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Abstract: We represent a vector as the contravariant components with respect to covariant basis and we derivative it with respect
to time. Now if we put it in the left side of Newtonian equation of motion for acceleration (time derivative of velocity), we
get equation of motion in tensorial form. Now finding the acceleration components in spherical polar coordinate system
and get the contravariants components of acceleration and changing it to the physical components. Again if we consider
two different coordinate system and using the covariant basis formula we get it tensorial rank does not change this type
of differentiation.
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1. Introduction

The main theme of tensor calculus hidden in the vector space and its dual spaces. The components of any vector in the dual
vector space completely depend upon the corresponding basis in the vector space and in the similar manner components of
any vector in the vector space completely depend upon the corresponding basis in the dual vector space, i.e. if a basis of
a vector spaces changes according to the covariant rule, then the components of a vector in the corresponding dual basis
also changes according to the basis of the vector space and vice-versa [1]. Now covariant derivative of a vector in the vector
space be written as the linear combination basis vectors [1, 2]. This paper deals with the effective force of the Newtonian
law in any coordinate system, firstly in the tensorial form and then in physical form in spherical polar coordinate system.
At last using the changing law of basis vectors, it can be easily shown that covariant derivative of contravariant components

changes according to the contravariant changing rule.

2. General Discussion

Any vector F(q'(t),¢*(t),...,q"(t)) in S, can be represented with respect to covariant basis as

F(g'(1),¢°(t),...d" (1) = F*(¢"(8),4°(t),- -, " (&),
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where ry, is the tangent vector to the ¢*(t) curve. That is

81"781“66' Fai

d¢* o7’ a¢* 7 g+

ry =

r’s are transform as covariant rule. it can be shown F*’s are contravariant components of F with respect to the basis r*

which is dual to the basis rr. That is rg.r’ = 6,3;. Now I differentiate F with respect to time,

d 1, 2 N dF* k dry
—F t t),... t) = — F
F@@.a®),....q"(t) = —rn + FT -
Now
dre _d (Oor\ _ 9 (Or\dg _ ., dd
dt — dt \ogk ) O \ogk) dt — 7 dt
Here, using the property that differentiation of a basis vector ri(¢'(t),...,q"(t)) with respect to a same variable ¢* be

written as the linear combination in the same basis, where the coefficients are function of ¢*’s and known as Christofell

symbols of second kind and denoted as I"Zk

d dF* dq’
@t = gt Ty M

dF* ik dg'

= g gy

here interchange the the dummy suffix j and k.

dF dq’
(dt + PTG )rk (2)

Therefore, now we apply on the Newtonian mechanics to get easily general form of the equation of motion. Now the equation

of motion can be written as

d7 d* e dd R o
dt _m(dt F”d rk—?—Frk

Therefore, equating the components, the tensor form of equation of motion becomes
dv” jk dq k
I =F
m( a U g
Applying to the Spherical polar coordinate system, Here r = ir sin 0 cos ¢+ jr sin 0 sin ¢+ jr cos §. Therefore r1 = %r(r, 0,),
7 = 7L =1y, similarly ro = 7 and r3 = rsin6. Here {r1,r2,r3} are tangent vectors and {7, é, qg} are unit tangent vectors

[r1l

to the coordinate curves at any point P(r,0,¢). Now the velocity,

d d . d
v = Er(r, 0,9) = 2=
dr dql . 1_ .. 2 _ 5 3_
v=r + rl"llrJ g Using (1), here ¢ =r,qg" =0,4" = ¢
dr dq’ dq’ dq’
<dt =+ F’Ll dt ) r| + T’F,AEI'Q + T’lear[g
Non zero Christoffel coefficients of second kind for spherical polar coordinates are I'sy = —r, i3 = —rsin? 9, I'?, =T'3; = %,
I'33 = —sinfcos0, [Ty =T% = 2, I'3; =5, = cotd. v' = coefficient of r1 = (4 + 7'} djt ) = 4= similarly,
dq’ _df 3 5 dgt  dr df
=T} — and v* =T} - t6—
a @ MU T T Ty
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Therefore, velocity

1 2 3 dr df df
v=ovr +0vrs+ov rg:%rl—’—%n—i_ — +rcotf— | r3

In terms of physical components,

Now acceleration,

k 7
. d .
f= =@’ ™= (E ”]Ffﬂ'd*qt) e weing (2)

Therefore

1 dg'

1
f1 = coefficient of r1 = % +vjl"lj$, here ¢' =7, ¢> =6, ¢* = ¢

1
= ddit 4+ (,r%) +0 (77' sin? 9%) , putting values of F%j’s

_i ﬂ +ﬁ _ﬁ + @4_ tgﬁ — 29d¢
Ta\at) T a \ T a ar O T

d? do\ > d do\ d
f1 = Eg —-r (E) —rsin®6 (d—; + r cot OE) d—f, as r1 = 7, therefore it is also physical component.

Similarly,

2 ‘ i
f? = coefficient of ry = % + yﬂrfj%

_dv2 1 (1do 5 (1dr 3 . do . 2,
_ﬂ—i—v (;E>+v T +wv —sm@cos@a , putting values of I'j;’s.

_d(db +£ 1do +d—0 Ldr + ﬁJrrcotGd—(9 fsinﬁcoseﬁ
Todt \ dt dt \r dt dt \ r dt dt dt dt

_1d 5 df . dr do\ do
=2y (r dt) —s1n0cos(9(dt +rcot0dt) i

ro = ré, physical component in this direction will be

Ld (pd0 (e do
fo= (r dt) rblnecosﬁ(dt—&—rcotedt) gt

and

3 ) i
f? = coefficient of rs = dst + v’ Ff’j%, now putting values of Ff'j’s we get
dv® d d dr dé
= ' U1P21£ + v2F§2d—(f +0° (F%E + nga)

dt dtr dt dt dt dt dt rdt dt

_d ﬂ+rcot0ﬁ +1@ ﬁJrrcotOd—‘9 Jr1 £+rcot9d—0 ’
Codt \dt dt rdt \ dt dt r \ dt dt

= % (% +rcot9ﬁ) + drldé + ﬁcotH@ + (ﬁ +rcot9d—0) (lﬁ +Cot9i0>

as rg = rsin ngg, physical component in this direction will be f3rsin@. Similarly Cylidrical polar coordinate system I find

=22 (‘Z—f)z, 2= ,%2% (p*%), % = f;;, thats are expected values. Now how the component of derivative of a

vector transforms. Let

<
I
b
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are two representation of F in two coordinate systems {q'} and {g’} and two covariant bases {ry} and {F;} respectively. As

or or 0¢8 aq
ry = — =

a¢* ~ og 0¢" ~ " dg~
Now,

d dF*t o dg dFF o odgi - 07" (dF"  —nemdg
at (dt TG Jre= e TP g ) T = T F“‘dzt

now equating the coefficients we get

dF ne=m dg" dF ik dg'\ o™
<dt +FF“’dt> (dt MRy dq*

i.e change as contravariant rule.
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