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1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many

topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified

forms of continuity, seperation axioms etc. by utilizing generalized open sets. Compactness and properties closely related

to compactness play an important role in the applications of General Topology to Real Analysis and Functional Analysis.

In [3] the author, introduced the notion of ω-compactness and investigated its fundamental properties. In this paper, we

investigate some more properties of this type of compact space.

2. Preliminaries

Throughout this paper, spaces always means topological spaces on which no separation axioms are assumed unless otherwise

mentioned. For a subset A of a space (X, τ), Cl(A) and Int(A) denote the closure of A and the interior of A in X, respectively.

A subset A of X is said to be semiopen [1] if A ⊂ Cl(Int(A)). A subset A of a space (X, τ) is called an ω-closed set [2]

if Cl(A) ⊆ U whenever A ⊆ U and U is semiopen in (X, τ). The complement of an ω-closed set is called an ω-open set

[2]. The intersection of all ω-closed sets containing A ⊂ X is called the ω-closure [3] of A and is denoted by ωCl(E). The

union of all ω-open sets contained in A ⊂ X is called the ω-interior [3] of A and is denoted by ω Int(E). Let (X, τ) be a

topological space. The family of all ω-openr (resp. ω-closed) sets of (X, τ) is denoted by ωO(X) (resp. ωC(X)). The family

of all ω-open (resp. ω-closed) sets of (X, τ) containing a point x ∈ X is denoted by ωO(X,x) (resp. ωC(X,x)). A subset

K of a nonempty set X is said to be ω-compact relative to (X, τ) if every cover of K by ω-open sets of (X, τ) has a finite

subcover. We say that (X, τ) is ω-compact if X is ω-compact.
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3. ω-compact Spaces

We will give several characterizations of the ω-compact spaces. The first characterization makes use of the finite intersection

condition.

Theorem 3.1. The following statements are equivalent for any topological space (X, τ):

(i). X is ω-compact.

(ii). Given any family F of ω-open sets, if no finite subfamily of F covers X, then F does not cover X.

(iii). Given any family F of ω-closed sets, if F satisfies the finite intersection condition, then ∩{A : A ∈ F} 6= ∅.

(iv). Given any family F of subsets of X, if F satisfies the finite intersection condition, then ∩{ωCl(A) : A ∈ F} 6= ∅.

Proof. (i) ⇔ (ii) and (ii) ⇔ (iii) are obivious. (iii) ⇒ (iv): If F ⊂ P (X) satisfies the finite intersection condition, then

∩{ωCl(A) : A ∈ F} is a family of ω-closed sets, which obviously satisfies the finite intersection condition. (iv) ⇒ (iii)

Follows from the fact that A = bCl(A) for every ω-closed set A.

Theorem 3.2 ([3]). If A ⊆ B ⊆ (X, τ) where A is ω-open relative to B and B is open in (X, τ), then A is ω-open in X.

Theorem 3.3. Every open subset of a ω-compact space is ω-compact, in particular, ω-compactness is hereditary with respect

to open sets.

Proof. Let A be an open subset of an ω-compact space X. If {Uα : α ∈ ∆} is an ω-open cover of (A, τA), then by Theorem

3.2, each Uα is ω-open in X. Then {Uα : α ∈ ∆} ∪ {X\A} is ω-open cover of X. Since X is ω-compact, there exists a finite

subset ∆0 ⊂ ∆ such that {Uα : α ∈ ∆0} covers A.

Definition 3.4. A point x ∈ X is said to be ω-cluster point of a net {xα}α∈∆ if {xα}α∈∆ is frequently in every ω-open set

containing x. We denote by ω-cp{xα}α∈∆ the set of all ω-cluster points of a net {xα}α∈∆.

Theorem 3.5. The set of all ω-cluster points of an arbitrary net in X is ω-closed.

Proof. Let {xα}α∈∆ be a net in X. Set A = ω−cp{xα}α∈∆. Let x ∈ X\A. Then there exists a ω-open set Ux containing x

and αx ∈ ∆ such that Xβ /∈ Ux whenever β ∈ ∆, β ≥ αx. It turns out that Ux ⊂ X\A, hence x ∈ ω Int(X\A) = X\ωCl(A).

This shows that ωCl(A) ⊂ A; hence A is ω-closed.

Theorem 3.6. A topological space X is ω-compact if and only if each net {xα}α∈∆ in X, has atleast one ω-cluster point.

Proof. Let X be a ω-compact space. Assume that there exist some net {xα}α∈∆ in X such that ω-cp{xα}α∈∆ is empty.

Then for every x ∈ X, there exist U(x) ∈ ωO(X,x) and α(x) ∈ ∆, such that xβ /∈ U(x) whenever β ≥ α(x), β ∈ ∆.

Then the family {U(x) : x ∈ X} is a cover of X by ω-open sets and has a finite subcover, say, {Uk : k = 1, 2, ...n} where

Uk = U(xk) for k = 1,2,....n, {xk : k = 1, 2, ...n}. Let us take α ∈ ∆ such that α ≥ α(xk) for all k ∈ {1, 2, ....n}. For every

β ∈ ∆ such that β ≥ α we have, xβ /∈ Uk, k = 1, 2,....n, hence xβ /∈ X, which is a contradiction. Conversely, if X is not

ω-compact, there exists {Ui : i ∈ I} a cover of X by ω-open sets, which has no finite subcover. Let P (I) be the family of

all finite subsets of I. Clearly, (P (I),⊆) is a directed set. For each J ∈ I. we may choose xj ∈ X\ ∪ {Ui : i ∈ J}. Let

us consider the net {xj}j∈P (I). By hypothesis, the set ω-cp{xj}j∈P (I) is nonempty. Let x ∈ ω-cp{xj}j∈P (I) and let i0 ∈ I

such that x ∈ Ui0. By the definition of ω-cluster point, for each J ∈ P (I) there exist J∗ ∈ P (I) such that J ⊂ J∗ and

x∗j ∈ Ui0. For J = {i0}, there exists J∗ ∈ P (I) such that i0 ∈ J∗ and x∗j ∈ Ui0. But x∗j ∈ X\ ∪ {Ui : i ∈ J∗} ⊂ X\Ui0 . The

contradiction we obtained shows that X is ω-compact.
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In the following, we will give a characterization of ω-compact spaces by means of filterbases.

Let us recall that a nonempty family F of subsets of X is said to be a filterbase on X if ∅ /∈ F and each intersection of

two members of F contains a third member of F . Notice that each chain in the family of all filterbase on X (ordered by

inclusion) has an upper bound, for example, the union of all members of the chain. Then, by Zorn’s Lemma, the family of all

filterbases on X has atleast one maximal element. Similarly, the family of all filterbases on X containing a given filterbase

F has atleast one maximal element.

Definition 3.7. A filterbase F on a topological space X is said to be:

(i). ω-converge to a point x ∈ X if for each ω-open set U containing x, there exists B ∈ F such that B ⊂ U .

(ii). ω-accumulate at x ∈ X if U ∩B 6= ∅ for every ω-open set U containing x and every B ∈ F .

Remark 3.1. A filterbase F ω-accumulate at x if and only if x ∈ ∩{ωCl(B) : B ∈ F}. Clearly, if a filterbase F ω-converges

to x ∈ X, then F ω-accumulates at x.

Lemma 3.8. If a maximal filterbase F ω-accumulate at x ∈ X, then F ω-converges to x.

Proof. Let F be a maximal filterbase which ω-accumulate at x ∈ X. If F does not ω-converges to x, then there exists a

ω-open set U0 containing x such that U0 ∩ B 6= ∅ and (X\U0) ∩ B 6= ∅ for every B ∈ F . Then F ∪ {U0 ∩ B : B ∈ F} is a

filterbase which strictly contains F , which is a contradiction.

Theorem 3.9. For a topological space X, the following statements are equivalent:

(i). X is ω-compact;

(ii). Every maximal filterbase ω-converges to some point of X;

(iii). Every filterbase ω-accumulates at some point of X.

Proof. (i)⇒ (ii): Let F0 be a maximal filterbase on X. Suppose that F0 does not ω-converge to any point of X. Then,

by Lemma 3.8, F0 does not ω-accumulate at any point of X. For each x ∈ X, there exists a ω-open set Ux containing x

and Bx ∈ F0 such that Ux ∩ Bx = ∅. The family {Ux : x ∈ X} is a cover of X by ω-open sets. By (i), there exists a finite

subset {x1, x2, ....xn} of X such that X = ∪{Uxk : k = 1, 2, ...n}. Since F0 is a filterbase, there exists B0 ∈ F0 such that

B0 ⊂ ∩{Bxk : k = 1, 2, ...n} = X\ ∪ {Uxk : k = 1, 2, ...n}, hence B0 = ∅. This is a contradiction. (ii) ⇒ (iii): Let F be a

filterbase on X. There exists a maximal filterbase F0 such that F ⊂ F0. By (ii), F0 ω-converges to some point x0 ∈ X. Let

B ∈ F . For every U ∈ ωO(X,x0), there exists BU ∈ F0 such that BU ⊂ U , hence U ∩B 6= ∅, since it contains the member

BU ∩B of F0. This shows that F ω-accumulates at x0. (iii)⇒ (i): Let {Vi : i ∈ I} = ∅ be any family of ω-closed sets such

that ∩{Vi : i ∈ I} = ∅. We shall prove that there exists a finite subset I0 of I such that ∩{Vi : i ∈ I}. By Theorem 3.1, this

implies (i). Let P (I) be the family of finite subsets of I. Assume that ∩{Vi : i ∈ J} = ∅ for every J ∈ P (I) (say ∗). Then

the family F = {∩{Vi : i ∈ J} : J ∈ P (I)} is a filterbase on X. By (iii), F ω-accumulates to some point x0 ∈ X. Since

{X\Vi : i ∈ I} is a cover of X, there exists i0 ∈ I such that x0 ∈ X\Vi0 . Then X\Vi0 is a ω-open set containing x0, Vi0 ∈ F

and (X\Vi0) ∩ Vi0 = ∅. This is a contradiction with the fact that F ω-accumulates at x0 shows that (*) is false.

Definition 3.10. A point x in a topological space X is said to be a ω-complete accumulation point of a subset S of X if

n(S ∩A) = n(S) for each A ∈ ωO(X,x), where n(S) denotes the cardinality of S.

Definition 3.11. In a topological space (X, τ), a point x is said to be a ω-adherent point of a filterbase F on X if it lies in

the ω-closure of all sets of F .
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Theorem 3.12. A topological space (X, τ) is ω-compact if and only if each infinite subset of X has a ω-complete accumulation

point.

Proof. Let the topological space (X, τ) be ω-compact and A an infinite subset of X. Let K be the set of all points

x in X which are not ω-complete accumulation points of S. Now it is obvious that for each point x in K, we are able

to find U(x) ∈ ωO(X,x) such that n(A ∩ U(x)) 6= n(S). If K is the whole space X, then F = {U(x)x ∈ X} is a ω-

cover of X. By hypothesis, X is ω-compact. So, there exists a finite subcover G = {U(xi) : i = 1, 2, ...n}, such that

A ⊂ ∪{U(xi) ∩ A : i = 1, 2, ...n}. Then n(S) = max{n(U(xi) ∩ A) : i = 1, 2, ...n} which does not agree with what we

assumed. This implies that A has a ω-complete accumulation point. Now assume that X is not ω-compact and that

every infinite subset A of X has a ω-complete accumulation point in X. It follows that there exists a ω-cover S with

no finite subcover. Set α = min{n(Ψ): Ψ ⊂ S, where Ψ is a ω-cover of X} . Fix Ψ = S for which n(Ψ) = α and

∪{U : U ∈ Ψ} = X. Then, by hypothesis α ≥ n(N), where N denotes the set of all natural numbers. By well-ordering

of Ψ by some minimal well-ordering ”∼”, suppose that U is any member of Ψ. By minimal well-ordering ”∼” we have

n({V : V ∈ Ψ, V ∼ U}) < n({V : V ∈ Ψ}). Since Ψ cannot have any subcover with cardinality less than α, then for each

U ∈ Ψ we have X 6= ∪{V ;V ∈ Ψ, V ∼ U}). For each U ∈ Ψ, choose a point x(U) ∈ X\ ∪ {V ∪ {x(V )};V ∈ Ψ, V ∼ U}).

We are always able to do this if not one can choose a cover of smaller cardinality from Ψ. If H = {x(U) : U ∈ Ψ}, then to

finish the proof we will show that H has no ω-complete accumulation point in X. Suppose z ∈ X. Since Ψ is a ω-cover of

X, z is a point of some set, say W in Ψ. By the fact that U ∼ W , we have x(U) ∈ W . It follows that T = {U : U ∈ Ψ

and x(U) ∈ W} ⊂ {V ;V ∈ Ψ, V ∼ W}. But n(T ) < α. Therefore, n(H ∩W ) < α. But n(H) = α ≥ n(N). Since for two

distinct points U and W in Ψ, we have x(U) 6= x(W ). This means that H has no ω-complete accumulation point in X,

which contradicts our assumption. Therefore X is ω-compact.

Theorem 3.13. For a topological space (X, τ), the following statements are equivalent:

(i). X is ω-compact;

(ii). Every net in X with a well-ordered directed set as its domain ω-accumulates to some point of X.

Proof. (i) ⇒ (ii): Suppose that X is ω-compact and A = {xα : α ∈ ∆} a net with a well-ordered directed set ∆ as

domain. Assume that A has no ω-adherent point in X. Then for each x ∈ X, there exists V (x) ∈ ωO(X,x) and an α(x) ∈ ∆

such that V (x) ∩ {xα : α ≥ α(x)} = ∅. This implies that {xα : α ≥ α(x)} is a subset of X\V (x). Then the collection

F = {V (x) : x ∈ X} is a ω-open cover of X. Since X is ω-compact, F has a finite subfamily {Vxi : i = 1, 2, ...n} such that

X =
n
∪
i=1
{V (xi) : i = 1, 2, ...n}. Suppose that the corresponding elements of ∆ are {α(xi)}, where i = 1, 2, ...n. Since ∆

is well-ordered and {α(xi) : i = 1, 2, ...n} is finite, the largest element of {α(xi)} exists. Suppose it is {α(xi)}. Then for

β ≥ {α(xi)}, we have {xδ : δ ≥ β} ⊂
n
∩
i=1
{X\V (xi)} = X\

n
∪
i=1

V (xi) = ∅, which is impossible. This shows that A has atleast

one ω-adherent point in X. (ii) ⇒ (i): Now it is enough to prove that each infinite subset has a ω-complete accumulation

point by utilizing Theorem 3.12. Suppose that S is an infinite subset of X. According to Zorn’s Lemma, the infinite set

S can be well-ordered. This means that we can assume S to be a net with a domain which is a well-ordered index set.

It follows that S has a ω-adherent point z. Therefore, z is a ω-complete accumulation point of S. This shows that X is

ω-compact.

Theorem 3.14. A topological space X is ω-compact if and only if each family of ω-closed subsets of X with the finite

intersection property has a nonempty intersection.

Theorem 3.15. A topological space X is ω-compact if and only if each filterbase in X has atleast one ω-adherent point.
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Proof. Suppose that X is ω-compact and F = {Fα : α ∈ ∆} a filterbase in it. Since all finite intersections of Fα’s are

nonempty, it follows that all finite intersection of ωCl(Fα)’s are also nonempty. Now it follows from Theorem 3.13 that

∩
α∈∆

ωCl(Fα) 6= ∅. This implies that F has atleast one ω-adherent point. Now suppose F is a family of ω-closed sets.

Let each finite intersection be nonempty. The sets Fα with their finite intersection establish a filterbase F . Therefore, F

ω-accumulates to some point z ∈ X. It follows that z ∈ ∩
α∈∆

Fα. Now we have by Theorem 3.13 X is ω-compact.

Theorem 3.16. A topological space X is ω-compact if and only if each filterbase on X with atleast one ω-adherent point is

ω-convergent.

Proof. Suppose that X is ω-compact, x ∈ X and F is a filterbase on X. The ω-adherence of F is a subset of {x}. Then

the ω-adherence of F is equal to {x} by Theorem 3.13. Assume that there exists V ∈ ωO(X,x) such that for all F ∈ F ,

F ∩ (X\V ) 6= ∅. Then Ψ = {F\V : F ∈ F} is a filterbase on X. It follows that the ω-adherence of Ψ is nonempty. However,

∩
F∈F

ωCl(F\V ) = ( ∩
F∈F

ωCl(F )) ∩ (X\V ) = {x} ∩ (X\V ) = ∅, a contradiction. Hence for each V ∈ ωO(X,x), there exists

an F ∈ F with F ⊂ V . This shows that F ω-converges to x. To prove the converse, it suffices to show that each filterbase

in X has atleast one ω-accumulation point. Assume that F is a filterbase on X with no ω-adherent point. By hypothesis,

F ω-converges to some point z ∈ X. Suppose Fα is an arbitrary element of F . Then for each V ∈ ωO(X,x), there exists

Fβ ∈ F such that Fβ ⊂ V . Since F is a filterbase, there exists a ω such that Fω ⊂ Fα ∩ Fβ ⊂ Fα ∩ V , where Fα 6= ∅. This

means that Fα ∩ V 6= ∅ for every V ∈ ωO(X,x) and corresponding for each α, z is a point of ωCl(Fα). It follows that

z ∈ ∩
α
ωCl(Fα). Therefore, z is a ω-adherent point of F , a contradiction. This shows that X is ω-compact.

Definition 3.17. Let X be a topological space. A point x ∈ X is said to be ω-θ-cluster point of a net {xα}α∈∆ if {xα}α∈∆

is frequently in the ω-closure of every ω-open set containing x.

Theorem 3.18. A topological space X is ω-compact if and only if each net {xα}α∈∆ in X, has atleast one ω-cluster point.

Proof. Similar to the proof of Theorem 3.6

4. Firmly ω-continuous Functions

Definition 4.1. A function f : X → Y , where X and Y are topological spaces, is said to have property ξ if for every ω-open

cover ∆ of Y there exists a finite cover (the members of which need not be necessarily ω-open) {A1, A2, .....An} of X such

that for each i ∈ {1, 2, ..., n}, there exists a set Ui ∈ ∆ such that f(Ai) ⊂ Ui.

Theorem 4.2. A topological space X is ω-compact if and only if for every topological space Y and every ω-irresolute function

f : X → Y , f has the property ξ.

Proof. Suppose that the topological space X is ω-compact and the function f : X → Y is ω-irresolute. Let Θ be an ω-open

cover of Y . Thr set f(X) is ω-compact relative to Y . This means that there exists a finite subfamily {U1, U2, ...., Un} of Θ

which cover f(X). Then the sets A1 = f−1(U1), A2 = f−1(U2),....An = f−1(Un) form a cover of X such that f(Ai) ⊂ Ui

for each i ∈ {1, 2, ..., n}. Conversely, assume that X is a topological space such that for every topological space Y and every

ω-irresolute function f : X → Y , f has the property ξ. It follows that the identity function id : X → X has also the property

ξ. Therefore, for every ω-open cover Θ, there exists a finite cover A1, A2, ...., An of X such that for each i ∈ {1, 2, ..., n},

there exists a set Ui ∈ Θ such that Ai = id(Ai) ⊂ Ui. Then {U1, U2, ...., Un} is a subcover og θ. Since Θ was an arbitrary

ω-open cover of X, the space X is ω-compact.
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Definition 4.3. A function f : X → Y is said to be firmly ω-continuous if for every ω-open cover ∆ of Y there exists a

finite ω-open cover Θ of X such that for every U ∈ Θ there exists G ∈ ∆ such that f(U) ⊂ G.

Remark 4.4. It should be noticed that if the topological space X is ω-compact and Y is an arbitrary topological space, then

every ω-irresolute function f : X → Y is firmly ω-continuous.

Lemma 4.5. Let X, Y , Z and W be topological spaces. Let g : X → Y and h : Z → W be ω-irresolute functions and let

f : Y → Z be firmly ω-continuous. Then the functions f ◦ g : X → Z and h ◦ f : Y →W are firmly ω-continuous.

Lemma 4.6. If f : X → Y is a ω-irresolute function which has the property ξ, then f is firmly ω-continuous.

Theorem 4.7. For a topological space (X, τ), the following properties are equivalent:

(1). X is ω-compact.

(2). The the identity function id : X → X is firmly ω-continuous.

(3). Every ω-irresolute function from X to X is firmly ω-continuous.

(4). Every ω-irresolute function from X to a topological space Y is firmly ω-continuous.

(5). Every ω-irresolute function from X to a topological space Y has the property ξ.

(6). For each topological space Y and each ω-irresolute function f : Y → X, f is firmly ω-continuous.

Proof. (1)⇒(2): Suppose that X is ω-compact. The identity function id : X → X is ω-irresolute and by Remark 4.4,

id : X → X is firmly ω-continuous. (2)⇒(3): Let f : X → X be any ω-irresolute function. By (2), the identity function

id : X → X is firmly ω-continuous and hence by Lemma 4.5 f = id ◦ f : X → X is firmly ω-continuous. (3)⇒(4):

Let f : X → X be any ω-irresolute function. The identity function id : X → X is ω-irresolute and by (3) id is firmly

ω-continuous. It follows from 4.5 that f = f ◦ id : X → Y is firmly ω-continuous. (4)⇒(5): This is obvious. (5)⇒(1): This

follows immediately from Theorem 4.2. (6)⇒(2): Let id : X → X be the identity function. Then id is ω-irresolute and by

(6) id is firmly ω-continuous. (1)⇒(6): Let Θ be an ω-open cover of X. Since X is ω-compact, then there exists a finite

subcover {U1, U2, ...., Un} of Θ. Assume that Ai = f−1(Ui) for i ∈ I, where I = {1, 2, ..n}. It follows that f(Ai) ⊂ Ui for

i ∈ I. This shows that f is firmly ω-continuous.
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