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1. Introduction

The role of contraction mapping principle in the study of fixed point is very important. The role of Fixed point theorem

assures the unique fixed point of contraction mapping of a complete metric space to itself and it may be used as numerical

iterations. The development of many theories in different areas like metric space Banach space problems in nonlinear

differential equations, system of algebraic equation has happened due to contraction mapping principle.

2. Preliminaries

Definition 2.1. A Metric space (M, d) is a pair consisting non empty set M of elements and a notion of distance function

d : M ×M → R satisfying following conditions

(1). d (x, y) = 0 and if d (x, y) = 0⇔ x = y

(2). d (x, y) = d (y, x)

(3). d (x, z) = d (x, y) + d (y, z), which is also called triangle inequality.

A sequence {xn} in M is said to converge in M such that lim
n→∞

d (xn, x) = 0 or lim
n→∞

xn = x, {xn} will be called Cauchy’s

sequence if for all ε > 0, there exists n0 > 0, such that d (xn, xm) = ε, for ∀ n,m ≥ n0.

Definition 2.2. Complete Metric space: If every Cauchy’s sequence in M converges to a point M then M is called as a

Complete Metric space.
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Definition 2.3. Normed Vector Space (Banach Space): A mapping ‖ · ‖: M → R is called norm, where M is vector space

over real or complex numbers, provided that following conditions hold:

(1). ‖ x ‖= 0⇔ x = 0, for ∀ x ∈M

(2). ‖ αx ‖= |α| ‖ x ‖, ∀ scalar α, ∀ x ∈M

(3). ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖, ∀ x, y ∈M

Hence a vector space M and norm ‖ · ‖ together the pair (M, ‖ · ‖) is called normed vector space. This can also be defined

as d (x, y) =‖ x− y ‖, ∀ x, y ∈M .

Definition 2.4. A Normed vector space which is complete metric space with respect to metric d defined above is called

Banach Space.

Example 2.5. (R, |·|) is an example of Banach Space.

Example 2.6. The linear combination of a polynomial is a polynomial. The space of polynomial functions is a linear

subspace of C([0, 1]). It is not closed but dense. Therefore the set {f ∈ C ([0, 1])| f (0) = 0} is a closed linear subspace of

C([0, 1]) and is Banach space.

3. Main Result

Theorem 3.1. If (X , d) is a metric space then there exists a complete metric space (X∗, d∗) and mapping h : X → X∗

such that

(1). h is an isometry d∗(h(x), h(y)) = d(x, y).

(2). h(x) is dense in X∗.

Proof. Let {xn} and {yn} be the sequences in X and let C be the set of all Cauchy’s sequences in X. Then {d(xn, yn)}

is the Cauchy’s sequence in R. We define dc : C × C → R by dc ({xn} , {yn}) = 0 ; {xn} = {yn}. The mapping dc is a

pseudo-metric on C. Here {xn}R {yn} iff d (xn, yn) = 0 as n→∞.

Obviously dc ({xn} , {yn}) = 0 is an equivalence relation on C. Now the set of all equivalence classes C/R we denote by X∗.

We define d∗ (R {xn} , R {yn}) = dc ({xn} , {yn}). This defines the metric on X∗. There is a natural mapping X → C given

by x→ {x}, clearly, dc ({xn} , {yn}) = d(x, y). Therefore x→ R (x), which is h is an isometry of X to X∗ and clearly image

h(x) is dense in X∗.

Theorem 3.2 (Contraction Mapping Principle). Let (M,d) be a complete metric space and T : M → M be a contraction

mapping with Lipschitz constant α. Then T has unique fixed point x ∈M .

Proof. Let us consider the sequence {xn}, n→∞, given by x0 = y, xn = T (xn−1), n ≥ 1. Where y ∈M is an arbitrary

point in M. For m < n, we have triangle inequality,

d (xm, xn) ≤ d (xm, xm+1) + d (xm+1, xm+2) + · · ·+ d (xn−1, xn)

Since T is contraction, d (xp, xp+1) = d (T (xp−1), T (xp)) ≤ kd (xp−1, xp), for any integer ≥ 1. Successively we get,

d (xp, xp+1) = kpd(x0, x1). Hence

d (xm, xn) ≤
(
km + km+1 + · · ·+ kn−1) d(x0, x1) ≤ km

1− k d(x0, x1), whenever m ≤ n
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Hence we can say that {xn} is a Cauchy’s sequence. Since M is complete, this sequence has a limit say x ∈ M . Also since

T is a continuous mapping, x = lim
n→∞

xn = lim
n→∞

(T (xn−1)) = T
(

lim
n→∞

xn−1

)
= T (x). Thus x is a fixed point of T.

Uniqueness: If x and z are two fixed points of T then,

d (x, z) = d[T (x) , T (z)] ≤ kd(x, z)

But k < 1, we must have x = z. This follows the uniqueness of fixed point and hence the theorem.

Theorem 3.3. Let (M, d) be a complete metric space and let

E = {x ∈M : d(z, x) <∈} , z ∈M, ε > 0

Let T : E →M be a mapping such that d (T (y) , T (x)) = ad (x, y), ∀ x, y ∈ E. With Lipschitz constant a < 1, also assume

that d (z, T (z)) < ε (1− a) then T has unique fixed point x ∈ E.

Proof. Let x ∈ E, now as T is uniformly continuous, we can extend T to a mapping defined E which is a contraction

mapping with a as a Lipschitz constant. Hence

d (z, T (x)) ≤ d (z, T (z)) + d(T (z) , T (x)) < ε (1− k) + kε = ε

Therefore T : E → E. Hence by Theorem 3.2, contraction mapping principle and E is a complete metric space, T has

unique fixed point in E which must be in E.

Example 3.4. Now let us define d (x, y) = |x− y|, x, y ∈ M . Where M = {x ∈ R : x ≥ 1} is a metric space. Let

T : M →M defined as T (x) = x+ 1
x

. Obviously d [T (x) , T (z)] = xy−1
xy
|x− y| < |x− y| = d(x, y). Therefore there does not

exists any constant 0 ≤ α < 1 such that d[T (x) , T (y)] = αd (x, y), ∀ x, y ∈ M . Hence we claim that T has no fixed points

in M.

4. Conclusion

It is clear from the above discussion that if we replace the hypothesis of the contraction mapping principle of being contraction

mapping of T by the condition d[T (x) , T (y)] ≤ d (x, y). Then T may not (need not) have a fixed point.
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