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1. Introduction and Preliminaries

In 1922, S. Banach proved a fixed point theorem for contraction mapping in complete metric space. The study of fixed points

of mappings satisfying certain contraction conditions has been at the center of rigorous research activity. In many years,

authors generalized the Banach contraction principle in various spaces such as quasi-metric spaces, fuzzy metric spaces,

2-metric spaces, cone metric spaces, cone Banach space, partial metric spaces and generalized metric spaces and so on. In

1984 [5], Khan M.S., Swaleh M., Sessa S are discuss the concepts of fixed point theorems by altering distances between

the points of a complete metric space. In 2012 [3], Hemant Kumar Nashine, Hassen Aydi are extended the concept of

Common fixed point theorems for four mappings through generalized altering distances in ordered metric spaces. In 2017

[9], R.Krishnakumar and D.Dhamodharan are establish the concepts of common fixed point of four mapping with contractive

modulus on cone Banach space. In this paper, we proved the existence of unique common fixed point of four mapping in

contractive modulus and weakly compatible maps on complete metric space.

Definition 1.1. Let X be a nonempty set, a distance function d : X ×X → [0,∞) is called a metric on X if it satisfies the

following conditions with

(1). d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y, ∀ x, y ∈ X,

(2). d(x, y) = d(y, x), ∀ x, y ∈ X,

(3). d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X.
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Then (X, d) is called a metric space.

Example 1.2. Let X = R and d : X ×X → [0,∞) such that d(x, y) = |x − y|. Then (X, d) is a metric space (Euclidean

metric space).

Definition 1.3. Let (X, d) be a metric space and {xn} be a sequence in X. Then {xn} converges to x in X whenever for

every ε > 0 there is a natural number n ∈ N such that d(xn, x) < ε for all n ≥ N . It is denoted by limn→∞ xn = x or

xn → x.

Definition 1.4. Let (X, d) be a metric space and {xn} be a sequence in X. Then {xn} is a Cauchy sequence whenever for

every ε > 0 there is a natural number n0 ∈ N , such that d(xn, xm) < ε for all n,m ≥ n0.

Definition 1.5. Let (X, d) be a metric space, if every Cauchy sequence is convergent in X, then X is called a complete

metric space.

Definition 1.6. Let f and g be two self maps defined on a set X maps f and g are said to be commuting of fgx = gfx for

all x ∈ X.

Definition 1.7. Let f and g be two self maps defined on a set X maps f and g are said to be weakly compatible if they

commute at coincidence points that is if fx = gx for all x ∈ X then fgx = gfx = x.

Definition 1.8. Let f and g be two self maps on set X. If fx = gx, for some x ∈ X then x is called coincidence point of f

and g.

Lemma 1.9. Let f and g be weakly compatible self mapping of a set X. If f and g have a unique point of coincidence, that

is w = fx = gx then w is the unique common fixed point of f and g.

2. Main Result

Theorem 2.1. Let (X, d) be a complete metric space. Suppose that the mappings P,Q, S and T are four self maps of (X, d)

such that T (X) ⊆ P (X) and S(X) ⊆ Q(X) and satisfying

d(Ty, Sx) ≤ ad(Px,Qy) + b{d(Px, Sx) + d(Qy, Ty)}+ c{d(Px, Ty) + d(Qy, Sx)} (1)

for all x, y ∈ X, where a, b, c ≥ 0 and a+ 2b+ 2c < 1. suppose that the pairs {P, S} and {Q,T} are weakly compatible, then

P,Q, S and T have a unique common fixed point.

Proof. Choose x0 is an arbitrary initial point of X and define the sequence {yn} in X such that

y2n = Sx2n = Qx2n+1

y2n+1 = Tx2n+1 = Px2n+2

By (1) implies that

d(y2n+1, y2n) = d(Tx2n+1, Sx2n)

≤ ad(Px2n, Qx2n+1) + b{d(Px2n, Sx2n) + d(Qx2n+1, Tx2n+1)}+ c{d(Px2n, Tx2n+1) + d(Qx2n+1, Sx2n)}

≤ ad(y2n−1, y2n) + b{d(y2n−1, y2n) + d(y2n, y2n+1)}+ c{d(y2n−1, y2n+1) + d(y2n, y2n)}

≤ ad(y2n−1, y2n) + b{d(y2n−1, y2n) + d(y2n, y2n+1)}+ cd(y2n−1, y2n+1)
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d(y2n+1, y2n) ≤ (a+ b+ c)d(y2n−1, y2n) + (b+ c)d(y2n, y2n+1)

d(y2n+1, y2n) ≤ a+ b+ c

1− (b+ c)
d(y2n, y2n−1)

d(y2n+1, y2n) ≤ hd(y2n, y2n−1)

where h = a+b+c
1−(b+c)

< 1 for all n ∈ N

d(y2n, y2n+1) ≤ hd(y2n−1, y2n)

≤ h2d(y2n−2, y2n−1)

...

≤ h2n−1d(y0, y1)

for all m > n

d(yn, ym) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(ym−1, ym)

≤ (hn + hn+1 + · · ·hm−1)d(y0, y1)

≤ hn(1 + h+ h2 + · · ·+ hm−1−n)d(y0, y1)

≤ hn

1− hd(y0, y1)

Hence {yn} is a Cauchy sequence. There exists a point l in (X, d) such that lim
n→∞

{yn} = l, lim
n→∞

S2n = lim
n→∞

Q2n+1 = l and

lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = l that is,

lim
n→∞

S2n = lim
n→∞

Q2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = x∗

Since T (X) ⊆ P (X), there exists a point z in X Such that x∗ = Pz then by (1)

d(Sz, x∗) ≤ d(Sz, Tx2n−1) + d(Tx2n−1, x
∗)

≤ ad(Pz,Qx2n−1) + b{d(Pz, Sz) + d(Qx2n−1, Tx2n−1)}+ c{d(Pz, Tx2n−1) + d(Qx2n−1, Sz)}+ d(Tx2n−1, x
∗)

Taking the limit as n→∞

d(Sz, x∗) ≤ ad(x∗, x∗) + b{d(x∗, x∗) + d(x∗, Sz)}+ c{d(x∗, x∗) + d(x∗, Sz)}+ d(x∗, x∗)

≤ 0 + b{d(x∗, Sz) + 0}+ c{0 + d(x∗, Sz)}+ 0

≤ (b+ c)d(x∗, Sz)

Which is a contradiction since a + 2b + 2c < 1. Therefore Sz = Pz = x∗. Since S(X) ⊆ Q(X) there exists a point w ∈ X

such that x∗ = Qw. By (1)

d(Sz, x∗) ≤ d(Sz, Tw)

≤ ad(Pz,Qw) + b{d(Pz, Sz) + d(Qw, Tw)}+ c{d(Pz, Tw) + d(Qw,Sw)}

≤ ad(x∗, x∗) + b{d(x∗, x∗) + d(x∗, Tw)}+ c{d(x∗, Tw) + d(x∗, x∗)}

≤ 0 + b{0 + d(x∗, Tw)}+ c{d(x∗, Tw) + 0}

d(x∗, Tw) ≤ (b+ c)d(x∗, Tw)
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which is a contradiction since a+ 2b+ 2c < 1. Therefore Tw = Qw = x∗. Thus Sz = Pz = Tw = Qw = x∗. Since P and S

are weakly compatible maps. Then SP (z) = PS(z); Sx∗ = Px∗.

To prove that x∗ is a fixed point of S. Suppose Sx∗ 6= x∗ then by (1)

d(Sx∗, x∗) ≤ d(Sx∗, Tx∗)

≤ ad(Px∗, Qw) + b{d(Px∗, Sx∗) + d(Qw, Tw)}+ c{d(Px∗, Tw) + d(Qw,Sx∗)}

≤ ad(Sx∗, x∗) + b{d(Sx∗, Sx∗) + d(x∗, x∗)}+ c{d(Sx∗, x∗) + d(x∗, Sx∗)}

≤ ad(Sx∗, x∗) + b{0 + 0}+ 2cd(Sx∗, x∗)

d(Sx∗, x∗) ≤ (a+ 2c)d(Sx∗, x∗)

Which is a contradiction, Since a+ 2b+ 2c < 1.

Sx∗ = x∗

Hence Sx∗ = Px∗ = x∗. Similarly, Q and T are weakly compatible maps then TQw = QTw, that is Tx∗ = Qx∗

To prove that x∗ is a fixed point of T . Suppose Tx∗ 6= x∗ by (1)

d(Tx∗, x∗) ≤ d(Sx∗, Tx∗)

≤ ad(Px∗, Qx∗) + b{d(Px∗, Sx∗) + d(Qx∗, Tx∗)}+ c{d(Px∗, Tx∗) + d(Qx∗, Sx∗)}

≤ ad(x∗, Tx∗) + b{d(x∗, x∗) + d(Tx∗, Tx∗)}+ c{d(x∗, Tx∗) + d(Tx∗, x∗)}

≤ ad(Tx∗, x∗) + b{0 + 0}+ 2cd(Tx∗, x∗)

d(Tx∗, x∗) ≤ (a+ 2c)d(Tx∗, x∗)

which is a contradiction since a+ 2b+ 2c < 1.

Tx∗ = x∗.

Hence Tx∗ = Qx∗ = x∗. Thus Sx∗ = Px∗ = Tx∗ = Qx∗ = x∗. That is, x∗ is a common fixed point of P,Q, S and T .

To prove that the uniqueness of x∗. Suppose that x∗ and y∗, x∗ 6= y∗ are common fixed points of P,Q, S and T respectively,

by (1) we have,

d(x∗, y∗) ≤ d(Sx∗, T y∗)

≤ ad(Px∗, Qy∗) + b{d(Px∗, Sx∗) + d(Qy∗, T y∗)}+ c{d(Px∗, T y∗) + d(Qy∗, Sx∗)}

≤ ad(x∗, y∗) + b{d(x∗, x∗) + d(y∗, y∗)}+ c{d(x∗, y∗) + d(y∗, x∗)}

≤ ad(x∗, y∗) + b{0 + 0}+ c{d(x∗, y∗) + d(y∗, x∗)}

≤ (a+ 2c)d(x∗, y∗)

which is a contradiction. Since a + 2b + 2c < 1. Therefore x∗ = y∗. Hence x∗ is the unique common fixed point of P,Q, S

and T respectively.

Corollary 2.2. Let (X, d) be a Complete metric space. Suppose that the mappings P, S and T are three self maps of

(X, d) such that T (X) ⊆ P (X) and S(X) ⊆ P (X) and satisfying d(Sx, Ty) ≤ ad(Px, Py) + b{d(Px, Sy) + d(Px, Ty)} +

c{d(Px, Ty) + d(Py, Sx)} for all x, y ∈ X, where a, b, c ≥ 0 and a+ 2b+ 2c < 1. Suppose that the pairs {P, S} and {P, T}

are weakly compatible, then P, S and T have a unique common fixed point.
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Proof. The proof of the corollary immediate by taking P = Q in the above Theorem 2.1.

Definition 2.3 ([9]). A function Φ : [0,∞) → [0,∞) is said to be contractive modulus if Φ is continuous function and

Φ(t) < t for t > 0.

Theorem 2.4. Let (X, d) be a Complete metric space. Suppose that the mappings P,Q, S and T are four self maps of (X, d)

such that T (X) ⊆ P (X) and S(X) ⊆ Q(X) satisfying

d(Sx, Ty) ≤ Φ(λ(x, y)), (2)

where Φ is an upper semi continuous contractive modulus and

λ(x, y) = max

{
d(Px,Qy), d(Px, Sx), d(Qy, Ty),

1

2
{d(Px, Ty) + d(Qy, Sx)}

}
.

The pair {S, P} and {T,Q} are weakly compatible. Then P,Q, S and T have a unique common fixed point.

Proof. Let us take x0 is an arbitrary point of X and define a sequence {y2n} in X such that

y2n = Sx2n = Qx2n+1

y2n+1 = Tx2n+1 = Px2n+2

By (2) implies that

d(y2n, y2n+1) = d(Sx2n, Tx2n+1)

≤ Φ(λ(x2n, x2n+1))

≤ λ(x2n, x2n+1)

= max

{
d(Px2n, Qx2n+1), d(Px2n, Sx2n), d(Qx2n+1, Tx2n+1),

1

2
{d(Px2n, Tx2n+1) + d(Qx2n+1, Sx2n)}

}
= max

{
d(Tx2n−1, Sx2n), d(Tx2n−1, Sx2n), d(Sx2n, Tx2n+1),

1

2
{d(Tx2n−1, Tx2n+1) + d(Sx2n, Sx2n)}

}
= max

{
d(Tx2n−1, Sx2n), d(Tx2n−1, Sx2n), d(Sx2n, Tx2n+1),

1

2
d(Tx2n−1, Tx2n+1)

}
= max

{
d(y2n, y2n−1), d(y2n, y2n+1),

1

2
d(y2n−1, y2n+1)

}
≤ max{d(y2n, y2n−1), d(y2n, y2n+1)}

Since Φ is an contractive modulus, λ(x2n − x2n+1) = d(y2n, y2n+1) is not possible. Thus,

d(y2n, y2n+1) ≤ Φ(d(y2n−1, y2n)) (3)

Since Φ is an upper semi continuous, contractive modulus. Equation (3) implies that the sequence {d(y2n+1, y2n)} is

monotonic decreasing and continuous. There exists a real number, say r ≥ 0 such that lim
n→∞

d(y2n+1, y2n) = r, as n → ∞

equation (3) ⇒ r ≤ Φ(r) which is only possible if r = 0 because Φ is a contractive modulus. Thus lim
n→∞

d(y2n+1, y2n) = 0.

Claim: {y2n} is a Cauchy sequence. Suppose {y2n} is not a Cauchy sequence. Then there exists an ε > 0 and sub sequence

{ni} and {mi} such that mi < ni < mi+1

d(ymi , yni) ≥ ε and d(ymi , yni−1) ≤ ε (4)
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ε ≤ d(ymi , yni) ≤ d(ymi , yni−1) + d(yni−1 , yni) therefore lim
i→∞

d(ymi , yni) = ε. Now ε ≤ d(ymi−1 , yni−1) ≤ d(ymi−1 , ymi) +

d(ymi , yni−1) by taking limit i→∞ we get, lim
i→∞

d(ymi−1 , yni−1) = ε, from (3) and (4)

ε ≤ d(ymi , yni) = d(Sxmi , Txni) ≤ Φ(λ(xmi , xni))

where implies

ε ≤ Φ(λ(xmi , xni)) (5)

λ(xmi , xni) = max

{
d(Pxmi , Qxni), d(Pxmi , Sxmi), d(Qxni , Txni),

1

2
(d(Pxmi , Txni) + d(Qxni , Sxmi))

}
= max

{
d(Txmi−1 , Sxni−1), d(Txmi−1 , Sxmi), d(Sxni−1 , Txni),

1

2
(d(Txmi−1 , Txni) + d(Sxni−1 , Sxmi))

}
= max

{
d(ymi−1 , yni−1), d(ymi−1 , ymi), d(yni−1 , yni),

1

2
(d(ymi−1 , yni) + d(yni−1 , ymi))

}

Taking limit as i→∞, we get

lim
i→∞

λ(xmi , xni) = max{ε, 0, 0, 1

2
(ε, ε)}

lim
i→∞

λ(xmi , xni) = ε

Therefore from (5) we have, ε ≤ Φ(ε). This is a contradiction because ε > 0 and Φ is contractive modulus. Therefore {y2n}

is Cauchy sequence in X. There exits a point z in X such that lim
n→∞

y2n = z. Thus,

lim
n→∞

Sx2n = lim
n→∞

Qx2n+1 = z and

lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = z

(i.e) lim
n→∞

Sx2n = lim
n→∞

Qx2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = z

T (X) ⊆ P (X), there exists a point u ∈ X such that z = Pu

d(Su, z) ≤ d(Su, Tx2n+1) + d(Tx2n+1, z)

≤ Φ(λ(u, x2n+1)) + d(Tx2n+1, z), where

λ(u, x2n+1) = max

{
d(Pu,Qx2n+1), d(Pu, Su), d(Qx2n+1, Tx2n+1),

1

2
(d(Pu, Tx2n+1) + d(Qx2n+1, Su))

}
= max

{
d(z, Sx2n), d(z, Su), d(Sx2n, Tx2n+1),

1

2
(d(z, Tx2n+1) + d(Sx2n, Su))

}
.

Now taking the limit as n→∞ we have,

λ(u, x2n+1) = max{d(z, Su), d(z, Su), d(Su, Tu),
1

2
(d(z, Tu) + d(z, Su))}

= max{d(z, Su), d(z, Su), d(Su, z),
1

2
(d(z, z) + d(z, Su))}

= d(z, Su)

Thus

d(Su, z) ≤ Φ(d(Su, z)) + d(z, z) = Φ(d(Su, z))
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If Su 6= z then d(Su, z) > 0 and hence as Φ is contracive modulus Φ(d(Su, z)) < d(Su, z). Which is a contradiction, Su = z

so, Pu = Su = z. So u is a coincidence point if P and S. The pair of maps S and P are weakly compatible SPu = PSu

that is Sz = Pz. S(X) ⊆ Q(X), there exists a point v ∈ X such that z = Qv. Then we have

d(z, Tv) = d(Su, Tv)

≤ Φ(λ(u, v)) ≤ λ(u, v)

= max

{
d(Pu,Qv), d(Pu, Su), d(Qv, Tv),

1

2
(d(Pu, Tv) + d(Qv, Su))

}
= max

{
d(z, z), d(z, z), d(z, Tv),

1

2
(d(z, Tv) + d(z, z))

}
= d(z, Tv)

Thus d(z, Tv) ≤ Φ(d(z, Tv)). If Tv ∈ z then d(z, Tv) ≥ 0 and hence as Φ is contractive modulus Φ(d(z, Tv)) < d(z, Tv).

Therefore d(z, Tv) < d(z, Tv) which is a contradiction. Therefore Tv = Qv = z. So, v is a coincidence point of Q and T .

Since the pair of maps Q and T are weakly compatible, QTv = TQv (i.e) Qz = Tz. Now show that z is a fixed point of S.

We have

d(Sz, z) = d(Sz, Tv)

≤ Φ(λ(z, v)) ≤ λ(z, v)

= max{d(Pz,Qv), d(Pz, Sz), d(Qv, Tv),
1

2
(d(Pz, Tv) + d(Qv, Sz))}

= max{d(Sz, z), d(Sz, Sz), d(z, z),
1

2
(d(Sz, z) + d(z, Sz))}

= d(Sz, z)

Thus d(Sz, z) ≤ Φ(d(Sz, z)). If Sz 6= z then d(Sz, z) > 0 and hence as Φ is contractive modulus Φ(d(Sz, z)) < d(Sz, z)

which is a contradiction. There exits Sz = z. Hence Sz = Pz = z. Show that z is a fixed point of T. We have

d(z, Tz) = d(Sz, Tz)

≤ Φ(λ(z, z)) ≤ λ(z, z)

= max

{
d(Pz,Qz), d(Pz, Sz), d(Qz, Tz),

1

2
(d(Pz, Tz) + d(Qz, Sz))

}
= max

{
d(z, Tz), d(z, z), d(Tz, Tz),

1

2
(d(z, Tz) + d(Tz, z))

}
= d(z, Tz)

Thus d(z, Tz) ≤ Φ(d(z, Tz)). If z 6= Tz then d(z, Tz) > 0 and hence as Φ is contractive modulus Φ(d(z, Tz)) < d(z, Tz)

which is a contradiction. Hence z = Tz. Therefore Tz = Qz = z. Therefore Sz = Pz = Tz = Qz = z. That is z is common

fixed point of P,Q, S and T .

Uniqueness: Suppose, z and w (z 6= w) are common fixed point of P,Q, S and T , we have

d(z, w) = d(Sz, Tw)

≤ Φ(λ(z, w)) ≤ λ(z, w)

= max

{
d(Pz,Qw), d(Pz, Sz), d(Qw, Tw),

1

2
(d(Pz, Tw) + d(Qw,Sz))

}
= max

{
d(z, w), d(z, z), d(w,w),

1

2
(d(z, w) + d(w, z))

}
= d(z, w)
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Thus, d(z, w) ≤ Φ(d(z, w)). Since z 6= w, then d(z, wd) > 0 and hence as Φ is contractive modulus Φ(d(z, w)) < d(z, w).

Therefore d(z, w) < d(z, w) which is a contradiction, therefore z = w. Thus z is the unique common fixed point of P,Q, S

and T .

Corollary 2.5. Let (X, d) be a complete metric space. Suppose that the mappings P, S and T are three self maps of (X, d)

such that T (X) ⊆ P (X) and S(X) ⊆ P (X) satisfying

d(Sx, Ty) ≤ Φ(λ(x, y)), (6)

where Φ is an upper semi continuous contractive modulus and

λ(x, y) = max

{
d(Px, Py), d(Px, Sx), d(Py, Ty),

1

2
{d(Px, Ty) + d(Py, Sx)}

}
.

The pair {S, P} and {T, P} are weakly compatible. Then P, S and T have a unique common fixed point.

Proof. The proof of the corollary immediate by taking P = Q in the above Theorem 2.4.
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