International Journal of Mathematics And its Applications

Direct Product of General Doubt Intuitionistic Fuzzy Ideals of $B C K / B C I$-algebras with Respect to Triangular Binorm

Research Article

A. K. Dutta ${ }^{1}$, D. K. Basnet ${ }^{2}$, K. D. Choudhury ${ }^{3}$ and S. R. Barbhuiya ${ }^{4 *}$
1 Department of Mathematics, D.H.S.K. College, Dibrugarh, Assam, India
2 Department of Mathematical Sciences, Tezpur University, Tezpur, Assam, India.
3 Department of Mathematics, Assam University, Silchar, Assam, India.
4 Department of Mathematics, Srikishan Sarda College, Hailakandi, Assam, India.

Abstract

In this paper, we introduced the concept of $\left(\epsilon, \in \vee q_{k}\right)$ - doubt intuitionistic fuzzy subalgebra and $\left(\epsilon, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy ideals in BCK-algebra with respect to triangular binorm by using the combined notion of not quasi coincidence (\bar{q}) of a fuzzy point to a fuzzy set and the notion of triangular binorm. We define direct product of $\left(\in, \in \vee q_{k}\right)$ doubt intuitionistic fuzzy sets and direct product of $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebras/ideals of $B C K / B C I$ algebras and investigate some related properties.

MSC: 06F35, 03E72, 03G25. Keywords: $B C K$-algebra, Doubt fuzzy ideal, $\left(\in, \in \vee q_{k}\right)$-doubt fuzzy subalgebra, $\left(\in, \in \vee q_{k}\right)$-doubt fuzzy ideal, $\left(\in, \in \vee q_{k}\right)$ - doubt intuitionistic fuzzy subalgebra, $\left(\in, \in \vee q_{k}\right)$ - doubt intuitionistic fuzzy ideal, Direct product. (C) JS Publication.

1. Introduction

The name triangular norm, or simply t-norm originated from the study of generalized triangle inequalities for statistical metric spaces, hence the name triangular norm or simply t-norm. The name first appeared in a paper entitled statistical metrics [19] that was published on $27^{\text {th }}$ october in 1942. The real starting point of t-norms came in 1960, when Berthold Schweizer and Abe Sklar, (two students of Menger) published their paper, statistical metric spaces [25] After a very short time, Schweizer and Sklar [27] introduced several basic notions and properties. Namely, they introduced triangular conorms (briefly t-conorms) as a dual concept of t-norms. For a given t-norm T, its dual t-conorm S is defined by $S(a, b)=1-T(1-a, 1-b)$. They pointed out that the boundary condition is the only difference between the t-norm and t-conorm axioms. In recent years, a systematic study concerning the properties and related matters of t-norms have been made by Klement et al. $[15,16]$.

The concept of fuzzy sets was first proposed by Zadeh [32] in 1965. Rosenfeld [24] was the first who consider the case of a groupoid in terms of fuzzy sets. Since then these ideas have been applied to other algebraic structures such as group, semigroup, ring, field, topology, vector spaces etc. Imai and Iseki [12] introduced BCK-algebra as a generalization of notion

[^0]of the concept of set theoretic difference and propositional calculus and in the same year Iseki [14] introduced the notion of BCI-algebra which is a generalization of BCK-algebra. Xi Ougen [29] applied the concept of fuzzy set to BCK-algebra and discussed some properties. Since then B-algebras was introduced in [23] by Neggers and Kim and which is related to several classes of algebras such as $B C I / B C K$-algebras. Huang [11] fuzzified BCI-algebras in little different ways. Jun et al. [10, 31] renamed Huang's definition as doubt (anti) fuzzy ideals in $B C K / B C I$-algebras. Biswas [8] introduced the concept of anti fuzzy subgroup. The concept of doubt fuzzy BF-algebras was introduced by Saeid in [28] and the concept of doubt fuzzy ideal of BF-algebras was introduced by Barbhuiya [4].

The concept of fuzzy point introduced by Ming and Ming in [20] and also they introduced the idea of relation "belongs to" and "quasi coincident with" between fuzzy point and fuzzy set. Murali [21] proposed a definition of a fuzzy point belonging to fuzzy subset under natural equivalence on fuzzy subset. Bhakat and Das $[6,7]$ used the relation of "belongs to" and "quasi-coincident" between fuzzy point and fuzzy set to introduced the concept of $(\in, \in \vee q)$-fuzzy subgroup, $(\in, \in \vee q)$ fuzzy subring and $(\in \vee q)$-level subset. some properties of $(\epsilon, \in \vee q)$-fuzzy ideals of d-algebra was discussed by Barbhuiya and Choudhury [3]. In [5] Barbhuiya introduced $(\in, \in \vee q)$-intuitionistic fuzzy ideals of BCK/BCI-algebras. In fact, the $(\in, \in \vee q)$-fuzzy subgroup is an important generalization of Rosenfeld's fuzzy subgroup. Further in [18] Larimi generalized $(\in, \in \vee q)$-fuzzy ideals to $\left(\in, \in \vee q_{k}\right)$-fuzzy ideals. Reza Ameri et al [2] introduced the notion of $\left(\bar{\epsilon}, \overline{\in \wedge q_{k}}\right)$-fuzzy subalgebras in BCK/BCI-algebras. In [9] Dutta et al. combined the notion of not quasi coincidence \bar{q} of a fuzzy point to a fuzzy set and the notion doubt(anti) fuzzy ideals introduced the concept of generalized doubt fuzzy subalgebra and generalized doubt fuzzy ideal in BG-algebra. In this paper, we introduced the concept of $\left(\in, \in \vee q_{k}\right)$ - doubt intuitionistic fuzzy subalgebra and $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy ideals in BCK-algebra with respect to triangular binorm by using the combined notion of not quasi coincidence (\bar{q}) of a fuzzy point to a fuzzy set and the notion of triangular binorm. We define direct product of $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy sets and direct product of $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebras/ideals of $B C K / B C I$-algebras and investigate some related properties.

1.1. Preliminaries

Definition $1.1([29-31])$. An algebra $(X, *, 0)$ of type (2, 0) is called a BCK-algebra if it satisfies the following axioms:
(1). $((x * y) *(x * z)) *(z * y)=0$;
(2). $(x *(x * y)) * y=0$;
(3). $x * x=0$;
(4). $0 * x=0$;
(5). $x * y=0$ and $y * x=0 \Rightarrow x=y$ for all $x, y, z \in X$.

We can define a partial ordering " \leq " on X by $x \leq y$ iff $x * y=0$.

Definition 1.2 ([29-31]). A BCK-algebra X is said to be commutative if it satisfies the identity $x \wedge y=y \wedge x$ where $x \wedge y=y *(y * x) \forall x, y \in X$. In a commutative BCK-algebra, it is known that $x \wedge y$ is the greatest lower bound of x and y. In a BCK-algebra X, the following hold:
(1). $x * 0=x$;
(2). $(x * y) * z=(x * z) * y$;
(3). $x * y \leq x$;
(4). $(x * y) * z \leq(x * z) *(y * z)$;
(5). $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

A non-empty subset S of a $B G$-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A nonempty subset I of a BCK-algebra X is called an ideal of X if (i) $0 \in I$ and (ii) $x * y \in I$ and $y \in I \Rightarrow x \in I$ for all $x, y \in X$.

Definition 1.3 ($[6,20]$). A fuzzy set μ of the form

$$
\mu(y)= \begin{cases}t & \text { if } y=x, t \in(0,1] \\ 0 & \text { if } y \neq x\end{cases}
$$

is called a fuzzy point with support x and value t and it is denoted by x_{t} [6, 20]. Let μ be a fuzzy set in X and x_{t} be a fuzzy point then
(1). If $\mu(x) \geq t$ then we say x_{t} belongs to μ and write $x_{t} \in \mu$
(2). If $\mu(x)+t>1$ then we say x_{t} quasi-coincident with μ and write $x_{t} q \mu$
(3). If $x_{t} \in \vee q \mu \Leftrightarrow x_{t} \in \mu$ or $x_{t} q \mu$
(4). If $x_{t} \in \wedge q \mu \Leftrightarrow x_{t} \in \mu$ and $x_{t} q \mu$

The symbol $x_{t} \bar{\alpha} \mu$ means $x_{t} \alpha \mu$ does not hold and $\overline{\in \wedge q}$ means $\bar{\in} \vee \bar{q}$. For a fuzzy point x_{t}. and a fuzzy set μ in set X, Pu and Liu [20] gave meaning to the symbol $x_{t} \alpha \mu$ where $\alpha \in\{\in, q, \in \vee q, \in \wedge q\}$.

Definition 1.4 ([2, 18]). Let μ be a fuzzy set in X and x_{t} be a fuzzy point then
(1). If $\mu(x)<t$ then we say x_{t} does not belongs to μ and write $x_{t} \bar{\epsilon} \mu$.
(2). If $\mu(x)+t \leq 1$ then we say x_{t} not quasi-coincident with μ and write $x_{t} \bar{q} \mu$.
(3). If $x_{t} \overline{\in \vee} \mu \Leftrightarrow x_{t} \bar{\in} \mu$ and $x_{t} \bar{q} \mu$.
(4). If $x_{t} \overline{\in \wedge q} \mu \Leftrightarrow x_{t} \bar{\epsilon} \mu$ or $x_{t} \bar{q} \mu$.

Definition 1.5 ([2, 18]). Let μ be a fuzzy set in X and x_{t} be a fuzzy point then
(1). If $\mu(x)+t+k>1$ then we say x_{t} is k quasi-coincident with μ and write $x_{t} q_{k} \mu$ where $k \in[01)$.
(2). If $x_{t} \in \vee q_{k} \mu \Leftrightarrow x_{t} \in \mu$ or $x_{t} q_{k} \mu$.
(3). If $x_{t} \in \wedge q_{k} \mu \Leftrightarrow x_{t} \in \mu$ and $x_{t} q_{k} \mu$.

Definition 1.6 ([2, 18]). Let μ be a fuzzy set in X and x_{t} be a fuzzy point then
(1). If $\mu(x)+t+k \leq 1$ then we say x_{t} is not k quasi-coincident with μ and write $x_{t} \overline{q_{k}} \mu$ where $k \in[01)$.
(2). If $x_{t} \overline{\in \vee q_{k}} \mu \Leftrightarrow x_{t} \bar{\epsilon} \mu$ and $x_{t} \bar{q}_{k} \mu$.
(3). If $x_{t} \overline{\in \wedge q_{k}} \mu \Leftrightarrow x_{t} \bar{\epsilon} \mu$ or $x_{t} \bar{q}_{k} \mu$.

Definition 1.7 ([30]). A fuzzy set μ of a BG-algebra X is said to be (α, β)-fuzzy ideal of X if
(1). $x_{t} \alpha \mu \Rightarrow 0_{t} \beta \mu$ for all $x \in X$.
(2). $(x * y)_{t}, y_{s} \alpha \mu \Rightarrow x_{m(t, s)} \beta \mu$ for all $x, y \in X$ Where $\alpha \neq \in \wedge q, m\{t, s\}=\min \{t, s\}$ and $t, s \in(0,1]$.

Definition 1.8 ([9]). A fuzzy subset μ of a BG-algebra X is an $\left(\epsilon, \in \vee q_{k}\right)$-doubt fuzzy subalgebra of X if

$$
\mu(x * y) \leq \max \left\{\mu(x), \mu(y), \frac{1-k}{2}\right\} \quad \text { for all } \quad x, y \in X
$$

Remark 1.9. A fuzzy subset μ of a $B G$-algebra X is an $(\in, \in \vee q)$-doubt fuzzy subalgebra of X iff

$$
\mu(x * y) \leq M\{\mu(x), \mu(y), 0.5\}
$$

Definition 1.10 ([9]). A fuzzy subset μ of a $B G$-algebra X is an $\left(\in, \in \vee q_{k}\right)$-doubt fuzzy ideal of X if
(1). $\mu(0) \leq \max \left\{\mu(x), \frac{1-k}{2}\right\}$ for all $x \in X$.
(2). $\mu(x) \leq \max \left\{\mu(x * y), \mu(y), \frac{1-k}{2}\right\}$ for all $x, y \in X$.

Remark 1.11. A fuzzy subset μ of a BG-algebra X is an $(\epsilon, \in \vee q)$-doubt fuzzy ideal of X iff

$$
\begin{aligned}
& \mu(0) \quad \leq M\{\mu(x), 0.5\} \\
& \mu(x) \leq M\{\mu(x * y), \mu(y), 0.5\}
\end{aligned}
$$

Definition 1.12 ([1]). An intuitionistic fuzzy set (IFS) A in a non-empty set X is an object of the form $A=$ $\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$ where $\mu_{A}: X \rightarrow[0,1]$ and $\nu_{A}: X \rightarrow[0,1]$ with the condition $0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1, \forall x \in X$. The numbers $\mu_{A}(x)$ and $\nu_{A}(x)$ denote respectively the degree of membership and the degree of non membership of the element x in the set A. For the sake of simplicity, we shall use the symbol $A=\left(\mu_{A}, \nu_{A}\right)$ for the intuitionistic fuzzy set $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$.

Definition 1.13. An intuitionistic fuzzy set $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$ of a BCK-algebra X

$$
x_{\alpha, \beta}(y)= \begin{cases}(\alpha, \beta) & \text { if } y=x \\ (0,1) & \text { if } y \neq x\end{cases}
$$

is said to be an intuitionistic fuzzy point with support x and value (α, β) and is denoted by $x_{(\alpha, \beta)}$. A fuzzy point $x_{(\alpha, \beta)}$ is said to intuitionistic belongs to (resp., intuitionistic quasi-coincident) with intuitionistic fuzzy set $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$ written $\left.x_{(} \alpha, \beta\right) \in A$ resp: $x_{(\alpha, \beta)} q A$ if $\mu_{A}(x) \geq \alpha$ and $\nu_{A}(x) \leq \beta\left(\right.$ resp. $\mu_{A}(x)+\alpha>1$ and $\left.\nu_{A}(x)+\beta<1\right)$. By the symbol $x_{(\alpha, \beta)} q_{k} A$ we mean $\mu_{A}(x)+\alpha+k>1$ and $\nu_{A}(x)+\beta+k<1$, where $k \in(0,1)$.

We use the symbol $x_{t} \in \mu_{A}$ implies $\mu_{A}(x) \geq t$ and $x_{t} \bar{\epsilon} \nu_{A}$ implies $\nu_{A}(x) \leq t$ in the whole paper.
Definition $1.14([1,5])$. If $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$ and $B=\left\{\left\langle x, \mu_{B}(x), \nu_{B}(x)\right\rangle \mid x \in X\right\}$ be any two IFS of a set X then: $A \subseteq B$ iff for all $x \in X, \mu_{A}(x) \leq \mu_{B}(x)$ and $\nu_{A}(x) \geq \nu_{B}(x) ; A=B$ iff for all $x \in X, \mu_{A}(x)=\mu_{B}(x)$ and $\nu_{A}(x)=\nu_{B}(x) ; A \cap B=\left\{\left\langle x,\left(\mu_{A} \cap \mu_{B}\right)(x),\left(\nu_{A} \cup \nu_{B}\right)(x)\right\rangle \mid x \in X\right\}$, where $\left(\mu_{A} \cap \mu_{B}\right)(x)=\min \left\{\mu_{A}(x), \mu_{B}(x)\right\}$ and $\left(\nu_{A} \cup \nu_{B}\right)(x)=$ $\max \left\{\nu_{A}(x), \nu_{B}(x)\right\} ; A \cup B=\left\{\left\langle x,\left(\mu_{A} \cup \mu_{B}\right)(x),\left(\nu_{A} \cap \nu_{B}\right)(x)\right\rangle \mid x \in X\right\}$, where $\left(\mu_{A} \cup \mu_{B}\right)(x)=\max \left\{\mu_{A}(x), \mu_{B}(x)\right\}$ and $\left(\nu_{A} \cap \nu_{B}\right)(x)=\min \left\{\nu_{A}(x), \nu_{B}(x)\right\}$.

An intuitionistic fuzzy set $A=\left(\mu_{A}, \nu_{A}\right)$ of a BCK-algebra X is said to be an intuitionistic fuzzy ideal of X if
(1). $\mu_{A}(0) \geq \mu_{A}(x)$
(2). $\nu_{A}(0) \leq \nu_{A}(x)$
(3). $\mu_{A}(x) \geq \min \left\{\mu_{A}(x * y), \mu_{A}(y)\right\}$
(4). $\nu_{A}(x) \leq \max \left\{\nu_{A}(x * y), \nu_{A}(y)\right\} \quad \forall x, y \in X$.

Definition 1.15. A triangular norm(t-norm) is a function $T:\left[\begin{array}{ll}0 & 1\end{array}\right] \times\left[\begin{array}{ll}0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ll}0 & 1\end{array}\right]$ satisfying the following conditions:
(T1) $\quad T(x, 1)=x, T(0, x)=0$; (boundary conditions)
(T2) $T(x, y)=T(y, x) ;($ commutativity $)$
(T3) $\quad T(x, T(y, z))=T(T(x, y), z)$; (associativity)
(T4) $T(x, y) \leq T(z, w)$;if $x \leq z, y \leq w$ for all $x, y, z \in[01]$ (monotonicity)
Every t-norm T satisfies $T(x, y) \leq \min (x, y) \quad \forall x, y \in[0,1]$.

Example 1.16. The four basic t-norms are:
(1). The minimum is given by $T_{M}(x, y)=\min (x, y)$.
(2). The product is given by $T_{P}(x, y)=x y$.
(3). The Lukasiewicz is given by $T_{L}(x, y)=\max (x+y-1,0)$.
(4). The Weakest t-norm (drastic product) is given by

$$
T_{D}(x, y)= \begin{cases}\min (x, y), & \text { if } \max (x, y)=1 \\ 0, & \text { otherwise }\end{cases}
$$

Definition 1.17. A s-norm S is a function $S:\left[\begin{array}{ll}0 & 1\end{array}\right] \times\left[\begin{array}{ll}0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ll}0 & 1\end{array}\right]$ satisfying the following conditions:
(S1) $\quad S(x, 1)=1, S(0, x)=x ;$ (boundary conditions)
(S2) $\quad S(x, y)=S(y, x) ;($ commutativity $)$
(S3) $\quad S(x, S(y, z))=S(S(x, y), z)$; (associativity)
(S4) $S(x, y) \leq S(z, w)$;if $x \leq z, y \leq w$ for all $x, y, z \in\left[\begin{array}{ll}1 & 1] \text { (monotonicity) }\end{array}\right.$
Every s-norm S satisfies $S(x, y) \geq \max (x, y) \quad \forall x, y \in[0,1]$.
Example 1.18. The four basic t-conorm are:
(1). Maximum given by $S_{M}(x, y)=\max (x, y)$.
(2). Probabilistic sum given by $S_{P}(x, y)=x+y-x y$.
(3). The Lukasiewicz is given by $S_{L}(x, y)=\min (x+y, 1)$.
(4). Strongest t-conorm given by

$$
S_{D}(x, y)= \begin{cases}\max (x, y), & \text { if } \max (x, y)=1 \\ 0, & \text { otherwise }\end{cases}
$$

Definition 1.19. If for two t-norms T_{1} and T_{2} the inequality $T_{1}(x, y) \leq T_{2}(x, y)$ holds for all $(x, y) \in\left[\begin{array}{ll}01\end{array}\right] \times\left[\begin{array}{ll}1\end{array}\right]$ then T_{1} is said to be weaker than T_{2}, and we write in this case $T_{1} \leq T_{2}$. We write $T_{1}<T_{2}$, whenever $T_{1} \leq T_{2}$ and $T_{1} \neq T_{2}$.

Remark 1.20. It is not hard to see that T_{D} is the weakest t-norm and T_{M} is the strongest t-norm, that is, for all t-norm T

$$
T_{D} \leq T \leq T_{M}
$$

We get the following ordering of the four basic t-norms:

$$
T_{D}<T_{L}<T_{P}<T_{M}
$$

Lemma 1.21. Let T be a t-norm. Then $T(T(x, y) T(z, t))=T(T(x, z) T(y, t))$ for all x, y, z and $t \in[0,1]$.

Definition 1.22. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two doubt intuitionistic fuzzy sets of X_{1} and X_{2}, respectively. Then the direct product of DIFSs A and B with respect to triangular binorm (i.e., (T, S)-normed) is denoted by $A \times B=$ $\left(\mu_{A \times B}, \nu_{A \times B}\right)$ where $\mu_{A \times B}: X_{1} \times X_{2} \rightarrow[0,1]$ defined by $\mu_{A \times B}(x, y)=S\left\{\mu_{A}(x), \mu_{B}(y)\right\}$ and $\nu_{A \times B}: X_{1} \times X_{2} \rightarrow[0,1]$ defined by $\nu_{A \times B}(x, y)=T\left\{\nu_{A}(x), \nu_{B}(y)\right\}$ for all $(x, y) \in X_{1} \times X_{2}$.

Definition 1.23 ([26]). An intuitionistic fuzzy set $A=\left(\mu_{A}, \nu_{A}\right)$ of a BCK-algebra X is said to be a doubt intuitionistic fuzzy subalgebra with respect to triangular binorm of X if
(1). $\mu_{A}(x * y) \leq S\left\{\mu_{A}(x), \mu_{A}(y)\right\}$
(2). $\nu_{A}(x * y) \geq T\left\{\nu_{A}(x), \nu_{A}(y)\right\} \quad \forall x, y \in X$.

Definition 1.24 ([16, 26]). An intuitionistic fuzzy set $A=\left(\mu_{A}, \nu_{A}\right)$ of a BCK-algebra X is said to be a doubt intuitionistic fuzzy ideal with respect to triangular binorm of X if
(1). $\mu_{A}(0) \leq \mu_{A}(x)$
(2). $\nu_{A}(0) \geq \nu_{A}(x)$
(3). $\mu_{A}(x) \leq S\left\{\mu_{A}(x * y), \mu_{A}(y)\right\}$
(4). $\nu_{A}(x) \geq T\left\{\nu_{A}(x * y), \nu_{A}(y)\right\} \quad \forall x, y \in X$.

2. Main Section

In this section, we define direct product of an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy sets with respect to triangular binorm and investigate some related properties.

Definition 2.1. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two $\left(\in, \in \vee q_{k}\right)$-intuitionistic fuzzy sets of X_{1} and X_{2}, respectively. Then the direct product of $\left(\in, \in \vee q_{k}\right)$-intuitionistic fuzzy sets A and B with respect to triangular binorm (i.e., (T, S)-normed) is denoted by $A \times B=\left(\mu_{A \times B}, \nu_{A \times B}\right)$ where $\mu_{A \times B}: X_{1} \times X_{2} \rightarrow[0,1]$ defined by $\mu_{A \times B}(x, y)=S\left\{\mu_{A}(x), \mu_{B}(y), \frac{1-k}{2}\right\}$ and $\nu_{A \times B}: X_{1} \times X_{2} \rightarrow[0,1]$ defined by $\nu_{A \times B}(x, y)=T\left\{\nu_{A}(x), \nu_{B}(y), \frac{1-k}{2}\right\}$ for all $(x, y) \in X_{1} \times X_{2}$.

Definition 2.2. An intuitionistic fuzzy set $A=\left(\mu_{A}, \nu_{A}\right)$ of $B C K$-algebra X is said to be an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra with respect to triangular binorm of X if
(1). $\mu_{A}(x * y) \leq S\left\{\mu_{A}(x), \mu_{A}(y), \frac{1-k}{2}\right\}$ for all $x, y \in X$.
(2). $\nu_{A}(x * y) \geq T\left\{\nu_{A}(x), \nu_{A}(y), \frac{1-k}{2}\right\}$ for all $x, y \in X$.

Definition 2.3. An intuitionistic fuzzy set $A=\left(\mu_{A}, \nu_{A}\right)$ of BCK-algebra X is said to be an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy ideal with respect to triangular binorm (i.e., (T, S)-normed) of X if
(1). $\mu_{A}(0) \leq S\left\{\mu_{A}(x), \frac{1-k}{2}\right\}$ for all $x \in X$.
(2). $\nu_{A}(0) \geq T\left\{\nu_{A}(x), \frac{1-k}{2}\right\}$ for all $x \in X$.
(3). $\mu_{A}(x) \leq S\left\{\mu_{A}(x * y), \mu_{A}(y), \frac{1-k}{2}\right\}$ for all $x, y \in X$.
(4). $\nu_{A}(x) \geq T\left\{\nu_{A}(x * y), \nu_{A}(y), \frac{1-k}{2}\right\}$ for all $x, y \in X$.

Definition 2.4. An intuitionistic fuzzy set $A \times B$ of BCK-algebra $X_{1} \times X_{2}$ is said to be an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of $X_{1} \times X_{2}$ with respect to triangular binorm if
(1). $\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \leq S\left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$.
(2). $\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq T\left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$.

Definition 2.5. An intuitionistic fuzzy set $A \times B$ of BCK-algebra $X_{1} \times X_{2}$ is said to be an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy ideal of $X_{1} \times X_{2}$ with respect to triangular binorm if
(1). $\mu_{A \times B}(0,0) \leq S\left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \frac{1-k}{2}\right\}$ for all $\left(x_{1}, y_{1}\right) \in X_{1} \times X_{2}$.
(2). $\nu_{A \times B}(0,0) \geq T\left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \frac{1-k}{2}\right\}$ for all $\left(x_{1}, y_{1}\right) \in X_{1} \times X_{2}$.
(3). $\mu_{A \times B}\left(x_{1}, y_{1}\right) \leq S\left\{\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right), \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$.
(4). $\nu_{A}\left(\left(x_{1}, y_{1}\right) \geq T\left\{\nu_{A}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right), \nu_{A}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}\right.$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$.

Theorem 2.6. Let A and B be two $\left(\epsilon, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebras of X_{1} and X_{2}, respectively. Then the Direct product $A \times B$ is an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of $X_{1} \times X_{2}$.

Proof. Let A and B be two $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebras of X_{1} and X_{2}, respectively. For any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$. We have

$$
\begin{aligned}
\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & =\mu_{A \times B}\left(x_{1} * x_{2}, y_{1} * y_{2}\right) \\
& =S\left\{\mu_{A}\left(x_{1} * x_{2}\right), \mu_{B}\left(y_{1} * y_{2}\right), \frac{1-k}{2}\right\} \\
& \leq S\left\{S\left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right), \frac{1-k}{2}\right\}, S\left\{\mu_{B}\left(y_{1}\right), \mu_{B}\left(y_{2}\right), \frac{1-k}{2}\right\}, \frac{1-k}{2}\right\} \\
& =S\left\{S\left\{\mu_{A}\left(x_{1}\right), \mu_{B}\left(y_{1}\right), \frac{1-k}{2}\right\}, S\left\{\mu_{A}\left(x_{2}\right), \mu_{B}\left(y_{2}\right), \frac{1-k}{2}\right\}, \frac{1-k}{2}\right\} \\
& =S\left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\} \\
\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & =\nu_{A \times B}\left(x_{1} * x_{2}, y_{1} * y_{2}\right) \\
& =T\left\{\nu_{A}\left(x_{1} * x_{2}\right), \nu_{B}\left(y_{1} * y_{2}\right), \frac{1-k}{2}\right\} \\
& \geq T\left\{T\left\{\nu_{A}\left(x_{1}\right), \nu_{A}\left(x_{2}\right), \frac{1-k}{2}\right\}, T\left\{\nu_{B}\left(y_{1}\right), \nu_{B}\left(y_{2}\right), \frac{1-k}{2}\right\}, \frac{1-k}{2}\right\} \\
& =T\left\{T\left\{\nu_{A}\left(x_{1}\right), \nu_{B}\left(y_{1}\right), \frac{1-k}{2}\right\}, T\left\{\nu_{A}\left(x_{2}\right), \nu_{B}\left(y_{2}\right), \frac{1-k}{2}\right\}, \frac{1-k}{2}\right\} \\
& =T\left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}
\end{aligned}
$$

Hence $A \times B$ is an $\left(\epsilon, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of $X_{1} \times X_{2}$.

Theorem 2.7. Let A and B be two $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy ideals of X_{1} and X_{2}, respectively. Then the direct product $A \times B$ is an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy ideal of $X_{1} \times X_{2}$.

Theorem 2.8. If $A \times B=\left(\mu_{A \times B}, \nu_{A \times B}\right)$ be an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy ideal of $X_{1} \times X_{2}$. Then for all any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in X_{1} \times X_{2}$ and $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \leq\left(x_{3}, y_{3}\right)$
(1). $\mu_{A \times B}\left(x_{1}, y_{1}\right) \leq S\left\{\mu_{A \times B}\left(x_{2}, y_{2}\right), \mu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}$.
(2). $\nu_{A \times B}\left(x_{1}, y_{1}\right) \geq T\left\{\nu_{A \times B}\left(x_{2}, y_{2}\right), \nu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}$.

Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in X_{1} \times X_{2}$ such that $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \leq\left(x_{3}, y_{3}\right)$ then $\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) *\left(x_{3}, y_{3}\right)=0$. Now
(1). $\mu_{A \times B}\left(x_{1}, y_{1}\right) \leq S\left\{\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right), \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}$

$$
\begin{aligned}
& \left.\leq S\left\{\mu_{A \times B}\left(\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) *\left(x_{3}, y_{3}\right)\right), \mu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\} \\
& \left.=S\left\{\mu_{A \times B}(0,0), \mu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\} \\
& \left.\leq S\left\{S\left\{\mu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \mu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\} \\
& =S\left\{S\left\{\mu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\} \\
& =S\left\{S\left\{\mu_{A \times B}\left(x_{3}, y_{3}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}, \frac{1-k}{2}\right\} \\
& =S\left\{\mu_{A \times B}\left(x_{3}, y_{3}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}
\end{aligned}
$$

(2). $\nu_{A \times B}\left(x_{1}, y_{1}\right) \geq T\left\{\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right), \nu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}$

$$
\left.\geq T\left\{\nu_{A \times B}\left(\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) *\left(x_{3}, y_{3}\right)\right), \nu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \nu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}
$$

$$
\left.=T\left\{\nu_{A \times B}(0,0), \nu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \nu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}
$$

$$
\left.\geq T\left\{T\left\{\nu_{A}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \nu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \nu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}
$$

$$
=T\left\{T\left\{\nu_{A \times B}\left(x_{3}, y_{3}\right), \frac{1-k}{2}\right\}, \nu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}
$$

$$
=T\left\{T\left\{\nu_{A \times B}\left(x_{3}, y_{3}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\}, \frac{1-k}{2}\right\}
$$

$$
=T\left\{\nu_{A \times B}\left(x_{3}, y_{3}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}
$$

Definition 2.9. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ are intuitionistic fuzzy sets of X_{1} and X_{2} respectively. Define the doubt intuitionistic level set for the $A \times B$ as $(A \times B)_{\alpha, \beta}=\left\{(x, y) \in X_{1} \times X_{2} \mid \mu_{A \times B}(x, y) \leq \alpha, \nu_{A \times B}(x, y) \geq \beta\right\}$, where $\beta \in\left(0, \frac{1-k}{2}\right], \alpha \in\left[\frac{1-k}{2}, 1\right)$.

Theorem 2.10. Let A and B be two $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebras of X_{1} and X_{2}, respectively. Then the direct product $A \times B$ is an $\left(\epsilon, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of $X_{1} \times X_{2}$ if and only if $(A \times B)_{\alpha, \beta} \neq \phi$ is an subalgebra of $X_{1} \times X_{2}$.

Proof. Assume $A \times B$ is an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of $X_{1} \times X_{2}$. To prove $(A \times B)_{\alpha, \beta} \neq \phi$ is an subalgebra of $X_{1} \times X_{2}$. where $\beta \in\left(0, \frac{1-k}{2}\right], \alpha \in\left[\frac{1-k}{2}, 1\right)$. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in(A \times B)_{\alpha, \beta}$. Therefore we have
$\left.\mu_{A \times B}\left(x_{1}, y_{1}\right) \leq \alpha, \nu_{A \times B}\left(x_{1}, y_{1}\right) \geq \beta\right\}$ and $\left.\mu_{A \times B}\left(x_{2}, y_{2}\right) \geq \alpha, \nu_{A \times B}\left(x_{2}, y_{2}\right) \leq \beta\right\}$. Since $A \times B$ is an $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of $X_{1} \times X_{2} . \mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \leq S\left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\} \leq S\{\alpha, \alpha\}=\alpha$ and $\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq T\left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\} \geq T\left\{\beta, \beta, \frac{1-k}{2}\right\}=\beta$ which shows that $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \in$ $(A \times B)_{\alpha, \beta}$. Hence $(A \times B)_{\alpha, \beta} \neq \phi$ is an subalgebra of $X_{1} \times X_{2}$.

Conversely, $\operatorname{let}(A \times B)_{\alpha, \beta} \neq \phi$ is an subalgebra of $X_{1} \times X_{2}$. Also let $A \times B$ is not $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of $X_{1} \times X_{2}$. Then there exist $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in\left(X_{1} \times X_{2}\right)$ such that $\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\right.$ $\left.\left(x_{2}, y_{2}\right)\right)>S\left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}$ and $\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)<T\left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\}$. Now let $t_{0}=\frac{1}{2}\left[\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)+S\left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}\right]$ and $s_{0}=\frac{1}{2}\left[\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)+\right.$ $\left.T\left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\}\right]$. This implies $\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)>t_{0}>S\left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}$ and $\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)<s_{0}<T\left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\}$.And so $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \notin(A \times B)_{t_{0}, s_{0}} \operatorname{But}\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ $(A \times B)_{t_{0}, s_{0}}$. That is a contradiction. This completes the proof.

Theorem 2.11. Let A and B be two $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy ideals of X_{1} and X_{2}, respectively. Then the direct product $A \times B$ is an $\left(\epsilon, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy ideal of $X_{1} \times X_{2}$ if and only if $(A \times B)_{\alpha, \beta} \neq \phi$ is an ideal of $X_{1} \times X_{2}$.

Theorem 2.12. If $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebras of $B C K / B C I-$ algebras X_{1} and X_{2} respectively with respect to triangular binorm. Then
(1). $\mu_{A \times B}(0,0) \leq S\left\{\mu_{A \times B}(x, y), \frac{1-k}{2}\right\}$.
(2). $\nu_{A \times B}(0,0) \geq T\left\{\nu_{A \times B}(x, y), \frac{1-k}{2}\right\} \quad \forall(x, y) \in X_{1} \times X_{2}$.

Proof. By definition, $\mu_{A \times B}(0,0)=\mu_{A \times B}((x, y) *(x, y)) \leq S\left\{\mu_{A \times B}(x, y), \mu_{A \times B}(x, y), \frac{1-k}{2}\right\}=S\left\{\mu_{A \times B}(x, y), \frac{1-k}{2}\right\}$. Therefore, $\mu_{A \times B}(0,0) \leq S\left\{\mu_{A \times B}(x, y), \frac{1-k}{2}\right\}$ for all $(x, y) \in X_{1} \times X_{2}$. Again, $\nu_{A \times B}(0,0)=\nu_{A \times B}((x, y) *(x, y)) \geq$ $T\left\{\mu_{A \times B}(x, y), \nu_{A \times B}(x, y), \frac{1-k}{2}\right\}=T\left\{\nu_{A \times B}(x, y), \frac{1-k}{2}\right\}$. Therefore, $\nu_{A \times B}(0,0) \geq T\left\{\mu_{A \times B}(x, y), \frac{1-k}{2}\right\}$ for all $(x, y) \in$ $X_{1} \times X_{2}$.

Lemma 2.13. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebras of BCK/BCIalgebras X_{1} and X_{2} respectively. Then the following are true.
(1). $\mu_{A}(0) \leq \mu_{B}(y)$ and $\mu_{B}(0) \leq \mu_{A}(x)$, for all $x \in X_{1}, y \in X_{2}$.
(2). $\nu_{A}(0) \geq \nu_{B}(y)$ and $\nu_{B}(0) \geq \nu_{A}(x)$, for all $x \in X_{1}, y \in X_{2}$.

Proof. Assume that $\mu_{A}(0)>\mu_{B}(y)$ and $\mu_{B}(0)>\mu_{A}(x)$, for some $x \in X_{1}, y \in X_{2}$. Then, $\mu_{A \times B}(x, y)=$ $S\left\{\mu_{A}(x), \mu_{A}(y), \frac{1-k}{2}\right\} \leq S\left\{\mu_{A}(0), \mu_{A}(0), \frac{1-k}{2}\right\}=\mu_{A \times B}(0,0)$ That is a contradiction. Similarly, let $\nu_{A}(0)<\nu_{B}(y)$ and $\nu_{B}(0)<\nu_{A}(x)$, for some $x \in X_{1}, y \in X_{2}$. Then, $\nu_{A \times B}(x, y)=T\left\{\nu_{A}(x), \nu_{A}(y), \frac{1-k}{2}\right\} \geq T\left\{\nu_{A}(0), \nu_{A}(0), \frac{1-k}{2}\right\}=\nu_{A \times B}(0,0)$ That is a contradiction. Thus proving the result.

Theorem 2.14. If $A \times B$ is $a\left(\epsilon, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of $X_{1} \times X_{2}$, then either A is an $\left(\in, \in \vee q_{k}\right)$ doubt intuitionistic fuzzy subalgebra of X_{1} or B is an $\left(\epsilon, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of X_{2}.

Proof. Since $A \times B$ is a $\left(\in, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of $X_{1} \times X_{2}$ then for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$,, we have $\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \leq S\left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right), \frac{1-k}{2}\right\}$

By putting $x_{1}=x_{2}=0$, we get,

$$
\begin{aligned}
\mu_{A \times B}\left(\left(0, y_{1}\right) *\left(0, y_{2}\right)\right) & \leq S\left\{\mu_{A \times B}\left(0, y_{1}\right), \mu_{A \times B}\left(0, y_{2}\right), \frac{1-k}{2}\right\} \\
\Rightarrow \mu_{A \times B}\left((0 * 0),\left(y_{1} * y_{2}\right)\right) & \leq S\left\{\mu_{B}\left(y_{1}\right), \mu_{B}\left(y_{2}\right), \frac{1-k}{2}\right\} \quad \text { using Lemma2.13 } \\
\Rightarrow S\left\{\mu_{A}(0 * 0), \mu_{B}\left(y_{1} * y_{2}\right)\right\} & \leq S\left\{\mu_{B}\left(y_{1}\right), \mu_{B}\left(y_{2}\right), \frac{1-k}{2}\right\} \\
\Rightarrow \mu_{B}\left(y_{1} * y_{2}\right) & \leq S\left\{\mu_{B}\left(y_{1}\right), \mu_{B}\left(y_{2}\right), \frac{1-k}{2}\right\}
\end{aligned}
$$

Similar way we can prove, $\nu_{B}\left(y_{1} * y_{2}\right) \geq T\left\{\nu_{B}\left(y_{1}\right), \nu_{B}\left(y_{2}\right), \frac{1-k}{2}\right\}$. Hence B is an $\left(\epsilon, \in \vee q_{k}\right)$-doubt intuitionistic fuzzy subalgebra of X_{2}.

References

[1] K.T.Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20(1986), 87-96.
[2] R.Ameri, H.Hedayati and M.Norouzi, $\left(\bar{\epsilon}, \overline{\in \wedge q_{k}}\right)$-Fuzzy Subalgebras in BCK/BCI-Algebras, The Journal of Mathematics and Computer Science, 2(1)(2011), 130-140.
[3] S.R.Barbhuiya, $(\in, \in \vee q)$ - Fuzzy Ideals of d-algebra, International Journal of Mathematics Trends and Technology, 9(1)(2014), 16-26.
[4] S.R.Barbhuiya, Doubt fuzzy ideals of BF-algebra, IOSR Journal of Mathematics (IOSR-JM), 10(2-VII)(2014), 65-70.
[5] S.R.Barbhuiya, $(\in, \in \vee q)$-Intuitionistic Fuzzy Ideals of BCK/BCI-algebra, Notes on Intuitionistic Fuzzy Sets, 21(1)(2015), 24-42.
[6] S.K.Bhakat and P.Das, $(\in, \in \vee q)$-fuzzy subgroup, Fuzzy sets and systems, 80(1996), 359-368.
[7] S.K.Bhakat and P.Das, $(\in \vee q)$-level subset, Fuzzy sets and systems, 103(3)(1999), 529-533.
[8] R.Biswas, Fuzzy subgroups and antifuzzy subgroups, Fuzzy sets and systems, 35(1990), 121-124.
[9] A.K.Dutta et.al. Generalized doubt fuzzy structure of BG-algebra, International Journal of Mathematics And its Applications, 5(3-A)(2017), 91-104.
[10] S.M.Hong and Y.B.Jun, Anti fuzzy ideals in BCK-algebras, Kyungpook Math., 38(1998), 145-150.
[11] F.Y.Huang, Another definition of fuzzy BCI-algebras-in Chinese, Selected papers on BCK and BCI-algebras (P. R. China), 1(1992), 91-92.
[12] Y.Imai and K.Iseki, On Axiom systems of Propositional calculi XIV, Proc Japan Academy, 42(1966), 19-22.
[13] K.Iseki, On some ideals in BCK-algebras, Math. Seminar Notes., 3(1975), 65-70.
[14] K.Iseki, An algebra related with a propositional calculus, Proc. Japan Academy, 42(1966), 26-29.
[15] E.P.Klement, R.Mesiar and E.Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, (2000).
[16] E.P.Klement, R.Mesiar and E.Pap, Triangular norms. Position paper I: basic analytical and algebraic properties, Fuzzy Sets and Systems, 143(2004), 5-26.
[17] C.B.Kim and H.S.Kim, on BG-algebras, Demonstratio Mathematica, 41(3)(2008), 497-505.
[18] M.A.Larimi, On $\left(\in, \in \vee q_{k}\right)$-Intuitionistic Fuzzy Ideals of Hemirings, World Applied Sciences Journal, 21(2013), 54-67.
[19] K.Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA, 8(1942), 535-537.
[20] P.P.Ming and L.Y.Ming, Fuzzy topologyI, Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Maths. Anal. Appl., 76(1980), 571-599.
[21] V.Murali, Fuzzy points of equivalent fuzzy subsets, Inform Sci, 158(2004), 277-288.
[22] R.Muthuraj, M.Sridharan and P.M.Sitharselvam, Fuzzy BG-ideals in BG-Algebra, International Journal of Computer Applications, 2(1)(2010), 26-30.
[23] J.Neggers and H.S.Kim, on B-algebras, Math. Vensik., 54(2002), 21-29.
[24] A.Rosenfeld, Fuzzy subgroups, J Math Anal Appl., 35(1971), 512517.
[25] B.Schweizer and A.Sklar, Statistical metric spaces, Pacific J. Math., 10(1960), 313-334.
[26] T.Senapati, M.Bhowmik and M.Pal, Triangular norm based fuzzy BG-algebras, Afr. Mat. (In press).
[27] B.Schweizer and A.Sklar, Associative functions and statistical triange inequalities, Publ. Math. Debrecen, 8(1961), 169-186.
[28] A.B.Saeid, Some results in Doubt fuzzy BF-algebras, Analele Universitatii Vest Timisoara seria MathematicaInformatica, XLIX(2011), 125-134.
[29] O.G.Xi, Fuzzy BCK algebras, Math Japonica., 36(1991), 935-942.
[30] Y.B.Jun, On (α, β)-Fuzzy ideals of BCK/BCI-Algebras, Scientiae Mathematicae Japonicae, (2004), 101-105.
[31] Y.B.Jun, Doubt fuzzy BCK/BCI algebras, Soochow Journal of Mathematics, 20(3)(1991), 351-358.
[32] L.A.Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.

[^0]: * E-mail: saidurbarbhuiya@mail.com

