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Abstract: We represent a vector as the contravariant components with respect to covariant basis and we derivative it with respect

to time. Now if we put it in the left side of Newtonian equation of motion for acceleration (time derivative of velocity), we

get equation of motion in tensorial form. Now finding the acceleration components in spherical polar coordinate system
and get the contravariants components of acceleration and changing it to the physical components. Again if we consider

two different coordinate system and using the covariant basis formula we get it tensorial rank does not change this type

of differentiation.
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1. Introduction

The main theme of tensor calculus hidden in the vector space and its dual spaces. The components of any vector in the dual

vector space completely depend upon the corresponding basis in the vector space and in the similar manner components of

any vector in the vector space completely depend upon the corresponding basis in the dual vector space, i.e. if a basis of

a vector spaces changes according to the covariant rule, then the components of a vector in the corresponding dual basis

also changes according to the basis of the vector space and vice-versa [1]. Now covariant derivative of a vector in the vector

space be written as the linear combination basis vectors [1, 2]. This paper deals with the effective force of the Newtonian

law in any coordinate system, firstly in the tensorial form and then in physical form in spherical polar coordinate system.

At last using the changing law of basis vectors, it can be easily shown that covariant derivative of contravariant components

changes according to the contravariant changing rule.

2. General Discussion

Any vector F(q1(t), q2(t), . . . , qn(t)) in Sn can be represented with respect to covariant basis as

F(q1(t), q2(t), . . . , qn(t)) = F k(q1(t), q2(t), . . . , qn(t))rk,
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where rk is the tangent vector to the qk(t) curve. That is

rk =
∂r

∂qk
=

∂r

∂qj
∂qj

∂qk
= rj

∂qj

∂qk

rk’s are transform as covariant rule. it can be shown F k’s are contravariant components of F with respect to the basis rk

which is dual to the basis rk. That is rk.r
j = δjk. Now I differentiate F with respect to time,

d

dt
F(q1(t), q2(t), . . . , qn(t)) =

dF k

dt
rk + F k

drk
dt

Now

drk
dt

=
d

dt

(
∂r

∂qk

)
=

∂

∂qi

(
∂r

∂qk

)
dqi

dt
= Γjikrj

dqi

dt

Here, using the property that differentiation of a basis vector rk(q1(t), . . . , qn(t)) with respect to a same variable qi be

written as the linear combination in the same basis, where the coefficients are function of qi’s and known as Christofell

symbols of second kind and denoted as Γjik.

d

dt
F =

dF k

dt
rk + F kΓjikrj

dqi

dt
(1)

=
dF k

dt
rk + F jΓkijrk

dqi

dt

here interchange the the dummy suffix j and k.

=

(
dF k

dt
+ F jΓkij

dqi

dt

)
rk (2)

Therefore, now we apply on the Newtonian mechanics to get easily general form of the equation of motion. Now the equation

of motion can be written as

m
d−→v
dt

= m

(
dvk

dt
+ vjΓkij

dqi

dt

)
rk =

−→
F = F krk

Therefore, equating the components, the tensor form of equation of motion becomes

m

(
dvk

dt
+ vjΓkij

dqi

dt

)
= F k

Applying to the Spherical polar coordinate system, Here r = ir sin θ cosφ+jr sin θ sinφ+jr cos θ. Therefore r1 = ∂
∂r

r(r, θ, φ),

r̂ = r1
|r1|

= r1, similarly r2 = r and r3 = r sin θ. Here {r1, r2, r3} are tangent vectors and {r̂, θ̂, φ̂} are unit tangent vectors

to the coordinate curves at any point P (r, θ, φ). Now the velocity,

v =
d

dt
r(r, θ, φ) =

d

dt
rr̂ =

d

dt
rr1

v =
dr

dt
r1 + rΓji1rj

dqi

dt
, using (1), here q1 = r, q2 = θ, q3 = φ

=

(
dr

dt
+ rΓ1

i1
dqi

dt

)
r1 + rΓ2

i1
dqi

dt
r2 + rΓ3

i1
dqi

dt
r3

Non zero Christoffel coefficients of second kind for spherical polar coordinates are Γ1
22 = −r, Γ1

33 = −r sin2 θ, Γ2
12 = Γ2

21 = 1
r
,

Γ2
33 = − sin θ cos θ, Γ3

13 = Γ3
31 = 1

r
, Γ3

23 = Γ3
32 = cot θ. v1 = coefficient of r1 = ( dr

dt
+ rΓ1

i1
dqi

dt
) = dr

dt
, similarly,

v2 = rΓ2
i1
dqi

dt
=
dθ

dt
and v3 = rΓ3

i1
dqi

dt
=
dr

dt
+ r cot θ

dθ

dt
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Therefore, velocity

v = v1r1 + v2r2 + v3r3 =
dr

dt
r1 +

dθ

dt
r2 +

(
dr

dt
+ r cot θ

dθ

dt

)
r3

In terms of physical components,

v =
dr

dt
r̂ +

dθ

dt
rθ̂ +

(
dr

dt
+ r cot θ

dθ

dt

)
r sin θφ̂

Now acceleration,

f =
dv

dt
=

d

dt
vkrk =

(
dvk

dt
+ vjΓkij

dqi

dt

)
rk, using (2)

Therefore

f1 = coefficient of r1 =
dv1

dt
+ vjΓ1

ij
dqi

dt
, here q1 = r, q2 = θ, q3 = φ

=
dv1

dt
+ v2

(
−r dθ

dt

)
+ v3

(
−r sin2 θ

dφ

dt

)
, putting values of Γ1

ij ’s

=
d

dt

(
dr

dt

)
+
dθ

dt

(
−r dθ

dt

)
+

(
dr

dt
+ r cot θ

dθ

dt

)(
−r sin2 θ

dφ

dt

)
f1 =

d2r

dt2
− r

(
dθ

dt

)2

− r sin2 θ

(
dr

dt
+ r cot θ

dθ

dt

)
dφ

dt
, as r1 = r̂, therefore it is also physical component.

Similarly,

f2 = coefficient of r2 =
dv2

dt
+ vjΓ2

ij
dqi

dt

=
dv2

dt
+ v1

(
1

r

dθ

dt

)
+ v2

(
1

r

dr

dt

)
+ v3

(
− sin θ cos θ

dφ

dt

)
, putting values of Γ2

ij ’s.

=
d

dt

(
dθ

dt

)
+
dr

dt

(
1

r

dθ

dt

)
+
dθ

dt

(
1

r

dr

dt

)
+

(
dr

dt
+ r cot θ

dθ

dt

)(
− sin θ cos θ

dφ

dt

)
=

1

r2
d

dt

(
r2
dθ

dt

)
− sin θ cos θ

(
dr

dt
+ r cot θ

dθ

dt

)
dφ

dt

r2 = rθ̂, physical component in this direction will be

fθ =
1

r

d

dt

(
r2
dθ

dt

)
− r sin θ cos θ

(
dr

dt
+ r cot θ

dθ

dt

)
dφ

dt

and

f3 = coefficient of r3 =
dv3

dt
+ vjΓ3

ij
dqi

dt
, now putting values of Γ3

ij ’s we get

=
dv3

dt
+ v1Γ3

31
dφ

dt
+ v2Γ3

32
dφ

dt
+ v3

(
Γ3
13
dr

dt
+ Γ3

23
dθ

dt

)
=

d

dt

(
dr

dt
+ r cot θ

dθ

dt

)
+
dr

dt

1

r

dφ

dt
+
dθ

dt
cot θ

dφ

dt
+

(
dr

dt
+ r cot θ

dθ

dt

)(
1

r

dr

dt
+ cot θ

dθ

dt

)
=

d

dt

(
dr

dt
+ r cot θ

dθ

dt

)
+

1

r

dφ

dt

(
dr

dt
+ r cot θ

dθ

dt

)
+

1

r

(
dr

dt
+ r cot θ

dθ

dt

)2

as r3 = r sin θφ̂, physical component in this direction will be f3r sin θ. Similarly Cylidrical polar coordinate system I find

f1 = d2ρ
dt2
− ρ

(
dφ
dt

)2
, f2 = 1

ρ2
d
dt

(
ρ2 dφ

dt

)
, f3 = d2z

dt2
, thats are expected values. Now how the component of derivative of a

vector transforms. Let

F = F k
(
q1 (t) , q2 (t) , . . . , qn (t)

)
rk

= F
m (

q1 (t) , q2 (t) , . . . , qn (t)
)
rm,
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are two representation of F in two coordinate systems {qi} and {qj} and two covariant bases {rk} and {rj} respectively. As

rk =
∂r

∂qk
=

∂r

∂qj
∂qj

∂qk
= rm

∂qm

∂qk

Now,

d

dt
F =

(
dF k

dt
+ F jΓkij

dqi

dt

)
rk =

(
dF k

dt
+ F jΓkij

dqi

dt

)
rm

∂qm

∂qk
=

(
dF

m

dt
+ F

n
Γ
m
ln
dql

dt

)
rm

now equating the coefficients we get

(
dF

m

dt
+ F

n
Γ
m
ln
dql

dt

)
=

(
dF k

dt
+ F jΓkij

dqi

dt

)
∂qm

∂qk

i.e change as contravariant rule.
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