM1(HXn) = 18n2 + 18n− 30.

(2). CM2(HXn) = 9n2 + 57n− 36.

Proof. Let H be the graph of hexagonal networks. The graph H has 3n2 − 3n+ 1 vertices and 9n2 − 15n+ 6 edges. From

Figure 2, it is easy to see that the vertices of HXn are either of degree 3, 4 or 6. Thus ∆(H) = 6. In H, by algebraic method,

there are five types of edges as follows:

E34 = {uv ∈ E(H)|dH(u) = 3, dH(v) = 4}, |E34| = 12.

E36 = {uv ∈ E(H)|dH(u) = 3, dH(v) = 6}, |E36| = 6.

E44 = {uv ∈ E(H)|dH(u) = dH(v) = 4}, |E44| = 6n− 18.

E46 = {uv ∈ E(H)|dG(u) = 4, dG(v) = 6}, |E46| = 12n− 24.

E66 = {uv ∈ E(H)|dG(u) = dG(v) = 6}, |E66| = 9n2 − 33n+ 30.

We have cu = ∆(H)− dH(u) + 1 = 7− dH(u). Thus there are five types of reverse edges as follows:

CE43 = {uv ∈ E(H)|cu = 4, cv = 3}, |CE43| = 12.

CE41 = {uv ∈ E(H)|cu = 4, cv = 1}, |CE41| = 6.

CE33 = {uv ∈ E(H)|cu = cv = 3}, |CE33| = 6n− 18.

CE31 = {uv ∈ E(H)|cu = 3, cv = 1}, |CE31| = 12n− 24.

CE11 = {uv ∈ E(H)|cu = cv = 1}, |CE11| = 9n2 − 33n+ 30.

(1). To determine CM1(XLn), we see that

CM1 (HXn) =
∑

uv∈E(H)

(cu + cv)

=
∑
CE43

(cu + cv) +
∑
CE41

(cu + cv) +
∑
CE33

(cu + cv) +
∑
CE31

(cu + cv) +
∑
CE11

(cu + cv)

= (4 + 3)12 + (4 + 1)6 + (3 + 3)(6n− 18) + (3 + 1)(12n− 24) + (1 + 1)(9n2 − 33n+ 30)

= 18n2 + 18n− 30.

(2). To determine CM2(HXn), we see that

CM2 (HXn) =
∑

uv∈E(H)

cucv

=
∑
CE43

cucv +
∑
CE41

cucv +
∑
CE33

cucv +
∑
CE31

cucv +
∑
CE11

cucv

= (4× 3)12 + (4× 1)6 + (3× 3)(6n− 18) + (3× 1)(12n− 24) + (1× 1)(9n2 − 33n+ 30)

= 9n2 + 57n− 36.

In the next theorem, we determine the product connectivity reverse index of HXn.
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Theorem 3.2. Let HXn be the hexagonal networks. Then

PC (HXn) = 9n2 −
(

4
√

3− 31
)
n+

(
27− 6

√
3
)

Proof. Let H = HXn. From equation (1) and by cardinalities of the reverse edge partition of HXn, we have

PC (HXn) =
∑

uv∈E(H)

1√
cucv

=

(
1√

4× 3

)
12 +

(
1√

4× 1

)
6 +

(
1√

3× 3

)
(6n− 18) +

(
1√

3× 1

)
(12n− 24) +

(
1√

1× 1

)(
9n2 − 33n+ 30

)
= 9n2 −

(
4
√

3− 31
)
n+

(
27− 6

√
3
)
.
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