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Abstract: The effects of non-Newtonian nature of blood and pulsatility on flow through stenosed artery have been investigated. It is

of interest to note that the thickness of the viscous flow region with axial distances. Mathematical modeling for poiseuille
flow of blood fluid model with an axial velocity slip along an artery wall in presence of magnetic field, is considered. It

is observed that when Hartmann number increases the fluid velocity is greatly affected. Many standard result regarding

Newtonian fluid flows, uniform and steady flow in an artery can be obtained in the present analysis as the special cases.
Applications of this theoretical modelling to cardiovascular diseases and the role of slip in the better functioning of the

diseased or occluded arteries are included in brief.
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1. Introduction

Cardiovascular system of man and animals is characteristically a branch network of distensible tubes which carry blood from

the heart to the periphery and back again [1, 9, 28]. It essential comprises of cardio the heart, blood vessel arteries, veins

and capillaries and blood a complex fluid which altogether forms a closed system and regulates body function. The primary

function of circulation is to transport nutrients to tissues and to remove metabolic product. Human blood is considered as

a suspension of tiny cells or corpuscles that are suspended in a clear fluid plasma [3, 28]. Many researcher [13, 24] have

considered blood analyses, presence of different cells in blood has been totally ignored. Further this approach may provide

satisfactory results in explaining certain aspects of blood in large arteries, yet to fail to explain the flow behavior of blood

in vessels having small diameter [2, 27]. An increase in shear, causes the disaggregation of rouleax and deformation of

individual cells with the result that long axes are aligned with direction of flow to minimize the viscous resistance [1–3].

Further blood possesses a finite yield stress and a particular type of Non-Newtonian fluid bearing the property can account

for this feature of blood which has been reported by many investigator [1, 3, 7, 11, 22].

Dintenfass [6] and other [12–14, 16] have pointed out that viscosity of significant factor in pathogenesis of ischemia and

infraction and may play an important role in hypertension and other cardiovascular diseases. It is therefore necessary to
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measure blood viscosity accurately. In order to measure blood viscosity and flow variables [4, 9, 21, 26, 27] and other [3, 5, 7]

have proposed theoretical models on blood flows. In most of the theoretical models on blood flow, usual no-slip condition

at vessel wall is considered [3, 16–18, 20] and other [8, 15, 19] have suggested the likely presence of a red cell slip at vessel

wall or in its immediate neighbourhood.In view of a possible existences of slip at tube wall [8, 16, 17]and other [10, 13] have

considered a velocity slip condition at blood vessel wall or at interface of fluid in their modelling.In view of the importance of

slip and its physiological significance for blood flow through an artery, in the present modelling a slip condition for velocity

at tube wall of three different location of vs. is employed [25]. Here we consider for one dimensional flow axial velocity

v̂ = (0, 0, uz (r)) the equation for steady tube flow 0 ≤ r ≤ R of blood in (r, θ, z) co-ordinate system reduce to obtain the

following form in presence of transverse magnetic effect.
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= 0 (1)
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From which we observed that pressure does not vary in the radial r̂ circumferential θ̂ and axial ẑ direction and that pressure

remain constant across any cross-section of the tube and p̂ is a function of only ẑ that is p̂ = p(ẑ) and so pressure gradient

term in the last equation above becomes dp̂
dẑ

. Then (3)
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2. Solving the Equation (4)

r2 d
2uZ
dr2

+ duZ
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= Kr2, where K = −C
µ
Rer − M2r

µ
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1

4

[
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Again, shear stress component at any distance r from the tube axis is given by

τrz = µ
duz
dr

= µe0 (6)

τrz = µ
r

2

[
−C
µ
Re −

M2

µ

]
(7)

Express for wall shear stress tw can be obtained from the formula

τw = τrz(r = R) (8)

τw = −R
2

[
CRe +M2] (9)
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Using Equation (7) and τZ(r0) = τ0 express for τ0 will lead to the form

τ0 = −r0
2

[
CRe +M2] (10)

In between τ0 and τw there may arises two cases wall shear stress is greater and that yield stress. In case τ0〉 τw that is if

r0〉R then there will occur no flow accordingly velocity function will become

uz =
r2

4

[
−C
µ
Re −

M2

µ

]

Also Bingham equation may be described in the following form

e0 = f (τrz) =
1

µ
(τrz − τ0), τrz ≥ τ0 (11)
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1
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[
−r0

2

(
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r0
2

(
CRe +M2)] , r = r0

= 0, τrz ≤ τ0 (12)

In the above, vanishing of strain rate that is e0

uz = constant = u0, When τ = τ0 (13)

Where u0 is the core velocity at r = r0 (core radius). As such for blood flow when r0 < R there arises two region 0 ≤ r ≤ r0

and r0 ≤ r ≤ R it is clear for region between 0 and r0 equation representing the flow is

duZ
dr

= 0 0 ≤ r ≤ r0 (14)

Which after integration give rise to the form uz = u0, 0 ≤ r ≤ r0 indicating the velocity profile will become flat in the region

and for r0 ≤ r ≤ R velocity uz will show deviation from flat profile and Bingham equation (11) has to be applied for this

domain of blood flow the same equation it is easily seen that

duZ
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=
d
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[
r2

4µ

(
−CRe −M2)]

duZ
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=

[
r0 − r

2µ

(
CRe +M2)] ; r0 ≤ r ≤ R (15)

The velocity slip condition at vessels wall is

uZ = uSr = R (16)

Where us is the constant slip velocity at tube wall in axial distance. As a result of integration between r and R we have

∫ R

r

duZ
dr

dr =

∫ R

r

r0 − r
2µ

(
CRe +M2) dr

uz = us +

(
CRe +M2

)
(R− r)

4µ
[(R+ r)− 2r0] ; r0 ≤ r ≤ R (17)

At r0 = r expression for core velocity can be obtained from equation (17)

uz = us +

(
CRe +M2

)
(R− r)

4µ
[(R− r0)] (18)

471



Mathematical Modeling for Poiseuille Flow of Blood Fluid Model with an Axial Velocity and Variation of Apparent Viscosity Slip Along an
Artery Wall in Presence of Magnetic Field

And for all values of r between 0 and r0 velocity function is

uo = us; 0 ≤ r ≤ r0 (19)

Thus from above expression and consideration velocity distribution uz can be re-written in the following manners

uz =


uz(r), r0 ≤ r ≤ R

u0(r), 0 ≤ r ≤ r0

0, r〉R

(20)

Where uz(r) and u0 are given in equation (17) and (18) respectively. The rate of volume flow can be found from

Q =

∫ R

r=0

2πruzdr

By integration after using the equation (16), (17) and (19)

Q = 2π

∫ r

0

ru0dr + 2π

∫ R

r0

ruzdr

Q = πR2us +
πR4

8µ

{(
CRe +M2)− 4

3

(
−2τ0
R

)
+

1

3

(
−2τ0
R

)4 (
CRe +M2)−3

}
(21)

And expression for apparent viscosity µa can be found from the formula
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And using equation (22), apparent viscosity take the following
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The parabolic velocity profile for poiseuille flow the takes the form

uz(r) =

(
CRe +M2

) (
R2 − r2

)
4µ

; 0 ≤ r ≤ R (23)

Employing an axial velocity slip at the tube wall, instead of usual no slip in velocity along the wall the velocity function for

poiseuille flow will takes the form

uz(r) = us +

(
CRe +M2

) (
R2 − r2

)
4µ

; 0 ≤ r ≤ R (24)

In the aforesaid cases velocity is maximum at the axis of the tube and expression for maximum velocity obtained from

equation (23) and (24) are given by

um1 =

(
CRe +M2

)
R2

4µ
(25)

um1 = us +

(
CRe +M2

)
R2

4µ
(26)
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Expression for rate of volume flow Q can be accordingly obtained for above two cases in the form

Q1 =

(
CRe +M2

)
πR4

8µ
(27)

Q2 = πR4us +Q1 (28)

Apparent Viscosity: Apparent viscosity µa of blood is calculated from equation

µa =

[
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8usµ
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]−1
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3
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1

3
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R

)(
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)4
]

and variation of µa with yields stress for the cases of velocity and no-slip at vessel wall in three different location of CVS is

include in the Table 2. The following observation can be seen from the table

(1). As expected, µa decreases with an inclusion of velocity slip at tube wall in all three arteries.

(2). t0 increases, µa decreases for both slip and no-slip cases in velocity at an artery wall.

(3). As artery radius from larger artery to smaller one values of, µa are found to increases for both slip and non-slip cases.

However as tube radius decreases from coronary blood vessel to a smaller tube arteriole, µa decreases in the case of slip.

(4). Values of, µa are attained the greatest arteriole when t0 = 0 with no-slip and the least also in arteriole when t0 = 0

with no slip.

(5). As µa increases as tube radius decreases, therefore apparent viscosity exhibits Inverse Fahraeus-Lindquist effect. Also as

tube radius decreases µa decreases so µa shows Fahraeus-Lindquist. Thus apparent viscosity shows Fahraeus-Lindquist

effect and its inversion inverse Fahraeus-Lindquist effect both. Thus Table 1 shows the variation of Apparent Viscosity

at three different location.

Carotid Coronary Arteriole

With no slip

(us=0.0cm/sec)

With slip

us=0.1cm/sec

With no slip

(us=0.0cm/sec)

With slip

us=0.1cm/sec

With no slip

(us=0.0cm/sec)

With slip

us=0.1cm/sec

2.0000 1.0000 2.0000 1.3255 2.0143 0.0315066

1.9389 .9870 1.9899 1.3210 1.9447 0.031491

1.9750 .9677 1.9749 1.3144 1.8541 0.031566

Table 1. Variation of Apparent viscosity µa at three diffrerent location of CVS

S. No. Name of an artery Radium (R∗) × 10−2m Pressure gradient (C∗) × 10kg. m−2.s−2 r0/R∗∗

τ0 = 0.00 τ0 = 0.10

01 Carotid 0.40 10.00 0.0000 0.0500

02 Coronary 0.15 139.74 0.0000 0.0095

03 Arteriole 0.008 400.00 0.0000 0.0625

Table 2. Data for three different locations in Cardiovascular System (CVS)

3. Conclusion

In this paper we have attempted to study the behavior of poiseuille flow of Bingham plastic fluid model for blood flow with

velocity in presence of magnetic effect. A steady one-dimensional flow of blood (-a Bingham fluid) subject to the boundary
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conditions of velocity slip, suggested in the models of [15, 16] Chaturani and Biswas [4] and, Prahlad and Schultz [21], for

three different locations of CVS, in presence of magnetic effect is investigated. Table 2 shows the data for three different

location in cvs. Analytic expressions for velocity, flow rate, shear stress at wall, yield stress and apparent viscosity are

presented. Axial velocity appears to be a function of pressure gradient C, radial coordinate r, tube semi-diameter R, critical

radius r0 (or yield stress τ0), Bingham fluid viscosity µa and us axial velocity slip at the boundary.

Important observations of the present model include the following:

If shear stress τrz at a distance is not higher than a finite yield stress, blood will not flow. If shear stress is not lower than

its yield value, blood flow will be possible. The present model includes Poiseuille flow models with velocity slip and zero

ship at vessel wall and steady one-dimensional Bingham plastic fluid model with zero wall slip, as its special cases. Flow

variables indicate distinct behavior for vanishing and non-vanishing yield stress.

Flow variables indicate distinct behavior for different Hartmann number at different yield stress. Velocity profiles indicate a

parabolic profile in all arteries and for slip and no-slip cases with the usual maximum magnitude at tube axis and a minimum

velocity at the boundary in case of vanishing yield stress. These blunted for flat profiles in velocity (τ0 > 0) clearly exposes

the non-Newtonian nature of blood. Assumption that velocity variation in axial direction is negligible as compared to

its variation in radial direction, may lead to the implication that the length of the artery is too large as compared to the radius.

Velocity profile increases when Hartmann number M increases in different fluid parameter viz., yield stress τ0 (≥ 0). The

nature of velocity profile is also same in no slip. Velocity profile for a full scale of dimensionless radial co-ordinate r
R

from

the tube axis to vessel will clearly state that in Figure 1 to Figure 6

Figure 1. Variation of velocity profiles Uz with Hartmann number M at Carotid when τ0 = 0
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Figure 2. Variation of velocity profiles Uz with Hartmann number M at Carotid when τ0 = 0.10

Figure 3. Variation of velocity profiles Uz at Hartmann number M at Coronary when τ0 = 0

Figure 4. Variation of velocity profiles Uz with Hartmann number M at coronary when τ0 = 0.10
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Figure 5. Variation of velocity profiles Uz with Hartmann number M at Arteriole when τ0 = 0.00

Figure 6. Variation of velocity profiles Uz with Hartmann number M at Arteriole when τ0 = 0.10
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