ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

A Subclass of Starlike Functions Defined with a Differential Operator

Research Article

Jitendra Awasthi^{1*}

1 Department of Mathematics, S.J.N.P.G.College, Lucknow, Uttar Pradesh, India.

Abstract: This paper deals with a new subclass of starlike functions $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$. Coefficients inequality, distortion theorems and closure theorems have been obtained for this class. Further radii of starlikeness and convexity are also obtained for this class.

MSC: 30C45

Keywords: Analytic functions, univalent, al-oboudi differential operator, extremal functions, Starlikeness, convexity.

© JS Publication.

1. Introduction

Let A_p denote the class of functions of the form

$$f(z) = z + \sum_{k=1}^{\infty} a_{p+k} z^{p+k} (p \ge 1), \tag{1}$$

which are analytic and univalent in the unit disk $\Delta = \{z : |z| < 1\}$. Al-Oboudi [1] had introduced a differential operator D_{λ}^n for a function $f(z) \in A_p$ as

$$D_{\lambda}^{0}f(z) = f(z),$$

$$D_{\lambda}^{1}f(z) = D_{\lambda}f(z) = (1 - \lambda)f(z) + \lambda f'(z),$$

$$\dots$$

$$D_{\lambda}^{n}f(z) = D_{\lambda}(D_{\lambda}^{n-1}f(z)),$$
(2)

for $n \in \mathbb{N} = \{1, 2, 3, ...\}$ and $\lambda \geq 0$. It is easy to see that

$$D_{\lambda}^{n} f(z) = z + \sum_{k=1}^{\infty} [1 + (p+k-1)\lambda]^{n} a_{p+k} z^{p+k}, \ (p \ge 1).$$
(3)

With the help of differential operator D_{λ}^n , we define a subclass $A_{n,\lambda}(p,\mu,\beta,\gamma,\delta)$ for $f(z) \in A_p$ such that

$$\left| \frac{\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} - \delta}{\mu \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} + (1 - \gamma)} \right| < \beta, \ (z \in \Delta), \tag{4}$$

 $^{^*}$ E-mail: drjitendraawasthi@gmail.com

where $0 \le \mu \le 1$, $0 < \beta \le 1$, $0 \le \gamma \le 1$, $0 \le \delta \le 1$, $\lambda \ge 0$ and $\lambda \ge 0$. In particular, the class $A_{n,1}(1,\mu,\beta,\gamma,1)$, $A_{0,1}(1,\mu,\beta,\gamma,1)$, $A_{0,1}(1,1,\beta,0,1)$ and $A_{0,1}(1,0,1,0,1)$ are studied by Aouf and et. [2] Lee and et. [4] Padmanadban [5] and Singh [6] respectively. Let T_p denote the subclass of A_p whose elements can be expressed in the form

$$f(z) = z - \sum_{k=1}^{\infty} a_{p+k} z^{p+k} (a_{p+k} \ge 0, \ p \ge 1).$$
 (5)

We denote $A_{n,\lambda}(p,\mu,\beta,\gamma,\delta) \cap T_p = A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$. Taking $p=1,\ \delta=1$, the class $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$ reduces to $S_{n,\lambda}^*(\mu,\beta,\gamma)$. Which was defined and studied by Hossen [3]. The object of this paper is to derive several properties of the class $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$ such as coefficients inequality, distortion theorem and closure theorems.

2. Coefficient Inequalities

Theorem 2.1. A function f(z) of the form (5) is in the class $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$ if and only if

$$\sum_{k=1}^{\infty} \left[\left\{ 1 + (p+k-1)\lambda \right\} (1+\beta\mu) + \beta(1-\gamma) - \delta \right] \left\{ 1 + (p+k-1)\lambda \right\}^n a_{p+k} \le \left\{ \beta(1-\gamma+\mu) + 1 - \delta \right\}. \tag{6}$$

The result is sharp. The extremal function function is given by

$$f(z) = z - \frac{\{\beta(1 - \gamma + \mu) + 1 - \delta\}}{[\{1 + (p + k - 1)\lambda\}(1 + \beta\mu) + \beta(1 - \gamma) - \delta]\{1 + (p + k - 1)\lambda\}^n} z^{p+k}.$$
 (7)

Proof. First let $f(z) \in A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$, then from (4) we have

$$\left|\frac{\frac{D_{\lambda}^{n+1}f(z)}{D_{\lambda}^{n}f(z)}-\delta}{\mu\frac{D_{\lambda}^{n+1}f(z)}{D_{\lambda}^{n}f(z)}+(1-\gamma)}\right| = \left|\frac{\{z-\sum_{k=1}^{\infty}[1+(p+k-1)\lambda]^{n+1}a_{p+k}z^{p+k}\}-\delta\{z-\sum_{k=1}^{\infty}[1+(p+k-1)\lambda]^{n}a_{p+k}z^{p+k}\}}{\mu\{z-\sum_{k=1}^{\infty}[1+(p+k-1)\lambda]^{n+1}a_{p+k}z^{p+k}\}+(1-\gamma)\{z-\sum_{k=1}^{\infty}[1+(p+k-1)\lambda]^{n}a_{p+k}z^{p+k}\}}\right| < \beta,$$

or

$$\left| \frac{(1-\delta)z - \sum_{k=1}^{\infty} [1 + (p+k-1)\lambda - \delta][1 + (p+k-1)\lambda]^n a_{p+k} z^{p+k}}{(1-\gamma+\mu)z - \sum_{k=1}^{\infty} [\mu\{1 + (p+k-1)\lambda\} + 1 - \gamma][1 + (p+k-1)\lambda]^n a_{p+k} z^{p+k}} \right| < \beta.$$
 (8)

Since $Re(z) \leq |z|$ for all z, we find from (8) that

$$Re\left\{\frac{\sum_{k=1}^{\infty} [1+(p+k-1)\lambda-\delta][1+(p+k-1)\lambda]^n a_{p+k} z^{p+k} - (1-\delta)z}{(1-\gamma+\mu)z - \sum_{k=1}^{\infty} [\mu\{1+(p+k-1)\lambda\}+1-\gamma][1+(p+k-1)\lambda]^n a_{p+k} z^{p+k}}\right\} < \beta.$$

Choosing values of z on the real axis so that $\frac{D_{\lambda}^{n+1}f(z)}{D_{\lambda}^{n}f(z)}$ is real and letting $z\to 1^-$ through real values, we have

$$\sum_{k=1}^{\infty} [1 + (p+k-1)\lambda - \delta] [1 + (p+k-1)\lambda]^n a_{p+k} - (1-\delta) < \beta (1-\gamma+\mu) - \sum_{k=1}^{\infty} \beta [\mu \{1 + (p+k-1)\lambda\} + 1 - \gamma] [1 + (p+k-1)\lambda]^n a_{p+k},$$

or

$$\sum_{k=1}^{\infty} [\{1 + (p+k-1)\lambda\}(1+\beta\mu) + \beta(1-\gamma) - \delta]\{1 + (p+k-1)\lambda\}^n a_{p+k} \le \{\beta(1-\gamma+\mu) + 1 - \delta\}.$$

Conversely let inequality (6) holds. Then

$$\begin{split} \left| D_{\lambda}^{n+1} f(z) - \delta D_{\lambda}^{n} f(z) \right| - \beta \left| \mu D_{\lambda}^{n+1} f(z) + (1 - \gamma) D_{\lambda}^{n} f(z) \right| &= \left| (1 - \delta) z - \sum_{k=1}^{\infty} [1 + (p + k - 1)\lambda - \delta] [1 + (p + k - 1)\lambda]^{n} a_{p+k} z^{p+k} \right| \\ &- \beta \left| (1 - \gamma + \mu) z - \sum_{k=1}^{\infty} [\mu \{ 1 + (p + k - 1)\lambda \} + 1 - \gamma] [1 + (p + k - 1)\lambda]^{n} a_{p+k} z^{p+k} \right| \\ &\leq \sum_{k=1}^{\infty} [1 + (p + k - 1)\lambda - \delta] [1 + (p + k - 1)\lambda]^{n} a_{p+k} - (1 - \delta) \\ &- \beta (1 - \gamma + \mu) + \sum_{k=1}^{\infty} \beta [\mu \{ 1 + (p + k - 1)\lambda \} + 1 - \gamma] [1 + (p + k - 1)\lambda]^{n} a_{p+k} \\ &\leq \sum_{k=1}^{\infty} [\{ 1 + (p + k - 1)\lambda \} (1 + \beta \mu) + \beta (1 - \gamma) - \delta] \{ 1 + (p + k - 1)\lambda \}^{n} a_{p+k} - \{ \beta (1 - \gamma + \mu) + 1 - \delta \} \\ &\leq 0, \end{split}$$

by the hypothesis. Hence by the maximum modulus theorem, we have $f(z) \in A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$.

Corollary 2.2. Let $f(z) \in T_p$ be in the class $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$. Then

$$a_{p+k} \le \frac{\{\beta(1-\gamma+\mu)+1-\delta\}}{[\{1+(p+k-1)\lambda\}(1+\beta\mu)+\beta(1-\gamma)-\delta]\{1+(p+k-1)\lambda\}^n},\tag{9}$$

for $(k \ge 1, p \ge 1)$. Equality in (9) holds for the function f(z) given by (7).

3. Distortion Theorem

Theorem 3.1. Let $f(z) \in T_p$ be in the class $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$ with $0 \le \mu \le 1, 0 < \beta \le 1, 0 \le \gamma \le 1, 0 \le \delta \le 1, \lambda \ge 0$ and $n \ge 0, p \ge 1$. Then for |z| = r < 1,

$$r - \frac{\{\beta(1-\gamma+\mu)+1-\delta\}}{[(1+p\lambda)(1+\beta\mu)+\beta(1-\gamma)-\delta](1+p\lambda)^n}r^{p+1} \le |f(z)|$$

$$\le r + \frac{\{\beta(1-\gamma+\mu)+1-\delta\}}{[(1+p\lambda)(1+\beta\mu)+\beta(1-\gamma)-\delta](1+p\lambda)^n}r^{p+1}.$$
(10)

The result are sharp.

Proof. From inequality (6), it follows that

$$\sum_{k=1}^{\infty} [\{1 + (p+k-1)\lambda\}(1+\beta\mu) + \beta(1-\gamma) - \delta]\{1 + (p+k-1)\lambda\}^n a_{p+k} \le \{\beta(1-\gamma+\mu) + 1 - \delta\}.$$

This implies that

$$\sum_{k=1}^{\infty} a_{p+k} \le \frac{\{\beta(1-\gamma+\mu)+1-\delta\}}{[(1+p\lambda)(1+\beta\mu)+\beta(1-\gamma)-\delta](1+p\lambda)^n}.$$
(11)

Consequently, for |z| = r < 1, we obtain

$$|f(z)| \le r + r^{p+1} \sum_{k=1}^{\infty} a_{p+k},$$

or

$$|f(z)| \le r + \frac{\{\beta(1-\gamma+\mu) + 1 - \delta\}}{[(1+p\lambda)(1+\beta\mu) + \beta(1-\gamma) - \delta](1+p\lambda)^n} r^{p+1},\tag{12}$$

and

$$|f(z)| \ge r - r^{p+1} \sum_{k=1}^{\infty} a_{p+k},$$

or

$$|f(z)| \ge r - \frac{\{\beta(1-\gamma+\mu)+1-\delta\}}{[(1+p\lambda)(1+\beta\mu)+\beta(1-\gamma)-\delta](1+p\lambda)^n} r^{p+1}.$$
 (13)

From (12) and (13) inequality (10) follows. The bounds in (10) are attained for the function f(z) given by

$$f(z) = z - \frac{\{\beta(1 - \gamma + \mu) + 1 - \delta\}}{[(1 + p\lambda)(1 + \beta\mu) + \beta(1 - \gamma) - \delta](1 + p\lambda)^n} z^{p+k}.$$
 (14)

4. Closure Theorems

Theorem 4.1. The class $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$ is closed under convex linear combination.

Proof. Let each of the functions $f_1(z)$ and $f_2(z)$ given by

$$f_j(z) = z - \sum_{k=1}^{\infty} a_{p+k,j} z^{p+k} (a_{p+k,j} \ge 0, \ j = 1, 2. \ p \ge 1), \tag{15}$$

be in the class $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$. Then it is sufficient to show that the function F(z) defined by

$$F(z) = tf_1(z) + (1 - t)f_2(z) \ (0 \le t \le 1), \tag{16}$$

is also in the class $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$. Since for $0 \le t \le 1$,

$$F(z) = z - \sum_{k=1}^{\infty} [ta_{p+k,1} + (1-t)a_{p+k,2}]z^{p+k}.$$

Then with the aid of Theorem 2.1, we have

$$\sum_{k=1}^{\infty} [\{1+(p+k-1)\lambda\}(1+\beta\mu)+\beta(1-\gamma)-\delta]\{1+(p+k-1)\lambda\}^n [ta_{p+k,1}+(1-t)a_{p+k,2}] \leq \{\beta(1-\gamma+\mu)+1-\delta\}.$$

Which implies that $F(z) \in A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$.

Theorem 4.2. Let

$$f_0(z) = z, \quad and$$

$$f_k(z) = z - \frac{\{\beta(1 - \gamma + \mu) + 1 - \delta\}}{[\{1 + (p + k - 1)\lambda\}(1 + \beta\mu) + \beta(1 - \gamma) - \delta]\{1 + (p + k - 1)\lambda\}^n} z^{p+k}.$$

Then $f(z) \in A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$ if and only if it can be expressed in the form

$$f(z) = \sum_{k=0}^{\infty} t_k f_k(z), \text{ where}$$
(17)

$$t_k \ge 0 \ (k \ge 1) \quad and \quad \sum_{k=0}^{\infty} t_k = 1.$$
 (18)

Proof. First let f(z) can be expressed in the form (17). Then

$$f(z) = \sum_{k=0}^{\infty} t_k f_k(z)$$

$$= z - \sum_{k=1}^{\infty} \frac{\{\beta(1-\gamma+\mu) + 1 - \delta\}}{[\{1+(p+k-1)\lambda\}(1+\beta\mu) + \beta(1-\gamma) - \delta]\{1+(p+k-1)\lambda\}^n} t_k z^{p+k}$$

Then, it follows that

$$\sum_{k=1}^{\infty} [\{1 + (p+k-1)\lambda\}(1+\beta\mu) + \beta(1-\gamma) - \delta] \{1 + (p+k-1)\lambda\}^{n}$$

$$\times \frac{\{\beta(1-\gamma+\mu) + 1 - \delta\}}{[\{1 + (p+k-1)\lambda\}(1+\beta\mu) + \beta(1-\gamma) - \delta] \{1 + (p+k-1)\lambda\}^{n}} t_{k}$$

$$= \{\beta(1-\gamma+\mu) + 1 - \delta\} \sum_{k=1}^{\infty} t_{k} = \{\beta(1-\gamma+\mu) + 1 - \delta\}(1-t_{0})$$

$$\leq \{\beta(1-\gamma+\mu) + 1 - \delta\}.$$

Therefore, by Theorem 2.1, $f(z) \in A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$.

Conversely, let the function $f(z) \in T_p$ is in the class $A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$, then we have

$$a_{p+k} \le \frac{\{\beta(1-\gamma+\mu)+1-\delta\}}{[\{1+(p+k-1)\lambda\}(1+\beta\mu)+\beta(1-\gamma)-\delta]\{1+(p+k-1)\lambda\}^n}, (k \ge 1, p \ge 1),$$

Setting

$$t_k = \frac{[\{1 + (p+k-1)\lambda\}(1+\beta\mu) + \beta(1-\gamma) - \delta]\{1 + (p+k-1)\lambda\}^n}{\{\beta(1-\gamma+\mu) + 1 - \delta\}} a_{p+k}, \text{ and}$$

$$t_0 = 1 - \sum_{k=1}^{\infty} t_k.$$

It follows that

$$f(z) = \sum_{k=0}^{\infty} t_k f_k(z)$$

This complete the proof.

5. Radius of Starlikeness

Theorem 5.1. If $f(z) \in A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$ then the function f(z) is starlike in the disk $0 < |z| < r = r_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$, where

$$r = \inf \left[\frac{\left[\{ 1 + (p+k-1)\lambda \} (1+\beta\mu) + \beta(1-\gamma) - \delta \} \{ 1 + (p+k-1)\lambda \}^n}{\{ \beta(1-\gamma+\mu) + 1 - \delta \} (p+k)} \right]^{\frac{1}{p+k-1}},$$
(19)

for $k \ge 1$, $p \ge 1$.

Proof. It is enough to show that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 \text{ for } |z| < 1,$$

or

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| = \left| \frac{-\sum_{k=1}^{\infty} (p+k-1)a_{p+k}z^{p+k}}{z - \sum_{k=1}^{\infty} a_{p+k}z^{p+k}} \right| < 1,$$

or

$$\sum_{k=1}^{\infty} (p+k-1)a_{p+k}z^{p+k-1} < 1 - \sum_{k=1}^{\infty} a_{p+k}z^{p+k-1},$$

or

$$\sum_{k=1}^{\infty} (p+k)a_{p+k}z^{p+k-1} < 1.$$

It is easily to see that (19) holds if

$$|z|^{p+k-1} < \left\lceil \frac{[\{1+(p+k-1)\lambda\}(1+\beta\mu)+\beta(1-\gamma)-\delta]\{1+(p+k-1)\lambda\}^n}{\{\beta(1-\gamma+\mu)+1-\delta\}(p+k)} \right\rceil.$$

This complete the proof.

6. Radius of Convexity

Theorem 6.1. If $f(z) \in A_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$ then the function f(z) is convex in the disk $0 < |z| < r = r_{n,\lambda}^*(p,\mu,\beta,\gamma,\delta)$, where

$$r = \inf \left[\frac{\left[\{ 1 + (p+k-1)\lambda \} (1+\beta\mu) + \beta(1-\gamma) - \delta \} \{ 1 + (p+k-1)\lambda \}^n}{\{ \beta(1-\gamma+\mu) + 1 - \delta \} (p+k)^2} \right]^{\frac{1}{p+k-1}}, \tag{20}$$

for $k \ge 1$, $p \ge 1$.

Proof. Upon noting the fact that f(z) is convex if and only if zf'(z) is starlike, the Theorem 6.1 follows.

References

- F.M.Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Sci., 27(2004), 1429-1436.
- [2] M.K.Aouf, H.M.Hossen and A.Y.Lashin, Certain class of prestarlike functions defined by Salagean operator, South. Asian Bull. of Math., 29(2005), 1029-1044.
- [3] H.M.Hossen, Certain class of prestarlike functions defined by Al-Oboudi differential operator, ARPN Journal of Science and Technology, 5(12)(2015).
- [4] S.H.Lee, Y.C.Kim and N.E.Cho, A subclass of analytic functions with negative coefficients, Math. Japon., 4(1989), 597-605.
- [5] K.S.Padmanabhan, On certain classes of starlike functions in the unit disc, J. Indian Math. Soc., 32(1968), 89-103.
- [6] R.Singh, On a class of starlike functions, J. Indian Math. Soc., 32(1968), 207-213.