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1. Introduction and preliminaries

In 2007, Huang and Zhang [2] introduced the concept of cone metric spaces and fixed point theorems of contraction mappings;

Any mapping T of a complete cone metric space X into itself that satisfies, for some 0 ≤ k < 1, the inequality d(Tx, Ty) ≤

kd(x, y), ∀ x, y ∈ X has a unique fixed point. In 2011, Smriti Mehta et. al [12] introduce the concept of random cone metric

space and proved an existence of random fixed point under weak contraction condition in the setting of random cone metric

space. In this paper, we discuss about self maps for altering distance functions and ultra altering distance functions of some

common fixed point theorems for contractive type conditions in random cone metric space via cone C-class function.

Definition 1.1 ([12]). Let (E, τ) be a topological vector space. A subset P of E is called a cone if and only if:

(1). P is closed, non-empty and P 6= {0}

(2). ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b

(3). If x ∈ P or −x ∈ P implies x = 0

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y−x ∈ P . We will write x < y

to indicate that x ≤ y but x 6= y, while x� y will stand for y − x ∈ intP , where intP denotes the interior of P .

∗ E-mail: dharan raj28@yahoo.co.in
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Example 1.2. Let K > 1 be given. Consider the real vector space with E =
{
ax+ b : a, b ∈ R;x ∈ [1− 1

k
, 1]

}
with supremum

norm and the cone P = {ax+ b : a ≥ 0, b ≤ 0} in E. The cone P is regular and so normal.

Definition 1.3. Let X be a non-empty set. Suppose the mapping d : X ×X → E satisfies

(b1) d(x, y) = 0 if and only if x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, z) ≤ d(x, y) + d(y, z).

Then d is called cone metric [2] or K-Metric [17] on X and (X, d) is called a cone metric space [2] (CMS).

Example 1.4. Let E = R2

P = {(x, y) : x, y ≥ 0}

X = R and d : X × X → E such that d(x, y) = (|x, y|, α|x, y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric

space.

Definition 1.5. Let (X, d) be a CMS, x ∈ X and {xn}n≥0 be a sequence in X. Then {xn}n≥0 converges to x whenever

for every c ∈ E with 0 � E, there is a natural number N ∈ N such that d(xn, x) � c for all n ≥ N . It is denoted by

lim
n→∞

xn = x or xn → x

Definition 1.6. Let (X, d) be a CMS, x ∈ X and {xn}n≥0 be a sequence in X. {xn}n≥0 is a Cauchy sequence whenever

for every c ∈ E with 0� c, there is a natural number N ∈ N , such that d(xn, xm)� c for all n,m ≥ N

Definition 1.7. Let (X, d) be a CMS, x ∈ X and {xn}n≥0 be a sequence in X. (X, d) is a complete cone normed space if

every Cauchy sequence is convergent. Complete cone normed spaces will be called complete cone metric spaces.

Definition 1.8 (Measurable Function). Let (Ω,Σ) be a measurable space with Σ-a sigma algebra of subsets of and M be a

nonempty subset of a metric space X = (X, d). Let 2M be the family of nonempty subsets of M and C(M) the family of all

nonempty closed subsets of M. A mapping G : Ω → 2M is called measurable if for each open subset U of M, G−1(U) ∈ Σ,

where G−1(U) = {ω ∈ Ω : G(ω) ∩ U 6= ∅}.

Definition 1.9 (Measurable Selector). A mapping ξ : Ω → M is called a measurable selector of a measurable mapping

G : Ω→ 2M if ξ is measurable and ξ(ω) ∈ G(ω) for each ω ∈ Ω.

Definition 1.10 (Random Operator). The mapping T : Ω×M → X is said to be a random operator if and only if for each

fixed x ∈M , the mapping T (., x) : Ω→ X is measurable.

Definition 1.11 (Continuous Random Operator). A random operator T : Ω ×M → X is said to be continuous random

operator if for each fixed x ∈M, and ω ∈ Ω, the mapping T (ω, .) : X → X is continuous.

Definition 1.12 (Random fixed point). A measurable mapping ξ : Ω → M is a random fixed point of a random operator

T : Ω×M → X if and only if T (ω, ξ(ω)) = ξ(ω) for each ω ∈ Ω.

Definition 1.13 ([12]). Let M be a nonempty set and the mapping d : Ω×M → P , where P is a cone, ω ∈ Ω be a selector,

satisfy the following conditions:

(1). d(x(ω), y(ω)) ≥ 0 and d(x(ω), y(ω)) = 0 if and only if x(ω) = y(ω) for all x(ω), y(ω) ∈ Ω×M,

(2). d(x(ω), y(ω)) = d(y(ω), x(ω)) for all x, y ∈M,ω ∈ Ω and x(ω), y(ω) ∈ Ω×M,
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(3). d(x(ω), y(ω)) ≤ d(x(ω), z(ω)) + d(z(ω), y(ω)) for all x, y ∈M and ω ∈ Ω be a selector,

(4). for any x, y ∈ X,ω ∈ Ω, d(x(ω), y(ω)) is non-increasing and left continuous.

Then d is called random cone metric on M and (M,d) is called a random cone metric space (RCMS).

Example 1.14. Let M = R and P = {x ∈M : x ≥ 0}, also Ω = [0, 1] and Σ be the sigma algebra of Lebegsue’s measurable

subset of [0, 1]. Let X = [0,∞) and define a mapping d : (Ω ×X) × (Ω ×X) → P by d(x(ω), y(ω)) = |x(ω) − y(ω)|. Then

(X, d) is a random cone metric space.

Definition 1.15. A function ψ : P → P is called an altering distance function if the following properties are satisfied:

(1). ψ is non-decreasing and continuous,

(2). ψ(t) = 0 if and only if t = 0.

Definition 1.16. An ultra altering distance function is a continuous, nondecreasing mapping ϕ : P → P such that ϕ(t) > 0,

t > 0 and ϕ(0) ≥ 0.

We denote this set with Φu.

Definition 1.17 ([9]). A mapping F : P 2 → P is called cone C-class function if it is continuous and satisfies following

axioms:

(1). F (s, t) ≤ s;

(2). F (s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ P .

We denote cone C-class functions as C.

Example 1.18 ([9]). The following functions F : P 2 → P are elements of C, for all s, t ∈ [0,∞):

(1). F (s, t) = s− t,

(2). F (s, t) = ks, where 0 < k < 1,

(3). F (s, t) = sβ(s), where β : [0,∞)→ [0, 1),

(4). F (s, t) = Ψ(s), where Ψ : P → P , Ψ(0) = 0, Ψ(s) > 0 for all s ∈ P with s 6= 0 and Ψ(S) ≤ s for all s ∈ P .,

(5). F (s, t) = s− ϕ(s), where ϕ : [0,∞)→ [0,∞) is a continuous function such that ϕ(t) = 0⇔ t = 0;

(6). F (s, t) = s − h(s, t), where h : [0,∞) × [0,∞) → [0,∞) is a continuous function such that h(s, t) = 0 ⇔ t = 0 for all

t, s > 0.

(7). F (s, t) = ϕ(s), F (s, t) = s ⇒ s = 0, here ϕ : [0,∞) → [0,∞) is a upper semi continuous function such that ϕ(0) = 0

and ϕ(t) < t for t > 0.

Lemma 1.19. Let ψ and ϕ are altering distance and ultra altering distance functions respectively , F ∈ C and {sn} a

decreasing sequence in P such that ψ(sn+1) ≤ F (ψ(sn), ϕ(sn)) for all n ≥ 1. Then lim
n→∞

sn = 0.
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Theorem 1.20 ([16]). Let (X, d) be a complete random cone metric space. with respect to a cone P and let M be a

nonempty separable closed subset of X. Let S and T be two continuous random operators defined on M such that for ω ∈

Ω, S(ω., ), T (ω., ) : Ω×M →M satisfying the condition:

d(S(x(ω)), T (y(ω))) ≤ a(ω)[d(x(ω), Sx(ω)) + d(y(ω), T y(ω))] + b(ω)d(x(ω), y(ω))

+ c(ω) max{d(x(ω), T (y(ω))), d(y(ω), S(x(ω)))}
(1)

for all x, y ∈ M , 2a(ω) + b(ω) + 2c(ω) < 1, where a(ω), b(ω), c(ω) > 0 and ω ∈ Ω. Then S and T have a unique common

random fixed point in X.

2. Main Results

Theorem 2.1. Let (X, d) be a complete random cone metric space. with respect to a cone P and let M be a nonempty

separable closed subset of X. Let ψ and ϕ be altering distance and ultra altering distance functions respectively, ψ : P → P

is an altering distance function, ϕ ∈ Φu and F ∈ C, Let S and T be two continuous random operators defined on M such

that for ω ∈ Ω, S(ω., ), T (ω., ) : Ω×M →M satisfying the condition:

ψ(d(S(x(ω)), T (y(ω)))) ≤ F (ψ(a(ω)[d(x(ω), Sx(ω)) + d(y(ω), T y(ω))] + b(ω)d(x(ω), y(ω))

+ c(ω) max{d(x(ω), T (y(ω))), d(y(ω), S(x(ω)))}),

ϕ(a(ω)[d(x(ω), Sx(ω)) + d(y(ω), T y(ω))] + b(ω)d(x(ω), y(ω))

+ c(ω) max{d(x(ω), T (y(ω))), d(y(ω), S(x(ω)))}, ))

(2)

for all x, y ∈ M , 2a(ω) + b(ω) + 2c(ω) < 1, where a(ω), b(ω), c(ω) > 0 and ω ∈ Ω. Then S and T have a unique common

random fixed point in X.

Proof. For each x0(ω) ∈ Ω × M and n = 0, 1, 2, · · · , we choose x2(ω), x2(ω) ∈ Ω × M such that x1(ω) = S(x0(ω))

and x2(ω) = T (x1(ω)). In general we de ne sequence of elements of M such that x2n+1(ω) = S(x2n(ω)) and x2n+2(ω) =

T (x2n+1(ω)). Then from (2), we have

ψ(d(x2n+1(ω), x2n(ω))) = ψ(d(S(x2n(ω)), T (x2n−1(ω))))

≤ F (ψ(a(ω)[d(x2n(ω), S(x2n(ω))) + d(x2n−1(ω), T (x2n−1(ω))] + b(ω)d(x2n(ω), x2n−1(ω))

+ c(ω) max{d(x2n(ω), T (x2n−1(ω))), d(x2n−1(ω), S(x2n(ω)))}),

ϕ(a(ω)[d(x2n(ω), S(x2n(ω))) + d(x2n−1(ω), T (x2n−1(ω))] + b(ω)d(x2n(ω), x2n−1(ω))

+ c(ω) max{d(x2n(ω), T (x2n−1(ω))), d(x2n−1(ω), S(x2n(ω)))})

= F (ψ(a(ω)[d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))] + b(ω)d(x2n(ω), x2n−1(ω))

+ c(ω) max{d(x2n(ω), x2n(ω)), d(x2n−1(ω), x2n+1(ω))}),

ϕ(a(ω)[d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))] + b(ω)d(x2n(ω), x2n−1(ω))

+ c(ω) max{d(x2n(ω), x2n(ω)), d(x2n−1(ω), x2n+1(ω))})

= F (ψ(a(ω)[d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))] + b(ω)d(x2n(ω), x2n−1(ω))

+ c(ω) max{0, d(x2n−1(ω), x2n+1(ω))}),

ϕ(a(ω)[d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))] + b(ω)d(x2n(ω), x2n−1(ω))

+ c(ω) max{0, d(x2n−1(ω), x2n+1(ω))})

(3)
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Since for non-negative real numbers a and b, we have

max{a, b} ≤ a+ b. (4)

Using (4) in (3), we have

ψ(d(x2n+1(ω), x2n(ω))) ≤ F (ψ(a(ω)[d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))]

+ b(ω)d(x2n(ω), x2n−1(ω)) + c(ω)d(x2n−1(ω), x2n+1(ω))),

ϕ(a(ω)[d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))]

+ b(ω)d(x2n(ω), x2n−1(ω)) + c(ω)d(x2n−1(ω), x2n+1(ω))))

≤ F (ψ(a(ω)[d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))] + b(ω)d(x2n(ω), x2n−1(ω))

+ c(ω)[d(x2n−1(ω), x2n+1(ω)) + d(x2n(ω), x2n+1(ω))]),

ϕ(a(ω)[d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))] + b(ω)d(x2n(ω), x2n−1(ω))

+ c(ω)[d(x2n−1(ω), x2n+1(ω)) + d(x2n(ω), x2n+1(ω))]))

= ψ((a(ω) + b(ω) + c(ω))d(x2n(ω), x2n−1(ω)) + (a(ω) + c(ω))d(x2n+1(ω), x2n(ω))).

(5)

The above inequality (5) gives,

d(x2n+1(ω), x2n(ω)) ≤
(
a(ω) + b(ω) + (ω)

1− a(ω)− c(ω)

)
d(x2n+1(ω), x2n(ω))

= k(ω)d(x2n+1(ω), x2n(ω)),

(6)

Where

k(ω) =

(
a(ω) + b(ω) + (ω)

1− a(ω)− c(ω)

)
.

Where By the assumption of the theorem 2a(ω) + b(ω) + 2c(ω) < 1 ⇒ a(ω) + b(ω) + c(ω) < 1 − a(ω) − c(ω) ⇒ k(ω) =(
a(ω)+b(ω)+(ω)
1−a(ω)−c(ω)

)
< 1. Similarly, we have

d(x2n(ω), x2n−1(ω)) ≤ k(ω)d(x2n−1(ω), x2n−2(ω)).

Hence

d(x2n+1(ω), x2n(ω)) ≤ k(ω)2d(x2n−1(ω), x2n−2(ω)).

On continuing in this process, we get

d(x2n+1(ω), x2n(ω)) ≤ k(ω)2nd(x1(ω), x0(ω)).

Also for n > m, we have

d(xn(ω), xm(ω)) ≤ d(xn(ω), xn−1(ω)) + d(xn−1(ω), xn−2(ω)) + +d(xm+1(ω), xm(ω))

≤ (k(ω)n−1 + k(ω)n−2 + · · ·+ k(ω)m)d(x1(ω), x0(ω))

≤ (
k(ω)m

1− k(ω)
)d(x1(ω), x0(ω)).

Let 0 � ε be given. Choose a natural number N such that ( k(ω)
m

1−k(ω) )d(x1(ω), x0(ω)) � ε for every m ≥ N. Thus

d(xn(ω), xm(ω)) ≤ ( k(ω)
m

1−k(ω) )d(x1(ω), x0(ω)) � ε, for every n > m ≥ N. This shows that the sequence xn(ω) is a Cauchy
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sequence in Ω ×M . Since (X, d) is complete, there exists z(ω) ∈ Ω × X such that xn(ω) → z(ω) as n → ∞. Choose a

natural number N1 such that

d(z(ω), x2n+2(ω))� ε(1− a(ω)− c(ω))

2(1 + b(ω) + 2c(ω))
. (7)

and

d(x2n+1(ω), x2n+2(ω))� ε(1− a(ω)− c(ω))

2(a(ω) + b(ω) + c(ω))
, (8)

for every n ≥ N1. Hence for n ≥ N1, we have

ψ(d(z(ω), S(z(ω)))) ≤ ψ(d(z(ω), x2n+2(ω)) + d(x2n+2(ω), S(z(ω)))

= ψ(d(z(ω), x2n+2(ω))) + ψ(d(S(z(ω), T (x2n+1(ω)))

≤ ψ(d(z(ω), x2n+2(ω))) + F (ψ(a(ω)[d(z(ω), S(z(ω)))

+ d(x2n+1(ω), T (x2n+1(ω))] + b(ω)d(z(ω), x2n+1(ω))

+ c(ω) max{d(z(ω), T (x2n+1(ω))) + d(x2n+1(ω), S(z(ω)))}),

ϕ(a(ω)[d(z(ω), S(z(ω))) + d(x2n+1(ω), T (x2n+1(ω))] + b(ω)d(z(ω), x2n+1(ω))

+ c(ω) max{d(z(ω), T (x2n+1(ω))), d(x2n+1(ω), S(z(ω)))}))

= ψ(d(z(ω), x2n+2(ω))) + ψ(a(ω)[d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))]

+ b(ω)d(z(ω), x2n+1(ω)) + c(ω) max{d(z(ω), x2n+2(ω)), d(x2n+1(ω), S(z(ω)))}).

Using (4) in the above inequality, we get

ψ(d(z(ω), S(z(ω)))) ≤ ψ(d(z(ω), x2n+2(ω)))

+ F (ψ(+a(ω)[d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))]

+ b(ω)d(z(ω), x2n+1(ω)) + c(ω)[d(z(ω), x2n+2(ω)) + d(x2n+1(ω), S(z(ω)))]),

ϕ(+a(ω)[d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))]

+ b(ω)d(z(ω), x2n+1(ω)) + c(ω)[d(z(ω), x2n+2(ω)) + d(x2n+1(ω), S(z(ω)))])

≤ ψ(d(z(ω), x2n+2(ω)))

(9)

+ F (ψ(+a(ω)[d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))]

+ b(ω)[d(z(ω), x2n+1(ω)) + d(x2n+2(ω), x2n+1(ω))]

+ c(ω)[d(z(ω), x2n+2(ω)) + d(x2n+1(ω), x2n+2(ω))

+ d(x2n+2(ω), z(ω)) + d(z(ω), S(z(ω)))]),

ϕ(+a(ω)[d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))]

+ b(ω)[d(z(ω), x2n+1(ω)) + d(x2n+2(ω), x2n+1(ω))]

+ c(ω)[d(z(ω), x2n+2(ω)) + d(x2n+1(ω), x2n+2(ω))

+ d(x2n+2(ω), z(ω)) + d(z(ω), S(z(ω)))]))

= ψ((1 + b(ω) + 2c(ω))d(z(ω), x2n+2(ω))

+ (a(ω) + b(ω) + c(ω))d(x2n+1(ω), x2n+2(ω)) + (a(ω) + c(ω))d(z(ω), S(z(ω)))).

(10)
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The above inequality gives

d(z(ω), S(z(ω))) ≤
(

1 + b(ω) + 2c(ω)

1− a(ω)− c(ω)

)
d(z(ω), x2n+2(ω)) +

(
a(ω) + b(ω) + c(ω)

1− a(ω)− c(ω)

)
d(x2n+1(ω), x2n+2(ω)). (11)

Using (7) and (8) in (11), we get d(z(ω), S(z(ω))) � ε
2

+ ε
2

= ε. Thus d(z(ω), S(z(ω))) � ε
m
∀ m ≥ 1. So ε

m
−

d(z(ω), S(z(ω))) ∈ P for all m ≥ 1. Since ε
m
→ 0 as m → ∞ and P is closed, we obtain −d(z(ω), S(z(ω))) ∈ P . But

d(z(ω), S(z(ω))) ∈ P . Therefore by Definition 2.1 (c3), d(z(ω), S(z(ω)) = 0 and so S(z(ω)) = z(ω). In an exactly the similar

way we can prove that for all ω ∈ Ω, T (z(ω)) = z(ω). Hence S(z(ω)) = T (z(ω)) = z(ω). This shows that z(ω) is a common

random fixed point of S and T .

Uniqueness: Let v(ω) be another random fixed point common to S and T, that is, for ω ∈ Ω, S(v(ω)) = T (v(ω)) = v(ω)

such that z(ω) 6= v(ω). Then for ω ∈ Ω, we have

ψ(d(z(ω), v(ω))) = ψ(d(S(z(ω)), T (v(ω))))

≤ F (ψ(a(ω)[d(z(ω), S(z(ω))) + d(v(ω), T (v(ω)))] + b(ω)d(z(ω), v(ω))

+ c(ω) max{d(z(ω), T (v(ω))), d(v(ω), S(z(ω)))}),

ϕ(a(ω)[d(z(ω), S(z(ω))) + d(v(ω), T (v(ω)))] + b(ω)d(z(ω), v(ω))

+ c(ω) max{d(z(ω), T (v(ω))), d(v(ω), S(z(ω)))})

≤ F (ψ((b(ω) + c(ω))d(z(ω), v(ω))), ϕ((b(ω) + c(ω))d(z(ω), v(ω)))

< ψ(d(z(ω), v(ω))), since 0 < b(ω) + c(ω) < 1,

a contradiction. Hence z(ω) = v(ω) and so z(ω) is a unique common random fixed point of S and T. This completes the

proof.

Corollary 2.2. Let (X, d) be a complete random cone metric space. with respect to a cone P and let M be a nonempty

separable closed subset of X. Let ψ and ϕ be altering distance and ultra altering distance functions respectively, ψ : P → P

is an altering distance function, ϕ ∈ Φu and F ∈ C, Let T be a continuous random operator defined on M such that for

ω ∈ Ω, T (ω, .) : Ω×M →M satisfying the condition:

ψ(d(T (x(ω)), T (y(ω)))) ≤ F (ψ(a(ω)[d(x(ω), Tx(ω)) + d(y(ω), T y(ω))]

+ b(ω)d(x(ω), y(ω)) + c(ω) max{d(x(ω), T (y(ω))),

d(y(ω), T (x(ω)))}), ϕ(a(ω)[d(x(ω), Tx(ω)) + d(y(ω), T y(ω))]

+ b(ω)d(x(ω), y(ω)) + c(ω) max{d(x(ω), T (y(ω))), d(y(ω), T (x(ω)))}))

for all x, y ∈ M , 2a(ω) + b(ω) + 2c(ω) < 1, where a(ω), b(ω), c(ω) > 0 and ω ∈ Ω. Then S and T have a unique common

random fixed point in X.

Proof. The proof of the corollary immediately follows by putting S = T in Theorem (2.1). This completes the proof.

If we take S = T and a(ω) = c(ω) = 0 in Theorem (2.1), then we obtain the following result as corollary.

Corollary 2.3. Let (X, d) be a complete random cone metric space. with respect to a cone P and let M be a nonempty

separable closed subset of X. Let ψ and ϕ be altering distance and ultra altering distance functions respectively, ψ : P → P
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is an altering distance function, ϕ ∈ Φu and F ∈ C, Let T be a random operator defined on M such that for ω ∈ Ω, T (ω, .) :

Ω×M →M satisfying the condition:

ψ(d(T (x(ω)), T (y(ω)))) ≤ F (ψ(b(ω)d(x(ω), y(ω))), ϕ(b(ω)d(x(ω), y(ω)))),

for all x, y ∈ M, b(ω) ∈ (0, 1) and ω ∈ Ω. Then T has a unique random fixed point in X. If we take S = T and

b(ω) = c(ω) = 0 in Theorem 2.1, then we obtain the following result as corollary.

Corollary 2.4. Let (X, d) be a complete cone random met-ric space with respect to a cone P and let M be a nonempty

separable closed subset of X. Let ψ and ϕ be altering distance and ultra altering distance functions respectively, ψ : P → P

is an altering distance function, ϕ ∈ Φu and F ∈ C. Let T be a continuous random operator defined on M such that for

ω ∈ Ω, T (ω, .) : Ω×M →M satisfying the condition:

ψ(d(T (x(ω)), T (y(ω)))) ≤ F (ψ(a(ω)[d(x(ω), T (x(ω))) + d(y(ω), T (y(ω)))]),

ϕ(a(ω)[d(x(ω), T (x(ω))) + d(y(ω), T (y(ω)))]))

(12)

for all x, y ∈M,a(ω) ∈ (0, 1
2
) and ω ∈ Ω. Then T has a unique random fixed point in X. If we take S = T and a(ω) = b(ω) = 0

in Theorem (2.1), then we obtain the following result as corollary.

Corollary 2.5. Let (X, d) be a complete random cone metric space. with respect to a cone P and let M be a nonempty

separable closed subset of X. Let ψ and ϕ be altering distance and ultra altering distance functions respectively, ψ : P → P

is an altering distance function, ϕ ∈ Φu and F ∈ C. Let T be a continuous random operator defined on M such that for

ω ∈ Ω, T (ω, .) : Ω×M →M satisfying the condition:

ψ(d(T (x(ω)), T (y(ω)))) ≤ F (ψ(c(ω) max{d(x(ω), T (y(ω))), d(y(ω), T (x(ω)))}),

ϕ(c(ω) max{d(x(ω), T (y(ω))), d(y(ω), T (x(ω)))}))
(13)

for all x, y ∈M, c(ω) ∈ (0, 1
2
) and ω ∈ Ω. Then T has a unique random fixed point in X.

Theorem 2.6. Let (X, d) be a complete random cone metric space. with respect to a cone P and let M be a nonempty

separable closed subset of X. Let ψ and ϕ be altering distance and ultra altering distance functions respectively, ψ : P → P

is an altering distance function, ϕ ∈ Φu and F ∈ C. Let S and T be two continuous random operators defined on M such

that for ω ∈ Ω, T (ω, .) : Ω×M →M satisfying the condition:

ψ(d(S(x(ω)), T (y(ω)))) ≤ F (ψ(a(ω)d(x(ω), y(ω)) + b(ω) max{d(x(ω), S(x(ω))), d(y(ω), T (y(ω)))}

+ c(ω) max{d(x(ω), T (y(ω))), d(y(ω), S(x(ω)))}), ϕ(a(ω)d(x(ω), y(ω))

+ b(ω) max{d(x(ω), S(x(ω))), d(y(ω), T (y(ω)))}

+ c(ω) max{d(x(ω), T (y(ω))), d(y(ω), S(x(ω)))}))

(14)

for all x, y ∈ M,a(ω) + b(ω) + 2c(ω) < 1, where a(ω), b(ω), c(ω) > 0 and ω ∈ Ω. Then S and T have a unique common

random fixed point in X.

Proof. For each x0(ω) ∈ Ω×M and n = 0; 1, 2, ?, we choose x2(ω), x2(ω) ∈ Ω×M such that x1(ω) = S(x0(ω)) and x2(ω) =

T (x1(ω)). In general we de ne sequence of elements of M such that x2n+1(ω) = S(x2n(ω)) and x2n+2(ω) = T (x2n+1(ω)).
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Then from (14), we have

ψ((S(x(ω)), T (y(ω)))) = ψ((S(z(ω)), T (x2n−1(ω))))

≤ F (ψ(a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) max{d(x2n(ω), S(x2n(ω))), d(x2n−1(ω), T (x2n−1(ω)))}

+ c(ω) max{d(x2n(ω), T (x2n−1(ω))), d(x2n−1(ω), S(x2n(ω)))}), ϕ(a(ω)d(x2n(ω), x2n−1(ω))

+ b(ω) max{d(x2n(ω), S(x2n(ω))), d(x2n−1(ω), T (x2n−1(ω)))}

+ c(ω) max{d(x2n(ω), T (x2n−1(ω))), d(x2n−1(ω), S(x2n(ω)))})

≤ F (ψ(a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) max{d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω))}

+ c(ω) max{d(x2n(ω), x2n(ω)), d(x2n−1(ω), , x2n+1(ω))}

≤ a(ω)d(x2n(ω), x2n−1(ω))), ϕ(a(ω)d(x2n(ω), x2n−1(ω))

+ b(ω) max{d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω))}

+ c(ω) max{d(x2n(ω), x2n(ω)), d(x2n−1(ω), , x2n+1(ω))}

≤ F (ψ(a(ω)d(x2n(ω), x2n−1(ω))) + b(ω) max{d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω))},

+ c(ω) max{0, d(x2n−1(ω), x2n+1(ω))}), ϕ(a(ω)d(x2n(ω), x2n−1(ω)))

+ b(ω) max{d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω))},

+ c(ω) max{0, d(x2n−1(ω), x2n+1(ω))})

(15)

Since for non-negative real numbers a and b, we have

max{a, b} ≤ a+ b. (16)

and taking

max{d(x2n(ω), d(x2n+1(ω)), d(x2n−1(ω), d(x2n(ω))} = d(x2n−1(ω), d(x2n(ω)) (17)

Using (16 (17) in (15), we have

d(x2n+1(ω), x2n(ω)) ≤ a(ω)d(x2n(ω), x2n−1(ω)) + b(ω)d(x2n−1(ω), x2n(ω)) + c(ω)d(x2n−1(ω), x2n+1(ω))

≤ a(ω)d(x2n(ω), x2n−1(ω)) + b(ω)d(x2n−1(ω), x2n(ω))

+ c(ω)[d(x2n−1(ω), x2n(ω)) + d(x2n(ω), x2n+1(ω))]

(18)

The above inequality (18) gives,

d(x2n+1(ω), x2n(ω)) ≤ (
a(ω) + b(ω) + (ω)

1− c(ω)
)d(x2n+1(ω), x2n(ω))

= h(ω)d(x2n+1(ω), x2n(ω)),

(19)

Where

h(ω) = (
a(ω) + b(ω) + c(ω)

1− c(ω)
).

Where By the assumption of the theorem

a(ω) + b(ω) + 2c(ω) < 1⇒ a(ω) + b(ω) + c(ω) < 1− c(ω)⇒ h(ω) =

(
a(ω) + b(ω) + (ω)

1− c(ω)

)
< 1.
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If we take

max{d(x2n(ω), x2n+1(ω)), d(x2n−1(ω)), x2n(ω)} = d(x2n(ω), x2n+1(ω)). (20)

in equation (15), then we also get the same result as (19). The rest of the proof is same as that of Theorem (2.1) . This

completes the proof.

Remark 2.7. If we take S = T and b(ω) = c(ω) = 0 and a(ω) = b(ω) in Theorem (2),then we obtain Corollary (2.3) of

this paper.

Corollary 2.8. Let (X, d) be a complete random cone metric space. with respect to a cone P and let M be a nonempty

separable closed subset of X. Let ψ and ϕ be altering distance and ultra altering distance functions respectively, ψ : P → P

is an altering distance function, ϕ ∈ Φu and F ∈ C. Let T be a continuous random operator defined on M such that for

ω ∈ Ω, T (ω, .) : Ω×M →M satisfying the condition:

ψ(d(T (x(ω)), T (y(ω)))) ≤ F (ψ(a(ω)d(x(ω), y(ω)) + b(ω) max{d(x(ω), Tx(ω)) + d(y(ω), T y(ω))}

+ c(ω) max{d(x(ω), T (y(ω))), d(y(ω), T (x(ω)))}), ϕ(a(ω)d(x(ω), y(ω))

+ b(ω) max{d(x(ω), Tx(ω)) + d(y(ω), T y(ω))}

+ c(ω) max{d(x(ω), T (y(ω))), d(y(ω), T (x(ω)))}))

(21)

for all x, y ∈ M , a(ω) + b(ω) + 2c(ω) < 1, where a(ω), b(ω), c(ω) > 0 and ω ∈ Ω. Then S and T have a unique common

random fixed point in X..

Proof. The proof of the corollary immediately follows by putting S = T in Theorem (2). This completes the proof

Example 2.9. Let Ω = [0, 1] ans Σ be the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Take X = R with

d(x, y) = |x− y| for x, y ∈ R. Define random mapping T from Ω×X to X as T (ω, x) = 2ω − x. Let F (s, t) = s− t for all

s, t ∈ [0,∞). Also define φ, ψ : [0,∞) → [0,∞) by ψ(t) = 2t and ϕ(t) = t. Then a measurable mapping ζ : Ω → X defined

as ζ(ω) = ω for all ω ∈ Ω,

F (ψ(d(T (x(ω)), T (y(ω)))), ϕ(d(T (x(ω)), T (y(ω))))) = ψ(d(T (x(ω)), T (y(ω))))− ϕ(d(T (x(ω)), T (y(ω))))

= ψ(ζ(ω))− ϕ(ζ(ω))

= 2ω − ω

= ω

(22)

serve as a unique random fixed point of T.
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