

International Journal of Mathematics And its Applications

$\psi^* \alpha$ -Closed Sets in Bitopological Spaces

Research Article

N. Balamani^{1*} and A. Parvathi¹

1 Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, Tamil Nadu, India.

Keywords: $\psi^* \alpha$ -closed set, $\psi^* \alpha$ -open set, ψ g-open set, τ_i -open set. © JS Publication.

1. Introduction

Levine [10] introduced the concepts of generalized closed sets in topological spaces and studied their basic properties. Several authors have introduced and investigated various types generalized closed sets in topological spaces. Only a few class of generalized closed sets form a topology. The class of $\psi^*\alpha$ -closed sets in topological spaces is one among them and it was introduced by Balamani and Parvathi [1]. The study of bitopological spaces was initiated by Kelly [7] and thereafter topological concepts have been generalized to bitopological setting. Fukutake [5] introduced g-closed sets in bitopological spaces. In this paper we introduce a new class of sets in bitopological spaces called $(i, j)-\psi^*\alpha$ -closed sets and study their basic properties. Also we define $(i, j)-\psi^*\alpha$ -closure of a set and prove that the closure operator $(i, j)-\psi^*\alpha$ -closure is the Kuratowski closure operator on (X, τ_1, τ_2) .

2. Preliminaries

The interior, closure and complement of a subset A of a space (X, τ) are denoted by int(A)cl(A) and A^c respectively. Throughout this paper (X, τ_1, τ_2) represents bitopological space on which no separation axioms are assumed, unless otherwise mentioned.

Definition 2.1. A subset A of a topological space (X, τ) is called

(1). g-closed set [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

- (2). sg-closed [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (3). ψ -closed set [13] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ) .

Abstract: In this paper we introduce $\psi^* \alpha$ -closed sets in bitopological spaces and obtain the relationship between the other existing closed sets. Also we study the notion of (i, j)- $\psi^* \alpha$ -closure operator and some of its properties. As applications we introduce (i, j)- $\psi^* \alpha T_c$ -space, (i, j)- $\psi^* \alpha T_\alpha$ -space and study some of their properties.

[`] E-mail: nbalamani77@gmail.com

- (4). ψ g-closed set [11] if ψ cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is open in (X, τ) .
- (5). $\psi^* \alpha$ -closed set [1] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ψg -open in (X, τ) .

Definition 2.2. For i, j = 1, 2 and $i \neq j$, a subset A of a bitopological space (X, τ_1, τ_2) is called

(1). (i, j)-g-closed [5] if τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -open in X.

- (2). (i, j)-gp-closed [4] if τ_j -pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -open in X.
- (3). (i, j)-gpr-closed [6] if τ_j -pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -regular open in X.
- (4). (i, j)- ω -closed [6] if τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -semi open in X.
- (5). (i, j)-g^{*}-closed [12] if τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -g-open in X.
- (6). (i, j)-g α -closed [8] if τ_j - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i - α -open in X.
- (7). (i, j)- αg -closed [4] if τ_j - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i -open in X.
- (8). (i, j)- \widetilde{g}_a -closed [9] if τ_j - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i -#gs-open in X.

(9). (i, j)- ψg -closed [11] if τ_j - $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i -open in X.

Definition 2.3. A topological space (X, τ) is said to be a

(1). $_{\psi^*\alpha}T_c$ -space if every $\psi^*\alpha$ -closed subset of (X,τ) is closed in (X,τ) [2].

(2). $_{\psi^*\alpha}T_{\alpha}$ -space if every $\psi^*\alpha$ -closed subset of (X,τ) is α -closed in (X,τ) [2].

3. (i, j)- $\psi^* \alpha$ -Closed Sets

Definition 3.1. A subset A of a bitopological space (X, τ_i, τ_j) is called $(i, j)-\psi^*\alpha$ -closed if $\tau_j - \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_i - \psi g$ -open in (X, τ_i, τ_j) , where i, j = 1, 2 and $i \neq j$. The family of all $(i, j)-\psi^*\alpha$ -closed sets in (X, τ_i, τ_j) is denoted by $\psi^* \alpha C(i, j)$.

Remark 3.2. By setting $\tau_i = \tau_j$ in Definition 3.1, an (i, j)- $\psi^* \alpha$ -closed set reduces to a $\psi^* \alpha$ -closed set.

Example 3.3. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then ϕ , $\{c\}$, $\{a, c\}$, $\{b, c\}$, X are $(1, 2)-\psi^*\alpha$ -closed.

Proposition 3.4. Every τ_j -closed (resp. τ_j - α - closed) set in (X, τ_1, τ_2) is $(i, j) - \psi^* \alpha$ -closed but not conversely.

Proof. Let A be τ_j -closed (resp. τ_j - α -closed) in (X, τ_1, τ_2) such that $A \subseteq U$, where U is τ_i - ψg -open. Since A is τ_j -closed (resp. τ_j - α -closed) τ_j -cl(A) (resp. τ_j - $\alpha cl(A)) = A \subseteq U$. But τ_j - $\alpha cl(A) \subseteq \tau_j - cl(A)$. Therefore τ_j - $\alpha cl(A) \subseteq U$. Hence A is an (i, j)- $\psi^*\alpha$ -closed set in (X, τ_1, τ_2) .

Example 3.5. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. The subset $\{b\}$ is $(1, 2)-\psi^*\alpha$ -closed but not τ_2 -closed.

Example 3.6. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $t_2 = \{\phi, \{a, b\}, X\}$. The subset $\{b, c\}$ is $(1, 2)-\psi^*\alpha$ -closed but not τ_2 - α -closed.

Proposition 3.7. Every (i, j)- $\psi^*\alpha$ -closed set in (X, τ_1, τ_2) is (i, j)-gp-closed but not conversely.

Proof. Let $A \subseteq U$ and U be τ_i -open in (X, τ_1, τ_2) . Since every τ_i -open set is τ_i - ψg -open and A is (i, j)- $\psi^* \alpha$ -closed in $(X, \tau_1, \tau_2), \tau_j$ - $\alpha cl(A) \subseteq U$. We know that τ_j - $pcl(A) \subseteq \tau_j$ - $\alpha cl(A) \subseteq U$. Therefore A is (i, j)-gp -closed.

Example 3.8. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. The subset $\{a, c, d\}$ is (1, 2)-gp-closed but not (1, 2)- $\psi^*\alpha$ -closed.

Proposition 3.9. Every (i, j)- $\psi^* \alpha$ -closed set in (X, τ_1, τ_2) is (i, j)-gpr -closed but not conversely.

Proof. Let $A \subseteq U$ and U be τ_i -regular open in (X, τ_1, τ_2) . Since every τ_i -regular open set is $\tau_i \cdot \psi g$ -open and A is (i, j)- $\psi^* \alpha$ -closed in $(X, \tau_1, \tau_2), \tau_j \cdot \alpha cl(A) \subseteq U$. We know that $\tau_j \cdot pcl(A) \subseteq \tau_j \cdot \alpha cl(A) \subseteq U$. Therefore A is (i, j)-gpr-closed.

Example 3.10. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. The subset $\{a, d\}$ is (1, 2)-gpr-closed but not (1, 2)- $\psi^* \alpha$ -closed.

Proposition 3.11. Every (i, j)- $\psi^*\alpha$ -closed set in (X, τ_1, τ_2) is (i, j)- \tilde{g}_a -closed but not conversely.

Proof. Let $A \subseteq U$ and U be τ_i -#gs-open in (X, τ_1, τ_2) . Since every τ_i -#gs-open set is τ_i - ψ g-open and A is (i, j)- $\psi^* \alpha$ -closed in $(X, \tau_1, \tau_2), \tau_j$ - $\alpha cl(A) \subseteq U$. Therefore A is (i, j)- \tilde{g}_a - closed.

Example 3.12. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{d\}, \{a, b\}, \{a, b, d\}, X\}$. The subset $\{b, c\}$ is (1, 2)- \tilde{g}_a -closed but not (1, 2)- $\psi^* \alpha$ -closed.

Proposition 3.13. Every $(i, j) \cdot \psi^* \alpha$ -closed set in (X, τ_1, τ_2) is $(i, j) \cdot g \alpha$ -closed but not conversely.

Proof. Let $A \subseteq U$ and U be $\tau_i - \alpha$ - open in (X, τ_1, τ_2) . Since every $\tau_i - \alpha$ -open set is $\tau_i - \psi g$ -open and A is $(i, j) - \psi^* \alpha$ -closed in $(X, \tau_1, \tau_2), \tau_j - \alpha cl(A) \subseteq U$. Therefore A is $(i, j) - g\alpha$ -closed.

Example 3.14. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. The subsets $\{a, b\}$ and $\{a, c\}$ are (1, 2)- $g\alpha$ -closed but not (1, 2)- $\psi^*\alpha$ -closed.

Proposition 3.15. Every (i, j)- $\psi^*\alpha$ -closed set in (X, τ_1, τ_2) is (i, j)- αg -closed but not conversely.

Proof. Let $A \subseteq U$ and U be τ_i -open in (X, τ_1, τ_2) . Since every τ_i -open set is τ_i - ψg -open and A is (i, j)- $\psi^* \alpha$ -closed in $(X, \tau_1, \tau_2), \tau_j$ - $\alpha cl(A) \subseteq U$. Therefore A is (i, j)- αg -closed.

Example 3.16. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. The subsets $\{a, b\}$ and $\{a, c\}$ are (1, 2)- αg -closed but not (1, 2)- $\psi^* \alpha$ -closed.

Proposition 3.17. Every (i, j)- $\psi^*\alpha$ -closed set in (X, τ_1, τ_2) is (i, j)- ψ g-closed but not conversely.

Proof. Let $A \subseteq U$ and U be τ_i -open in (X, τ_1, τ_2) . Since every τ_i -open set is τ_i - ψg -open and A is (i, j)- $\psi^* \alpha$ -closed in $(X, \tau_1, \tau_2), \tau_j$ - $\alpha cl(A) \subseteq U$. We know that τ_j - $\psi cl(A) \subseteq \tau_j$ - $\alpha cl(A) \subseteq U$ and so τ_j - $\psi cl(A) \subseteq U$. Therefore A is (i, j)- ψg -closed.

Example 3.18. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. The subsets $\{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$ are (1, 2)- ψg -closed but not (1, 2)- $\psi^* \alpha$ -closed.

Remark 3.19. The following example show that (i, j)- $\psi^*\alpha$ -closed set is independent of (i, j)-g-closed set, (i, j)-g^{*}-closed set and (i, j)- ω -closed set.

Example 3.20. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. The subset $\{a, c, d\}$ is (1, 2)-g-closed, (1, 2)-g^{*}-closed and (1, 2)- ω -closed but not (1, 2)- $\psi^*\alpha$ -closed. The subset $\{b\}$ is (1, 2)- $\psi^*\alpha$ -closed but not (1, 2)-g-closed, not (1, 2)-g^{*}-closed and not (1, 2)- ω -closed.

Theorem 3.21. If A is τ_i - ψg -open and (i, j)- $\psi^* \alpha$ -closed in (X, τ_1, τ_2) then A is τ_j - α -closed.

Proof. Let A be $\tau_i - \psi g$ -open and $(i, j) - \psi^* \alpha$ -closed. Since $A \subseteq A$, then $\tau_j - \alpha cl(A) \subseteq A$. Therefore $\tau_j - \alpha cl(A) = A$. Consequently A is $\tau_j - \alpha$ -closed.

Theorem 3.22. If A is (i, j)- $\psi^* \alpha$ -closed and τ_i - ψg -open and F is τ_j - α -closed in (X, τ_1, τ_2) then $A \cap F$ is τ_j - α -closed.

Proof. Since A is $(i, j) - \psi^* \alpha$ -closed and $\tau_i - \psi g$ -open in (X, τ_1, τ_2) , A is $\tau_j - \alpha$ -closed (by Theorem 3.21). Since F is $\tau_j - \alpha$ -closed, $A \cap F$ is $\tau_j - \alpha$ -closed in (X, τ_1, τ_2) .

Theorem 3.23. Union of two (i, j)- $\psi^*\alpha$ -closed sets is (i, j)- $\psi^*\alpha$ -closed.

Proof. Let A and B are (i, j)- $\psi^* \alpha$ -closed sets and U be any ψg -open set in (X, τ_i) containing A and B. Then $\tau_j - \alpha cl(A) \subseteq U$, $\tau_j - \alpha cl(B) \subseteq U$, $\tau_j - \alpha cl(A \cup B) = \tau_j - \alpha cl(A) \cup \tau_j - \alpha cl(B) \subseteq U$. Hence $A \cup B$ is (i, j)- $\psi^* \alpha$ -closed.

Remark 3.24. The intersection of two (i, j)- $\psi^*\alpha$ -closed sets need not be (i, j)- $\psi^*\alpha$ -closed set as seen from the following example.

Example 3.25. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. The subsets $A = \{a, b, d\}$ and $B = \{b, c, d\}$ are $(1, 2) \cdot \psi^* \alpha$ -closed but their intersection $A \cap B = \{b, d\}$ is not $(1, 2) \cdot \psi^* \alpha$ -closed.

Theorem 3.26. If a subset A of a bitopological space (X, τ_1, τ_2) is $(i, j)-\psi^*\alpha$ -closed then $\tau_j-\alpha cl(A)$ -A contains no nonempty $\tau_j-\psi g$ -closed set.

Proof. Let A be an (i, j)- $\psi^* \alpha$ -closed set and F be a τ_j - ψg -closed set such that $F \subseteq \tau_j - \alpha cl(A) - A$. Therefore $A \subseteq F^c$ and $F \subseteq \tau_j - \alpha cl(A)$. Since F^c is τ_i - ψg -open and A is (i, j)- $\psi^* \alpha$ -closed, $\tau_j - \alpha cl(A) \subseteq F^c$. Thus $F \subseteq [\tau_j - \alpha cl(A)]^c$. Hence $F \subseteq [\tau_j - \alpha cl(A)] \cap [\tau_j - \alpha cl(A)]^c = \phi$. Therefore $F = \phi$. Hence τ_j - $\alpha cl(A)$ -A contains no nonempty τ_i - ψg -closed set. \Box

Remark 3.27. The converse of the above theorem is not true as seen from the following example.

Example 3.28. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}. \quad \psi g O(X, \tau_1) = \{\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}, \psi^* \alpha(1, 2) = \{\phi, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{a, c, d\}, X\}.$ If $A = \{a, b\}, \tau_j - \alpha c l(A) - A = \{a, b, d\} - \{a, b\} = \{d\}.$ But $\{a, b\}$ is not (1, 2)- $\psi^* \alpha$ -closed.

Theorem 3.29. Let A be an (i, j)- $\psi^*\alpha$ -closed set in (X, τ_1, τ_2) . Then A is τ_j - α -closed if and only if τ_j - $\alpha cl(A)$ -A is τ_i - ψg -closed in (X, τ_1, τ_2) .

Proof. Suppose that A is $(i, j)-\psi^*\alpha$ -closed. Let A be $\tau_j-\alpha$ -closed. Then $\tau_j - \alpha cl(A) = A$. Therefore $\tau_j-\alpha cl(A) - A = \phi$ is $\tau_i-\psi g$ -closed in (X, τ_1, τ_2) .

Conversely, suppose that A is $(i, j)-\psi^*\alpha$ -closed and $\tau_j-\alpha cl(A)$ -A is $\tau_i-\psi g$ -closed. Since A is $(i, j)-\psi^*\alpha$ -closed, $\tau_j-\alpha cl(A)$ -A contains no nonempty $\tau_i-\psi g$ -closed set (by Theorem 3.26). Since $\tau_j-\alpha cl(A)$ -A is $\tau_i-\psi g$ -closed, $\tau_j-\alpha cl(A) - A = \phi$. Then $\tau_j - \alpha cl(A) = A$. Hence A is $\tau_j-\alpha$ -closed.

Theorem 3.30. Let A and B be subsets of (X, τ_1, τ_2) such that $A \subseteq B \subseteq \tau_j - \alpha cl(A)$. If A is $(i, j)-\psi^*\alpha$ -closed then B is $(i, j)-\psi^*\alpha$ -closed.

Proof. Let A and B be subsets such that $A \subseteq B \subseteq \tau_j - \alpha cl(A)$. Suppose that A is $(i, j)-\psi^*\alpha$ -closed. Let $B \subseteq U$ and U be τ_i - ψg -open in (X, τ_1, τ_2) . Then $A \subseteq U$. Since A is $(i, j)-\psi^*\alpha$ -closed, $\tau_j - \alpha cl(A) \subseteq U$. Since $B \subseteq \tau_j - \alpha cl(A)$, $\tau_j - \alpha cl(B) \subseteq \tau_j - \alpha cl(\tau_j - \alpha cl(A)) = \tau_j - \alpha cl(A) \subseteq U$. Therefore B is $(i, j)-\psi^*\alpha$ -closed.

Theorem 3.31. Let $B \subseteq A \subseteq X$ and suppose that B is (i, j)- $\psi^* \alpha$ -closed in (X, τ_1, τ_2) , then B is (i, j)- $\psi^* \alpha$ -closed relative to A. The converse is true if A is τ_i -open and (i, j)- $\psi^* \alpha$ -closed in (X, τ_1, τ_2) .

Proof. Let B be (i, j)- $\psi^* \alpha$ -closed in (X, τ_1, τ_2) . Let $B \subseteq U$ and U be τ_i - ψg -open in A. Since U is τ_i - ψg -open in A, $U = V \cap A$, where V is τ_i - ψg -open in (X, τ_1, τ_2) . Hence $B \subseteq U \subseteq V$. Since B is (i, j)- $\psi^* \alpha$ -closed in $(X, \tau_1, \tau_2), \tau_j - \alpha cl(B) \subseteq V$. Hence $\tau_j - \alpha cl(B) \cap A \subseteq V \cap A$, which in turn implies that $\tau_j - \alpha cl_A(B) \subseteq V \cap A = U$. Therefore B is (i, j)- $\psi^* \alpha$ -closed relative to A.

Now to prove the converse, assume the given condition. Let $B \subseteq U$ and U be $\tau_i \cdot \psi g$ -open in (X, τ_1, τ_2) . Then $A \cap U$ is $\tau_i \cdot \psi g$ -open in A. Since $B \subseteq A$ and $B \subseteq U$, $B \subseteq A \cap U$. Since B is $(i, j) \cdot \psi^* \alpha$ -closed relative to A, $\tau_j - \alpha cl_A(B) \subseteq A \cap U$. Since A is τ_i -open, it is $\tau_i \cdot \psi g$ -open in (X, τ_1, τ_2) . Since $A \subseteq A$ and A is $(i, j) \cdot \psi^* \alpha$ -closed in $(X, \tau_1, \tau_2), \tau_j - \alpha cl(A) \subseteq A$. Since $B \subseteq A$, $\tau_j - \alpha cl(B) \subseteq \tau_j - \alpha cl(A)$. Hence $\tau_j - \alpha cl(B) \subseteq A$. Therefore, $\tau_j - \alpha cl(B) \cap A = \tau_j - \alpha cl(B) \Rightarrow \tau_j - \alpha cl_A(B) = \tau_j - \alpha cl(B)$. Hence $\tau_j - \alpha cl(B) \subseteq A \cap U \subseteq U$. Thus B is $(i, j) \cdot \psi^* \alpha$ -closed in (X, τ_1, τ_2) .

Remark 3.32. In general $\psi^* \alpha C(\tau_i, \tau_j) \neq \psi^* \alpha C(\tau_j, \tau_i)$ which can be seen from the following example.

Example 3.33. Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\psi^* \alpha C(\tau_i, \tau_j) = \{\phi, \{c\}, \{b, c\}, \{a, c\}, X\}$ and $\psi^* \alpha C(\tau_j, \tau_i) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. This shows that $\psi^* \alpha C(\tau_i, \tau_j) \neq \psi^* \alpha C(\tau_j, \tau_i)$.

Theorem 3.34. If $\tau_1 \subseteq \tau_2$ in (X, τ_1, τ_2) then $\psi^* \alpha C(2, 1) \subseteq \psi^* \alpha C(1, 2)$.

Proof. Let $A \in \psi^* \alpha C(2, 1)$. Let $U \in \psi gO(X, \tau_1)$ such that $A \subseteq U$. Since $\psi gO(X, \tau_1) \subseteq \psi gO(X, \tau_2)$, $U \in \psi gO(X, \tau_2)$. Since A is (2, 1)- $\psi^* \alpha$ -closed, $\tau_1 - \alpha cl(A) \subseteq U$. Since $\tau_1 \subseteq \tau_2$, $\tau_2 - \alpha cl(A) \subseteq \tau_1 - \alpha cl(A)$. Thus $\tau_2 - \alpha cl(A) \subseteq U$. Hence A is (1, 2)- $\psi^* \alpha$ -closed. That is, $A \in \psi^* \alpha C(1, 2)$.

The converse of the above theorem need not be true as seen from the following example:

Example 3.35. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\psi^* \alpha C(2, 1) \subseteq \psi^* \alpha C(1, 2)$ but $\tau_1 \not\subseteq t_2$.

Definition 3.36. A set A of a bitopological space (X, τ_1, τ_2) is called $(i, j)-\psi$ star alpha open (briefly, $(i, j)-\psi^*\alpha$ -open) if its complement is $(i, j)-\psi^*\alpha$ -closed in (X, τ_1, τ_2) . The set of all $(i, j)-\psi^*\alpha$ -open sets in (X, τ_1, τ_2) is denoted by $\psi^*\alpha O(i, j)$.

Example 3.37. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\phi, \{a\}, \{b\}, \{a, b\}$ are (1, 2)- $\psi^* \alpha$ -open.

Definition 3.38. An (i, j)- ψ star alpha interior of a subset A (briefly, (i, j)- $\psi^* \alpha int(A)$) in (X, τ_1, τ_2) is defined as follows.

$$(i,j) - \psi^* \alpha int(A) = \bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } (i,j) - \psi^* \alpha \text{ open in } (X,\tau_1,\tau_2) \}$$

Proposition 3.39.

- (1). Every τ_j -open set in (X, τ_1, τ_2) is $(i, j)-\psi^*\alpha$ -open.
- (2). Every τ_j - α -open set in (X, τ_1, τ_2) is (i, j)- $\psi^* \alpha$ -open.
- (3). Every (i, j)- $\psi^* \alpha$ -open set in (X, τ_1, τ_2) is (i, j)-gp-open.

- (4). Every (i, j)- $\psi^* \alpha$ -open set in (X, τ_1, τ_2) is (i, j)-gpr-open.
- (5). Every (i, j)- $\psi^* \alpha$ -open set in (X, τ_1, τ_2) is (i, j)- \tilde{g}_a -open.
- (6). Every (i, j)- $\psi^*\alpha$ -open set in (X, τ_1, τ_2) is (i, j)-g α -open.
- (7). Every (i, j)- $\psi^* \alpha$ -open set in (X, τ_1, τ_2) is (i, j)- αg -open.
- (8). Every $(i, j) \psi^* \alpha$ -open set in (X, τ_1, τ_2) is $(i, j) \psi g$ -open.

The converses of the statements in the above proposition are not true in general as seen from the Examples 3.5, 3.6, 3.8, 3.10, 3.12, 3.14, 3.16 and 3.18.

Theorem 3.40. A subset A of a bitopological space (X, τ_1, τ_2) is $(i, j)-\psi^*\alpha$ -open if and only if $F \subseteq \tau_j - \alpha int(A)$ whenever $F \subseteq A$ and F is τ_i - ψg -closed in (X, τ_1, τ_2) .

Proof. Suppose that A is $(i, j)-\psi^*\alpha$ -open. Let $F \subseteq A$ and F be $\tau_i - \psi g$ -closed. Then $A^c \subseteq F^c$ and F^c is $\tau_i - \psi g$ -open. Since A^c is $(i, j)-\psi^*\alpha$ -closed, $\tau_j - \alpha cl(A^c) \subseteq F^c$. Since $\tau_j - \alpha cl(A^c) = [\tau_j - \alpha int(A)]^c$, $[\tau_j - \alpha int(A)]^c \subseteq F^c$. Hence $F \subseteq \tau_j - \alpha int(A)$. Conversely, suppose that $F \subseteq \tau_j - \alpha int(A)$ whenever $F \subseteq A$ and F is $\tau_i - \psi g$ -closed in (X, τ_1, τ_2) . Let U be $\tau_i - \psi g$ -open in (X, τ_1, τ_2) and $A^c \subseteq U$. Then U^c is $\tau_i - \psi g$ -closed and $U^c \subseteq A$. Hence by assumption $U^c \subseteq \tau_j - \alpha int(A)$. Therefore $[\tau_j - \alpha int(A)]^c \subseteq U$. That is $\tau_j - \alpha cl(A^c) \subseteq U$. Therefore A^c is $(i, j)-\psi^*\alpha$ -closed. Hence A is $(i, j)-\psi^*\alpha$ -open.

Theorem 3.41. If a subset A is (i, j)- $\psi^*\alpha$ -closed in (X, τ_1, τ_2) then τ_j - $\alpha cl(A)$ -A is (i, j)- $\psi^*\alpha$ -open.

Proof. Suppose that A is $(i, j)-\psi^*\alpha$ -closed in (X, τ_1, τ_2) . Let $F \subseteq \tau_j - \alpha cl(A) - A$ and F be $\tau_i - \psi g$ -closed. Since A is $(i, j)-\psi^*\alpha$ -closed, $\tau_j - \alpha cl(A)$ -A does not contain nonempty $\tau_i - \psi g$ -closed sets (by Theorem 3.26). Hence $F = \phi$. Thus $F \subseteq \tau_j - \alpha cl(A) - A$]. Hence $\tau_j - \alpha cl(A)$ -A is $(i, j)-\psi^*\alpha$ -open.

Theorem 3.42. If a set A is (i, j)- $\psi^* \alpha$ -open in (X, τ_1, τ_2) then G = X whenever G is τ_i - ψg -open and $\tau_j - \alpha int(A) \cup A^c \subseteq G$.

Proof. Suppose that A is (i, j)- $\psi^* \alpha$ -open in (X, τ_1, τ_2) , G is τ_i - ψg -open and $\tau_j - \alpha int(A) \cup A^c \subseteq G$. Then $G^c \subseteq \{\tau_j - \alpha int(A) \cup A^c\}^c = \tau_j - \alpha cl(A^c) - A^c$. Since A^c is (i, j)- $\psi^* \alpha$ -closed, $\tau_j - \alpha cl(A^c) - A^c$ contains no nonempty τ_i - ψg -closed set in (X, τ_1, τ_2) (by Theorem 3.26). Therefore $G^c = \phi$. Hence G = X.

Remark 3.43. The converse of the above theorem is not true in general as seen from the following example.

Example 3.44. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Let $A = \{c\}$ and G = X. Then G is τ_1 - ψg -open, $\tau_2 - \alpha int(A) \cup A^c = \phi \cup \{a, b\} = \{a, b\} \subseteq G$, but $A = \{c\}$ is not (1, 2)- $\psi^* \alpha$ -open.

Theorem 3.45. Let (X, τ_1, τ_2) be a bitopological space. If $x \in X$, then singleton $\{x\}$ is either τ_i - ψ g-closed or (i, j)- $\psi^* \alpha$ -open.

Proof. Let $x \in X$ and suppose that $\{x\}$ is not $\tau_i \cdot \psi g$ -closed. Then $X - \{x\}$ is not $\tau_i \cdot \psi g$ -open. Consequently, X is the only $\tau_i \cdot \psi g$ -open set containing the set $X - \{x\}$. Therefore $X - \{x\}$ is $(i, j) \cdot \psi^* \alpha$ -closed. Hence $\{x\}$ is $(i, j) \cdot \psi^* \alpha$ -open.

4. (i, j)- $\psi^* \alpha$ -closure

Definition 4.1. An (i, j)- $\psi^*\alpha$ -closure of a subset A (briefly, (i, j)- $\psi^*\alpha cl(A)$) of (X, τ_1, τ_2) is defined as $(i, j) - \psi^*\alpha cl(A) = \cap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } (i, j) - \psi^*\alpha \text{-closed in } (X, \tau_1, \tau_2)\}.$

Proposition 4.2. Let E and F be any two subsets of (X, τ_1, τ_2) . Then the following results hold.

- (a). $(i, j) \psi^* \alpha cl(\phi) = \phi \text{ and } (i, j) \psi^* \alpha cl(X) = X.$
- (b). If $E \subseteq F$, then $(i, j) \psi^* \alpha cl(E) \subseteq (i, j) \psi^* \alpha cl(F)$.
- (c). $E \subseteq (i,j) \psi^* \alpha cl(E) \subseteq \tau_j cl(E)$.
- (d). If A is $(i, j)-\psi^*\alpha$ -closed in (X, τ_1, τ_2) then $(i, j)-\psi^*\alpha cl(E)=E$.
- (e). $(i,j) \psi^* \alpha cl(E \cap F) \subseteq (i,j) \psi^* \alpha cl(E) \cap (i,j) \psi^* \alpha cl(F).$
- (f). $(i,j) \psi^* \alpha cl(E \cup F) = (i,j) \psi^* \alpha cl(E) \cup (i,j) \psi^* \alpha cl(F).$
- (g). $(i, j) \psi^* \alpha cl((i, j) \psi^* \alpha cl(E)) = (i, j) \psi^* \alpha cl(E).$

Proof.

- (a). Since ϕ and X are (i, j)- $\psi^* \alpha$ -closed in (X, τ_1, τ_2) , the results follows.
- (b). Let $E \subseteq F$. Then by the definition of $(i, j) \psi^* \alpha$ -closure, $(i, j) \psi^* \alpha cl(E) \subseteq (i, j) \psi^* \alpha cl(F)$.
- (c). From the definition of $(i, j) \psi^* \alpha$ -closure, it follows that $E \subseteq (i, j) \psi^* \alpha cl(E)$. By Proposition 3.4 every τ_j -closed set is $(i, j) \psi^* \alpha$ -closed. Therefore $E \subseteq (i, j) \psi^* \alpha cl(E) \subseteq \tau_j cl(E)$.
- (d). Follows from (c) and by the definition of $(i, j)-\psi^*\alpha$ -closure.
- (e). Since $E \cap F \subseteq E$ and $E \cap F \subseteq F$, by (b) $(i, j) \psi^* \alpha cl(E \cap F) \subseteq (i, j) \psi^* \alpha cl(E)$, $(i, j) \psi^* \alpha cl(E \cap F) \subseteq (i, j) \psi^* \alpha cl(F)$. Hence $(i, j) - \psi^* \alpha cl(E \cap F) \subseteq (i, j) - \psi^* \alpha cl(E) \cap (i, j) - \psi^* \alpha cl(F)$.
- (f). Since $E \subseteq E \cup F$ and $F \subseteq E \cup F$, by (b) $(i, j) \psi^* \alpha cl(E) \subseteq (i, j) \psi^* \alpha cl(E \cup F)$ and $(i, j) \psi^* \alpha cl(F) \subseteq (i, j) \psi^* \alpha cl(E \cup F)$. F). To prove the reverse inclusion, let $x \in (i, j) - \psi^* \alpha cl(E \cup F)$ and suppose that $x \notin (i, j) - \psi^* \alpha cl(E) \cup (i, j) - \psi^* \alpha cl(F)$. Then $x \notin (i, j) - \psi^* \alpha cl(E)$ and $x \notin (i, j) - \psi^* \alpha cl(F)$. Therefore there exist $(i, j) - \psi^* \alpha - \text{closed sets U}$ and V such that $E \subseteq U, F \subseteq V, x \notin U$ and $x \notin V$. Hence we have $E \cup F \subseteq U \cup V$ and $x \notin U \cup V$. By Theorem 3.23, $U \cup V$ is a $(i, j) - \psi^* \alpha - \text{closed set and hence } x \notin (i, j) - \psi^* \alpha cl(E \cup F)$, which is a contradiction. Hence $(i, j) - \psi^* \alpha cl(E \cup F) \subseteq$ $(i, j) - \psi^* \alpha cl(E) \cup (i, j) - \psi^* \alpha cl(F)$. Therefore $(i, j) - \psi^* \alpha cl(E \cup F) = (i, j) - \psi^* \alpha cl(E) \cup (i, j) - \psi^* \alpha cl(F)$.
- (g). Follows from the definition of $(i, j)-\psi^*\alpha$ -closure.

Theorem 4.3. The closure operator $(i, j) \cdot \psi^* \alpha$ -closure is a Kuratowski closure operator on (X, τ_1, τ_2) .

Proof. From $(i, j) - \psi^* \alpha cl(\phi) = \phi$, $A \subseteq (i, j) - \psi^* \alpha cl(A)$, $(i, j) - \psi^* \alpha cl(E \cup F) = (i, j) - \psi^* \alpha cl(E) \cup (i, j) - \psi^* \alpha cl(F)$ and $(i, j) - \psi^* \alpha cl((i, j) - \psi^* \alpha cl(E)) = (i, j) - \psi^* \alpha cl(E)$, we can say that $(i, j) - \psi^* \alpha - is$ a Kuratowski closure operator on (X, τ_1, τ_2) .

Definition 4.4. A bitopological space (X, τ_1, τ_2) is called an

- (1) $(i, j) \psi^* \alpha T_c$ -space if every $(i, j) \psi^* \alpha$ -closed subset of (X, τ_1, τ_2) is τ_j -closed in (X, τ_1, τ_2) .
- (2) $(i, j) \psi^* \alpha T_\alpha$ -space if every $(i, j) \psi^* \alpha$ -closed subset of (X, τ_1, τ_2) is $\tau_j \alpha$ -closed in (X, τ_1, τ_2) .

Proposition 4.5. Every $(i, j) - {}_{\psi^*\alpha}T_c$ -space is an $(i, j) - {}_{\psi^*\alpha}T_\alpha$ -space but not conversely.

Proof. Assume that (X, τ_1, τ_2) is an $(i, j) - {}_{\psi^*\alpha}T_c$ -space. Let A be an $(i, j) - {}_{\psi^*\alpha}$ -closed set in (X, τ_1, τ_2) . Then A is τ_j -closed. Since every τ_j -closed set is τ_j - α -closed, A is τ_j - α -closed in (X, τ_1, τ_2) . Thus (X, τ_1, τ_2) is an $(i, j) - {}_{\psi^*\alpha}T_{\alpha}$ -space. \Box

Example 4.6. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then (X, τ_1, τ_2) is an $(i, j) - \psi^* \alpha T_\alpha$ -space but not an $(i, j) - \psi^* \alpha T_c$ -space, since the subsets $\{b\}$ and $\{c\}$ are $(1, 2) - \psi^* \alpha$ -closed but not τ_2 -closed in (X, τ_1, τ_2) .

Theorem 4.7. For a space (X, τ_1, τ_2) the following statements are equivalent.

(1) (X, τ_1, τ_2) is an $(i, j) - \psi^* \alpha T_\alpha$ -space.

(2) For each $x \in X$, $\{x\}$ is either τ_i - ψg -closed or τ_j - α -open.

Proof. (1) \Rightarrow (2) Let $x \in X$ and $\{x\}$ be not a τ_i - ψg -closed set in (X, τ_1, τ_2) . Then $X - \{x\}$ is not τ_i - ψg -open. Hence X is the only τ_i - ψg -open set containing $X - \{x\}$. This implies that $X - \{x\}$ is an (i, j)- $\psi^* \alpha$ -closed set of (X, τ_1, τ_2) . Since X is an $(i, j) - \psi^* \alpha T_\alpha$ -space, $X - \{x\}$ is a τ_j - α -closed set in (X, τ_1, τ_2) or equivalently $\{x\}$ is τ_j - α -open in (X, τ_1, τ_2) .

(2) \Rightarrow (1) Let A be an (i, j)- $\psi^* \alpha$ -closed set in (X, τ_1, τ_2) and $x \in \tau_j - \alpha cl(A)$. We show that $x \in A$. By (2), $\{x\}$ is either τ_i - ψg -closed or τ_j - α -open.

Case 1: Assume that $\{x\}$ is τ_j - α -open. Then $X - \{x\}$ is τ_j - α -closed. If $x \notin A$, then $A \subseteq X - \{x\}$. Since $x \in \tau_j - \alpha cl(A)$, $x \in [X - \{x\}]$, which is a contradiction. Hence $x \in A$.

Case 2: Assume that $\{x\}$ is τ_i - ψg -closed and $x \notin A$. Then τ_j - $\alpha cl(A)$ -A contains a τ_j - ψg -closed set $\{x\}$. This contradicts Theorem 3.26. Therefore $x \in A$.

References

- [1] N.Balamani and A.Parvathi, Between α -closed sets and \tilde{g}_a -closed sets, International Journal of Mathematical Archive, 7(6)(2016), 1-10.
- [2] N.Balamani and A.Parvathi, Separation axioms by ψ^{*}α-closed sets, International Journal of Engineering Sciences & Research Technology, 5(10)(2016), 183-186.
- [3] P.Bhattacharyya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 376-382.
- [4] O.A.El-Tantawy and H.M.Abu-Donia, Generalized Separation Axioms in bitopological space, The Arabian J.for Science and Engg., 30(1A)(2005), 117-129.
- [5] T.Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35(1986), 19-28.
- [6] T.Fukutake, P.Sundaram and M.Sheik John, ω-closed sets, ω-open sets and ω-continuity in bitopological spaces, Bull.
 Fukuoka Univ. Ed., 51(III)(2002), 1-9.
- [7] J.C.Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- [8] F.H.Khedr and Hanan S.Al Saddi, On pairwise semi generalized closed sets, JKAU: Sci., 21(2)(2009 A.D/1430), 269-295.
- [9] M.Lellis Thivagar and Nirmala Rebacca Paul, On \tilde{g}_a -sets in bitopological spaces, Malaya Journal of Matematics, 4(1)(2013), 89-96.
- [10] N.Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [11] N.Ramya and A.Parvathi, A study on \hat{g} -closed sets in topological, bitopological and biminimal structure spaces, Ph.D Thesis, Avinashilingam University, Coimbatore, (2013).
- [12] M.Sheik John and P.Sundaram, 2004 g*-closed sets in bitopological spaces, Indian J. Pure. Appl. Math., 35(1)(2004), 71-80.
- [13] M.K.R.S.Veera Kumar, 2000 Between semi-closed sets and semi-pre closed sets, Rend. Istit. Mat. Univ. Trieste, XXXXII(2000), 25-41.