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Abstract: In this chapter, we intend to investigate the stability problem for discrete-time T-S fuzzy stochastic systems with time-
varying delay. For a given T-S fuzzy stochastic system, our attention is focused on obtaining the sufficient conditions

assuring its asymptotic stability controller for the unstable systems. By using a linear matrix inequality (LMI) approach
is developed to derive several sufficient criteria ensuring the delayed neural networks to be globally. A numerical example

is presented to show the effectiveness of the proposed method.
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1. Introduction

During the past few decades, neural networks have received great attention due to their extensive applications in a variety

of areas such as signal processing, pattern recognition, associative memories, parallel computation, optimization and other

scientific areas. In hardware implementation of neural networks, time delays are inevitably encountered and they are a

source of oscillation and instability to a great degree, which has driven many scholars to investigate the stability problem

of delayed neural networks, see ([1]-[5]) references therein. The existence of time delay in a system may lead to instability

or bad performance. Thus, it is important to investigate the stability and control of time-delay systems and a variety of

approaches and results have been developed for the stability analysis and control synthesis of time-varying delay systems

[6]. Fuzzy systems in the form of the Takagi-Sugeno model have attracted great interests in the past decade. It has shown

that the T-S model method can give an effective way to represent complex nonlinear systems by some simple local linear

dynamic systems with their linguistic description. And some nonlinear dynamic systems can be approximated by the overall

fuzzy linear T-S models for the purposes of stability analysis and controller design [7].

It is now well known that stochastic modeling has come to play an important role in many branches of engineering appli-

cations. An area of particular interest has been the control of stochastic systems, with consequent emphasis being placed

on the stabilization of the stochastic model in terms of various definitions of stochastic stability . So far, there are very few

papers dealing with the reliable stabilization for general stochastic systems, not to mention the consideration of the case

where time-delay, parameter nonlinear disturbance simultaneously exist in the system model, due to the complexity of such

a challenging problem ([8]-[10]). This motivates us to investigate the multi objective realization problem of reliability for
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stochastic time-varying delay systems with nonlinear disturbances, that is, to generalize the results of the stochastic case.

Using LKF method and stochastic analysis techniques. To the best of our knowledge, few results have been reported in the

literature concerning the problem of robust stability for T-S fuzzy stochastic discrete-time neural networks with time-varying

delays, which remains important and challenging one.

1.1. Notations

The notations that are used throughout this paper are fairly standard. The superscript T stands for matrix transposition;

Rn denotes the n-dimensional Euclidean space; the notation P > 0(≥ 0) means that P is real symmetric and positive definite

(semi definite); In and 0m×n represent an n × n identity matrix and an m × n zero matrix, respectively; diag... stands for

a block-diagonal matrix; ‖.‖ denotes the Euclidean norm of a vector and its induced norm of a matrix; and in symmetric

block matrices or long matrix expressions, we use an asterisk (∗) to represent a term that is induced by symmetry. Matrices,

if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.

2. Problem Formulation and Preliminaries

Consider a nonlinear system that can be presented by the following T-S fuzzy discrete-time neural networks time-varying

delay model.

Plant Form:

Rule i: IF θ1(k) is Mi1 and θ2(k) is Mi2 and . . . and θp(k) is Mip,

THEN

x(k + 1) = Aix(k) +Adif(x(k − d(k))) +B1iu(k) + [Eix(k) + Edix(k − d(k)) +B2iu(k)]w(k)

x(l) = ψ(l), l = −d,−d+ 1, ...0; iεS (1)

where x(k) ∈ Rn is the state vector; u(k) ∈ Rp is the control input; w(k) is a 1 − D, zero mean Gaussian white noise

sequence on a probability space with {w(k)}=0; and E{w2(k)} = 1; d(k) is the time delay, which is a positive integer and

satisfies 1 ≤ d ≤ d(k) ≤ d̄, where d and d̄ are constant positive scalars that represent the minimum and maximum delays,

respectively. Clearly, d = d̄ means that the time delay d(k) is time invariant. {ψ(l), l = −d̄,−d̄ + 1, ..., 0} is the initial

condition sequence. Mij is the fuzzy set; S = {1, 2, ..., r}, with r being the number of IF-THEN rules; θ(k)=[θ1(k), θ2(k),

. . . ,θp(k)] is the premise variables vector. Ai, Adi, B1i, Ei, Edi , and B2i are known constant matrices with appropriate

dimensions. The fuzzy basis functions are given by

hi(θ(k)) =

p∏
j=1

r∑
i=1

Mij(θj(k))
p∏
j=1

Mij(θj(k))

, i ∈ S (2)

with Mij θj(k)) representing the grade of membership of θj(k) ∈Mij . For simplicity, we will replace hi(θ(k)) by hi in some

places. By definition, the fuzzy basis functions satisfy hi ≥ 0 (iεS) and
r∑
i=1

hi=1. It is assumed that the premise variables do

not depend on the input variable u(k) explicitly. Then, the defuzzified output of the T-S fuzzy system (1) can be represented

as

x(k + 1) =

r∑
i=1

hi[Aix(k) +Adif(x(k − d(k))) +B1iu(k)] +

r∑
i=1

hi[Eix(k) + Edix(k − d(k)) +B2iu(k)]w(k), (3)

We give the open-loop system of (3) in a compact form

x(k + 1) = Ā(k)x(k) + Ād(k)f(x(k − d(k))) + [Ē(k)x(k) + Ēd(k)x(k − d(k))]w(k), (4)
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where Ā(k) =
r∑
i=1

hiAi , Ād(k) =
r∑
i=1

hiAdi, Ē(k) =
r∑
i=1

hiEi, Ēd(k) =
r∑
i=1

hiEdi. Now, consider the following fuzzy control

law.

Controller Form:

Rule i:IF θ1(k) is Mi1 and θ2(k) is Mi2 and . . . and θp(k) is Mip,

THEN

u(k) = Kix(k), i ∈ S

where Ki is the gain matrix of the state-feedback controller in each rule; the state-feedback controller in (3) is given by

u(k) =

r∑
i=1

hiKix(k). (5)

Under control law (5), the closed-loop system is obtained as

x(k + 1) =
r∑
i=1

r∑
j=1

hihjAijx(k) +

r∑
i=1

hiAdif(x(k − d(k))) +

[
r∑
i=1

r∑
j=1

hihjEijx(k) +

r∑
i=1

hiEdix(k − d(k))

]
w(k) (6)

where Aij = Ai +B1iKj and Eij = Ei +B2iKj . The compact form of a closed-loop system can be given as

x(k + 1) = Â(k)x(k) + Ād(k)f(x(k − d(k))) + [Ê(k)x(k) + Ēd(k)x(k − d(k))]w(k) (7)

where Â(k) =
r∑
i=1

r∑
j=1

hihjAij and Ê(k) =
r∑
i=1

r∑
j=1

hihjEij . Before presenting the main results of this paper, we first introduce

the following definition for the fuzzy stochastic system in (3), which will be essential for our derivation.

Definition 2.1. The T-S fuzzy stochastic system in (3) is said to be stochastically stable if under u(k) = 0, there exists a

scalar c > 0 such that
∞∑
k=0

‖x(k)‖2 ≤ c‖ψ(0)‖2a

where

ς(l) = ψ(l + 1)− ψ(l), and ‖ψ(0)‖2a = max
l=−d̄,...,−1

{‖ψ(0)‖2, ‖ψ(l)‖2, ‖ς(l)‖2}.

Our purpose in this study is to design a state-feedback fuzzy controller in the form of (5), such that the closed-loop system

in (7) is stochastically stable. To achieve that goal, first we will analyze the stability conditions of the open-loop system (4),

and then find an available control law to stabilize the closed-loop system in (7).

3. Main Section

Theorem 3.1. Given positive integers τ , m, and d̄, the system in (4) is stochastically stable if there exist matrices Pi > 0,

Q1i > 0, Q2i > 0, Ri > 0, S1i > 0, S2i > 0, R1i > 0, R2i > 0,Mi, Ni, Xi, Yi, Zi, G(iεS) and a scalar ε > 0, such that for

any integers k and s, the following inequalities hold:
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Ψ(k) =



Π11 Π12 XT
3 + Y1 Π14 Π15 Π16 Π17 Π18

∗ Π22 −XT
3 + Y2 −XT

4 Π25 Π26 Π27 Π28

∗ ∗ 2Y3 Y T4 Y T5 − Z3 Y T6 − Y3 + Z3 Π37 Π38

∗ ∗ ∗ Π44 Π45 Π46 Π47 Π48

∗ ∗ ∗ ∗ Π55 Π56 Π57 Π58

∗ ∗ ∗ ∗ ∗ Π66 Π67 Π68

∗ ∗ ∗ ∗ ∗ ∗ Π77 Π78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88



< 0, (8)

 M̄(k) X̄(k)

∗ εR̄1(k)

 ≥ 0, (9)

 N̄(k) Ȳ (k)

∗ R̄2(k)

 ≥ 0, (10)

 N̄(k) Z̄(k)

∗ R̄2(k)

 ≥ 0, (11)

S̄1(s)− R̄1(k) < 0, (12)

S̄2(s)− R̄2(k) < 0, (13)

Where Π11 = ĀTP1Ā+ ĀTP1Ē + ¯ETP1Ā+ ĒTP1Ē −P +Q1 −Q11 +Q2 + (d̄− τm)R̄+ 2X1, Π12 = Q1 −Q11 +XT
2 −X1,

Π13 = XT
3 + Y1, Π14 = ĀTP1Ād + ĒP1Ād + XT

4 , Π15 = ĀTP1Ēd + XT
5 − Z1, Π16 = ĒP1Ēd + XT

6 − Y1 + Z1, Π17 = 0,

Π18 = 0, Π22 = Q1 − Q11 − 2X2, Π23 = −XT
3 + Y2, Π24 = −XT

4 , Π25 = −XT
5 − Z2, Π26 = −XT

6 − Y2 + Z2, Π27 = 0,

Π28 = 0, Π33 = 2Y3, Π34 = Y T4 , Π35 = Y T5 − Z3, Π36 = Y T6 − Y3 + Z3, Π37 = 0, Π38 = 0, Π44 = ¯ATd P1Ād, Π45 = −Z4,

Π46 = ¯ATd P1Ēd + Y4 + Z4, Π47 = 0, Π48 = 0, Π55 = −Q22 − 2Z5, Π56 = Y5 + Z5 − Z5 − ZT6 , Π57 = 0, Π58 = 0,

Π66 = −R1 − 2Y6 + 2Z6 + ¯ETd P1Ēd, Π67 = 0, Π68 = 0, Π77 = τR1, Π78 = 0, Π88 = (d̄− τm)R2.

Proof. Define the Lyapunov-Krasovskii function as

V (k) =V1(k) + V2(k) + V3(k) + V4(K),

V1(k) =xT (k)P (k)x(k),

V2(k) =

k−1∑
i=k−τ

ΥT (i)Q1(i)Υ(i) +

k−1∑
i=k−d̄

xT (i)Q2(i)x(i),

V3(k) =

−τm+1∑
i=k−d̄+1

k−1∑
i=k+j−1

xT (i)R(i)x(i),

V4(k) =

−1∑
i=k−τ

k−1∑
j=k+i

δT (j)S1(j)δ(j) +

−τm−1∑
i=k−d̄

k−1∑
j=k+i

δT (j)S2(j)δ(j),

Υ(k) = [xT (k)xT (k − τ) . . . xT (k − τm + τ)]T , δ(j) = x(j + 1) − x(j). By calculating the difference of V (k) along the
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trajectory of system (7), we have

∆V (k) =

4∑
i=1

∆Vi(k),

=

4∑
i=1

Vi(k + 1)− Vi(k)

∆V1(k) =xT (k + 1)P (k + 1)x(k + 1)− xT (k)P (k)x(k), (14)

∆V2(k) =γT (k)Q1γ(k) + xT (k)Q2x(k)− γT (k − τ)Q1γ(k − τ)− xT (k − d)Q2x(k − d), (15)

∆V3(k) =(d− τm)xT (k)Rx(k)−
k−τm∑

i=k−d(k)

xT (i)Rx(i),

=(d− τm)xT (k)Rx(k)− xT (k − d(k))Rx(k − d(k)), (16)

Considering (12) and (13), we have S1(s) > R1(k) and S2(s) > R2(k), for all s, kεS; then

∆V4(k) =τδT (k)R1(k)δ(k) + (d− τm)δT (k)R2(k)δ(k)−
k−1∑
j=k−τ

δT (j)R1(k)δ(j)

−
k−τm−1∑
j=k−d(k)

δT (j)R2(k)δ(j)−
k−d(k)−1∑
j=k−d

δT (j)R2(k)δ(j), (17)

Summing up (14)-(17), we have

∆V (k) ≤−
k−1∑
j=k−τ

δT (k)R1(k)δ(j) +

k−τm−1∑
j=k−d(k)

δT (j)R2(k)δ(j) +

k−d(k)−1∑
j=k−d

δT (j)R2(k)δ(j),

=

k−1∑
j=k−τ

ξT (k, j)

 0 0

0 R1(k)

 ξ(k, j) +

k−τm−1∑
j=k−d(k)

ξT (k, j)

 0 0

0 R2(k)

 ξ(k, j)
+

k−d(k)−1∑
j=k−d(k)

ξT (k, j)

 0 0

0 R2(k)

 ξ(k, j) + ηT (k)Ω(k)η(k).

Next, we will introduce several slack matrices to further reduce the conservatism. According to the definition of δ(j), for

any matrices X̂(k), Ŷ (k), and Ẑ(k), we have

0 = 2ηT (k)X̂(k)
[
x(k)− x(k − τ)−

k−1∑
j=k−τ

δ(j)
]
, (18)

0 = 2ηT (k)Ŷ (k)
[
x(k − τm)− x(k − d(k))−

k−τm−1∑
j=k−d(k)

δ(j)
]
, (19)

0 = 2ηT (k)Ẑ(k)
[
x(k − d(k))− x(k − d)−

k−d(k)−1∑
j=k−d

δ(j)
]
, (20)

Considering former definitions, we have

ηT (k)
(

Ψ̂(k) + Ψ̂T (k)
)
η(k) =

k−1∑
j=k−τ

ξT (k, j)

 0 X̂(k)

X̂T (k) 0

 ξ(k, j) +

k−τm−1∑
j=k−d(k)

ξT (k, j)

 0 Ŷ (k)

Ŷ T (k) 0

 ξ(k, j)
+

k−d(k)−1∑
j=k−d(k)

ξT (k, j)

 0 Ẑ(k)

ẐT (k) 0

 ξ(k, j).
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Furthermore, for any matrices M(k) and N(k), we have

0 =τηT (k)M̂(k)η(k)−
k−1∑
j=k−τ

ηT (k)M̂(k)η(k)

0 =(d− τm)ηT (k)N̂(k)η(k)−
k−τm−1∑
j=k−d(k)

ηT (k)N̂(k)η(k)−
k−d(k)−1∑
j=k−d

ηT (k)N̂(k)η(k)

τηT (k)M̂(k)η(k) =ηT (k)Ω(k)η(k) +

k−1∑
j=k−τ

ξT (k, j)

 M̂(k) 0

0 0

 ξ(k, j) (21)

(d− τm)ηT (k)N̂(k)η(k) =

k−τm−1∑
j=k−d(k)

ξT (k, j)

 N̂(k) 0

0 0

 ξ(k, j) +

k−d(k)−1∑
j=k−d(k)

ξT (k, j)

 N̂(k) 0

0 0

 ξ(k, j) (22)

summing up (14)-(22)

∆V (k) ≤ηT (k)Ω(k)η(k) + ξT (k, j)

 M̂(k) X̂(k)

∗ R1(k)

 ξ(k, j)
+

k−τm−1∑
j=k−d(k)

ξT (k, j)

 N̂(k) Ŷ (k)

∗ R2(k)

 ξ(k, j) +

k−d(k)−1∑
j=k−d

ξT (k, j)

 N̂(k) Ẑ(k)

∗ R2(k)

 ξ(k, j). (23)

for all η(k) 6= 0 we have ∆V (k) ≤ ηT (k)Ωη(k) < −ρ‖x(k)‖2 that is

V (N + 1)− V (0) < −ρ‖x(k)‖2 (24)

Therefore,for any integer N > 1, summing up both sides of (27) from k = 0 to k = N will result in

V (N + 1)− V (0) < −ρ
N∑
k=0

‖x(k)‖2

which means that

N∑
k=0

‖x(k)‖2 <1

ρ
V (0)− V (N + 1) ≤ V (0). (25)

Reconsidering the former defined L-K functional, we have

V1(0) =xT (0)P (0)x(0)

≤
r∑
i=1

hi(θ(0))λmax(Pi)x
T (0)G−TG−1x(0)

≤max
iεS

{ λmax(Pi)

λmin(GTG)
‖Ψ(0)‖2 (26)

V2(0) =

−1∑
i=−r

ΥT (i)Q1(i)Υ(i) +

−1∑
i=−d

xT (i)Q2(i)x(i)

≤max
iεS

λmax(Q1i)

−1∑
j=−τ

ΥT (j)T−T4 T−1
4 Υ(j)+

max
iεS

λmax(Q2i)

−1∑
j=−d

xT (j)G−TG−1x(j)

≤
(
maxiεS

{τmλmax(Q1i)

ελmin(GTG)

}
+

max
iεS

{ dλmax(Q2i)

ελmin(GTG)

})
× max
−d≤l≤1

‖ Ψ(l) ‖2 (27)
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V3(0) =

−τm+1∑
j=−d+1

−1∑
i=j−1

xT (i)R(i)x(i)

≤max
iεS

{ (d+ τm)(d− τm+ 1)λmax(Ri)

2ελmin(GTG)

}
× max
−d≤l≤1

‖Ψ(l)‖2 (28)

V4(0) =

−1∑
i=−τ

−1∑
j=i

δT (j)S1(j)δ(j) +

−τm−1∑
i=−d

−1∑
j=i

δT (j)S2(j)δ(j)

≤
−1∑
i=−τ

−1∑
j=i

δT (j)δ(j)

λmin(S1(j))
+

−τm−1∑
i=−d

−1∑
j=i

δT (j)δ(j)

λmin(S2(j))

≤max
iεS

{ (τm+ d+ 1)(d− τm)

2λmin(S2i)

}
max ‖ς(l)‖2 + max

{ τ2 + 1

2λmin(S1i)

}
max ‖ς(l)‖2. (29)

summing up (26)-(29), we have

V (0) = V1(0) + V2(0) + V3(0) + V4(0) ≤ k‖ψ(0)‖2a (30)

where

k = max
iεS

{ (τm+ d+ 1)(d− τm)

2λmin(S2i)

}
+ max

iεS

{ dλmax(Q2i)

ελmin(GTG)

}
+max

{ λmax(Pi)

λmin(GTG)

}
+max

{τmλmax(Q1i)

ελmin(GTG)

}
+ max

{ (d+ τm)(d− τm+ 1)λmax(Ri)

2ελmin(GTG)

}
+ max

{ τ2 + 1

2λmin(S1i)

}
. (31)

From (30) and (31), we have

N∑
k=0

‖x(k)‖2 < k

ρ
|ψ(0)‖2a = c‖ψ(0)‖2a, (32)

where c = k
ρ

.

lim
N→∞

N∑
k=0

‖x(k)‖2 ≤ cψ(0)‖2a. (33)

Theorem 3.2. Given positive integers τ , m ,and d, the system in (7) is stochastically stable if there exist matrices Pi > 0,

Q1i > 0, Q2i > 0, Ri > 0, S1i > 0, S2i > 0, R1i > 0, R2i > 0, Mi, Ni, Xi, Yi, Zi, G, Hi, (iεS), and a scalarε > 0, such

that for any o, s, t, l, i, jεS, the following inequalities hold:

Ψ(k) =



Π11 Π12 XT
3 + Y1 Π14 Π15 Π16 Π17 Π18

∗ Π22 −XT
3 + Y2 −XT

4 Π25 Π26 Π27 Π28

∗ ∗ 2Y3 Y T4 Y T5 − Z3 Y T6 − Y3 + Z3 Π37 Π38

∗ ∗ ∗ Π44 Π45 Π46 Π47 Π48

∗ ∗ ∗ ∗ Π55 Π56 Π57 Π58

∗ ∗ ∗ ∗ ∗ Π66 Π67 Π68

∗ ∗ ∗ ∗ ∗ ∗ Π77 Π78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88



(34)

and the fuzzy controller is given as u(k)=K(k)x(k) = H(k)G−1x(k) with K(k) =
r∑
i=1

hiKi, H(k) =
r∑
i=1

hiHi.
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Proof. To stabilize the closed-loop system (7), we just need to replace Ā(k) and Ād(k) in (8)by Â(k) and Âd(k). we have

the following expressions:

Â(k) = Ā(k) + B̄1(k)K(k) (35)

Ê(k) = Ē(k) + B̄2(k)K(k) (36)

Accordingly, inequality (8) will be replaced by

Â(k) = Ā(k) + B̄1(k)K(k) =

r∑
i=1

r∑
j=1

hihj(Ai +B1K)

Ê(k) = Ē(k) + B̄2(k)K(k) =

r∑
i=1

r∑
j=1

hihj(Ei +B2K)



Π11 Π12 XT
3 + Y1 Π14 Π15 Π16 Π17 Π18

∗ Π22 −XT
3 + Y2 −XT

4 Π25 Π26 Π27 Π28

∗ ∗ 2Y3 Y T4 Y T5 − Z3 Y T6 − Y3 + Z3 Π37 Π38

∗ ∗ ∗ Π44 Π45 Π46 Π47 Π48

∗ ∗ ∗ ∗ Π55 Π56 Π57 Π58

∗ ∗ ∗ ∗ ∗ Π66 Π67 Π68

∗ ∗ ∗ ∗ ∗ ∗ Π77 Π78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88



< 0 (37)

Then it follows from the analysis of Theorems 3.1 and 3.2 that the closed-loop system in (7) is stochastically stable. The

proof is completed.

4. Numerical Examples

Consider the following discrete-time neural networks T-S fuzzy stochastic system with time varying delay:

x(k + 1) = Aix(k) +Adif(x(k − d(k))) +B1iu(k) + [Eix(k) + Edix(k − d(k)) +B2iu(k)]w(k) (38)

with the following parameters:

A =

 −0.1 0

0.01 −0.3

 , Ad =

 0.1 0

0 −0.2

 , E =

 0.1 0

0 0.1

 , Ed =

 0.3 0

0 0.1

 ,

B1 =

 0.1 0

0 0.1

 , B2 =

 −0.1 0

0.01 −0.3

 , m=3, d1 = 2, d2 = 5.

The purpose is the design of a state feedback controller such that the resulting closed-loop system is globally robustly stable

with disturbance attenuation level for estimation of the deviation of the perturbed trajectory from the equilibrium point.

The feasible solutions for LMI (38) can be found as follows
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P =

 0.7531 −0.0004

−0.0004 0.7457

 , Q1 =

 −0.8030 0.0029

0.0029 0.7457

, Q2 =

 −0.0978 0.0013

0.0013 −0.0786

,

R =

 2.525 −0.0344

−0.0344 2.0448

, R1 =

 0.0191 0.0005

0.0005 −0.1972

, R2 =

 0.7208 0.0004

0.0004 0.5881

, X1 =

 −0.0301 0.0013

0.0013 −0.0246

,

Y1 =

 −0.8040 −0.0004

−0.0004 −0.1389

, Z1 =

 −0.0073 0.0004

0.0004 −0.0025

, X2 =

 0.3743 0.0011

0.0011 0.3295

, Y2 =

 −0.6769 −0.0023

−0.0023 −0.0877

,

Z2 =

 0.0819 0.0002

0.0002 0.0077

, X3 =

 −0.5533 0.0012

0.0012 −0.0878

, Y3 =

 −2.4886 0.0000

0.0000 −0.6741

, Z3 =

 −0.3176 0.0004

0.0004 −0.3615

.

5. Conclusion

The delay-dependent stability analysis problem for discrete-time T-S fuzzy systems with state delay have been studied by

using the fuzzy LKF approach. First, the delay-dependent stability condition is presented in terms of LMIs for closed-loop

fuzzy systems. Then, the LMI-based delay-dependent stabilization conditions is given for the state feedback and observer-

based control cases, the addressed neural networks have been established in terms of linear matrix inequalities, which can

be checked numerically using the effective LMIs. The usefulness of our result is illustrated by a numerical example.
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